
Chapter 14
Real-world Service Interaction with Enterprise
Systems in Dynamic Manufacturing
Environments

S. Karnouskos, D. Savio, P. Spiess, D. Guinard, V. Trifa and O. Baecker1

Abstract The factory of the future will be heavily based on internet and web
technologies. A new generation of devices with embedded hardware and software
will feature greatly improved storage, computing, and networking capabilities.
This will lead to a system landscape of millions of networked devices that is het-
erogeneous with respect to functionality but features standard interfaces. This new
breed of devices will not only be able to store and report information about them-
selves and their physical surroundings, but execute more computations and local
logic. They will form collaborative peer-to-peer networks and also connect to cen-
tral systems. By eliminating media breaks, e.g. by replacing manual data entry
with a direct connection to devices, this “internet of things” will feature end-to-
end connectivity, making the models of the real world, as they exist in business
systems, follow reality more precisely and with shorter delay. This will change the
way we design, deploy and use services at all layers of the system, be it the de-
vice, line, plant, or company level or even between collaborating organizations.
This chapter describes an architecture for effective integration of the services from
the internet of things with enterprise services. We describe the case of centrally
managing a population of devices that are located at different sites, including dy-
namic discovery of devices and the services they offer, near real-time cross-site
interaction, interaction with business processes and distributed system manage-
ment.

Keywords Service interaction, enterprise integration, dynamic manufacturing

S. Karnouskos (), D. Savio, P. Spiess, D. Guinard, V. Trifa and O. Baecker
SAP Research, SAP AG, Vincenz-Priessnitz-Strasse 1, D-76131 Karlsruhe, Germany
e-mail: stamatis.karnouskos@sap.com

S. Karnouskos et al. 424

14.1 Motivation

The last decade has witnessed a deep paradigm shift on the shop-floor where in-
formation and communication technologies are being used extensively. As high-
performance micro-controllers are being embedded in devices used in manufactur-
ing and process automation, services hosted on them will enable new applications
that could significantly increase the efficiency and efficacy of current shop-floor
systems.

As we are moving towards the “internet of things” as depicted by Fleisch and
Mattern (2005), millions of interconnected devices will provide and consume in-
formation available on the network and cooperate. Service-oriented architecture
(SOA) seems to be a promising solution to realize the necessary universal interop-
erability. SAP predicts that the world market for technologies, products, and ap-
plications that are related to the “internet of things” will increase significantly
from €1.35 billion to more than €7.76 billion in 2012, with average annual growth
rates of almost 50% (SAP, 2008).

In what we call “real-world SOA”, each device:
• offers its functionality in a service-oriented way;
• is able to discover other devices and their hosted services dynamically at run-

time;
• can invoke actions of the discovered services dynamically; and
• is able to publish and subscribe to typed, asynchronous events.

These distributed devices can be considered as a set of intelligent, proactive, fault-
tolerant and reusable units (Colombo and Karnouskos, 2009) that can co-operate
to form a dynamic infrastructure able to provide better insights of the current
status of, e.g., a production line to the other higher levels in the factory informa-
tion technology (IT) systems, such as manufacturing execution systems (MES).
They also can dynamically react to business changes that can influence the pro-
duction plan on the shop-floor.

As demonstrated in previous work (de Souza et al., 2008; Jammes and Smit,
2005; Karnouskos et al., 2007; Priyantha et al., 2008), future shop-floor infra-
structures can significantly benefit from service-oriented approaches, both in ver-
tical (cross-level) and horizontal communication, as pursued within the
SOCRADES project (www.socrades.eu). In these infrastructures, new, rich ser-
vices can be created by orchestrating and combining services from different sys-
tem levels, i.e. services provided by enterprise systems, by middleware systems on
the network, and by devices themselves. The composed services with complex be-
haviour can be created at any layer (even at device layer). In parallel, dynamic
discovery and peer-to-peer (P2P) communication allows for dynamically discov-
ery of functionality of each device. The trend is to clearly move away from pro-
prietary connections between monolithic hardware and software systems towards
more autonomous systems that interact in a more standardized, cooperative and
open way.

14 Real-world Service Interaction with Enterprise Systems 425

The convergence of applications and products towards the SOA paradigm im-
proves shop-floor integration and transparency, thereby increasing reactivity and
performance of the workflows and business processes commonly found in manu-
facturing and logistics. Events become available to any entity of the system as
they happen, and business-level applications can exploit such timely information
for purposes such as diagnostics, performance indications, or traceability. While
these vertical collaborations are beneficial for business application software, new
challenges arise: direct communication with devices can be error prone or unreli-
able, which must be considered when critical decisions, such as branches in a
workflow, depend on it.

Business processes in a company are defined by the best practices of the re-
spective industry and its goals. However, in reality, production processes are
monolithic and system output is expected to be ideal. A production process in-
stance (residing, e.g., in an MES system) usually has a series of vertical integra-
tions with shop floor systems until it reaches the end of its lifetime. As a conse-
quence, challenges arise when trying to make the processes adaptive or trying to
extend it. Introducing process parameters to adapt to the dynamic nature of the
shop-floor is tedious, especially for companies that span multiple production loca-
tions and heterogeneous IT systems.

The embedded device landscape is changing drastically as technology rapidly
advances. Shop floors become populated with highly sophisticated networked em-
bedded devices that have faster central processing units with lower energy con-
sumption, yet are more compact. They can also do more than controlling local
loops and can provide tools for real-time analysis (for example the CX1020 series
programmable logic controller (PLC) of Beckhoff).

As devices can natively offer web services, they provide an interoperability
layer that leads to easier coupling with other components despite of the high het-
erogeneity behind the web service facades. Device profile for web services
(DPWS) Chan et al., (2005), OPC-UA (Mahnke et al., 2009) and representational
state transfer (REST) are three of the emerging technologies for realizing web ser-
vice-enabled devices. Thanks to the nature of web services, compositions of ser-
vices can be easily created to match the desired scenario, very much like in state-
of-the-art web mashups. Integration of devices at the functional level allows us to
focus on orchestrating services based on their role in a process, and not the low-
level interface of the device as such.

Service-based integration of shop-floor devices with enterprise systems brings
many benefits in terms of business automation, response time, and data quality.
Although these benefits make this integration highly desirable in a competitive
economy, the unsupervised integration of devices with enterprise systems can also
cause economic losses. These losses include: production halts, production time in-
crease, reputation loss due to delays and even product recalls. When unexpected
situations occur on the shop-floor, a rapid and dynamic adaptation of the business
process is required in order to mitigate the effects that such an event can cause.

S. Karnouskos et al. 426

Hence, a beneficial integration of shop-floor devices with enterprise systems
should provide characteristics that enable business processes to dynamically adapt
to changes in the state of the device layer. With the current improvement of shop-
floor devices and the adoption of SOA on all layers of the system, it is possible to
create systems that are self-healing, self-monitoring, and self-optimizing.

Our aim is to depict how we can move towards highly dynamic manufacturing
enterprises. Although simulations have been used before either at the shop-floor or
at business process level, they have been used in an isolated way. In our work, we
try to integrate the shop-floor and the business system and dynamically assess the
state of the resulting, holistic system. With the help of simulations and monitoring,
enterprises can adapt to situations and predict possible problems on the shop floor.
SOA-based middleware, such as one we proposed in Karnouskos et al. (2007) and
demonstrated in de Souza et al. (2008), has lead to preliminary promising results
in this area. We propose to extend our SOA-based system to accommodate
simulation and analytics as well as decision-making and process-mapping
strategies. This helps enterprise systems to dynamically adapt to changes in the
shop-floor, to reduce the gap between the real world and its digital representation,
and also to optimize business processes.

14.2 Real-world Awareness

Significant effort has been invested into the integration of physical computing de-
vices with standard enterprise software, such as enterprise resource planning
(ERP) systems. Planning a production order or creating a bill of materials in the
ERP application is neither effective nor optimized, unless the shop-floor is trans-
parent. As an example, the manufacturing industry foresees enterprise applications
to consider real-time events on the shop-floor to plan production, enhance cus-
tomer relationship management, and have a healthy updated supply chain. This
shop-floor intelligence obtained in real time allows business to adapt to the market
demand and forecast shop-floor breakdowns in a timely fashion. Additionally as
SOA approaches start to prevail (Kennedy et al., 2008), the introduction cycle of
new applications could be significantly shorter. This could enable exchange of
real-time information across enterprises and trusted business partners, which will
have an effect on the respective business decisions.

14.2.1 Device Integration Protocols

Shop-floor integration protocols based on web services as for example OPC UA
(Mahnke et al., 2009) are emerging in the automation domain. Until now, ad-
vanced features like dynamic device discovery, eventing and notification mecha-

14 Real-world Service Interaction with Enterprise Systems 427

nisms are only on conceptual level in OPC UA specifications. Hence, OPC UA-
based clients have to be installed on all systems that would need to consume shop-
floor data from a device hosting the services. Furthermore the web service part of
OPC UA is optional and performance evaluation or real-world experiences are not
available to our knowledge.

Other shop-floor integration standards in the semiconductor industry are avail-
able, for example the SEMI (www.semi.org). Equipment Communications Stan-
dard/Generic Equipment Model (SECS/GEM) communication protocols connect a
host computer and semiconductor manufacturing equipment. Photovoltaic Equip-
ment Communication Interfaces is based on the SECS/GEM and targeted towards
the photovoltaic industry. Clients have to be implemented that understand the pro-
tocols and communicate using interfaces defined in the standards. The biggest dis-
advantage is that only one client can interact with a server in a session. Multiple
sessions are not possible. As such any approach to enable the service-oriented
paradigm over this protocol would be very difficult to achieve without significant
extensions.

Another standard dealing with ubiquitous device integration is DPWS (Chan
et al., 2005), which is a collection of web service standards. Initially, DPWS was
conceived as a successor of universal plug-and-play (UpnP) for home automation
scenarios, but recent work has shown its applicability to the automation world
(Jammes and Smit, 2005). DPWS advances previous dynamic discovery concepts
such as Jini (www.jini.org) and UPnP (www.upnp.org) to integrate devices into
the networking world and make their functionality available in an interoperable
way. DPWS is an effort to bring web services to embedded devices taking into
consideration their constrained resources. Several implementations exist in Java
and C (e.g. www.ws4d.org, www.soa4d.org), while Microsoft has also included a
DPWS implementation (WSDAPI) by default in Windows Vista and Windows
Embedded CE operating systems. As depicted in Figure 14.1, any DPWS-
empowered device can be dynamically discovered with existing Windows Vista
installations and its basic metadata can be read.

An alternative integration approach is REST (Fielding, 2000), which is the
architectural principle that lies at the heart of the Web and shares a similar goal
with integration techniques such as (DP)WS-* web services, that is increasing
interoperability for a looser coupling between the parts of distributed applications.
However, the goal of REST is to achieve this in a more lightweight and simpler
manner; therefore it focuses on resources, and not functions as is the case with WS
-* web services. In particular, REST uses the Web as an application platform and
fully leverages all the features inherent to HTTP such as authentication, authoriza-
tion, encryption, compression, and caching. This way, REST brings services “into
the browser”, i.e., resources can be linked and bookmarked and the results are
visible with any web browser. There is no need to generate complex source code
out of WSDL files to be able to interact with the service.

S. Karnouskos et al. 428

Fig. 14.1 DPWS-based dynamic discovery of devices built in Windows Vista

14.2.2 Device-to-Business Coupling

In the area of enterprise application integration, a few projects have explored the
use of “mashups”, also known as user-generated composite applications, to enable
more flexible software composition within (and outside) the enterprise (Hoyer
et al., 2008; Liu et al., 2007). However, they mainly focus on mashing up on-line
services and do not address the issues and requirements that come with a physical
world integration (e.g., as discussed in de Souza et al., 2008; Marin-Perianu et al.,
2007). To ensure interoperability across all systems, recent work has focused on
applying the concept of SOA; in particular web services standards (SOAP,
WSDL, etc.) directly on devices (Jammes and Smit, 2005; Karnouskos et al.,
2007; Priyantha et al., 2008). Implementing WS-* standards on devices presents
several advantages in terms of end-to-end integration and programmability by re-
ducing the need for gateways and mediators between the components. This en-
ables the direct orchestration of services running on devices, with high-level en-
terprise services. As an example, if sensors physically attached to shipments could
offer their functionality via web services; they could be easily discovered and in-
tegrated in a process that updates the status and location of the shipment directly
in the involved ERP systems.

As an alternative to WS-* standards, more “web-oriented” (sometimes called
“web of things” as opposed to the “internet of things” (Guinard and Trifa, 2009))
approaches are emerging, i.e. approaches (re)using standards on the web and ap-

14 Real-world Service Interaction with Enterprise Systems 429

plying them to real-world devices for them to provide services directly on the web.
As an example, web feeds have been used to access data provided by sensor nodes
(Dickerson et al., 2008). In particular, they describe an extension to RSS better
suited to accommodate high-rate data streams with a web-oriented querying inter-
face to retrieve sensor data. A direct consequence of the stream abstraction is that
sensors are considered solely as data publishers, not as service providers. Further
examples (Drytkiewicz et al., 2004; Guinard et al., 2009; Luckenbach et al., 2005;
Wilde, 2007) propose and evaluate a RESTful (Fielding, 2000) architecture for
sensor networks.

14.2.3 Integrating Heterogeneous Devices

In de Souza et al. (2008) and Karnouskos et al. (2007) we proposed an extensible
integration architecture based on web services and capable also of supporting leg-
acy products. There are basically three directions we follow as shown on Figure
14.2:

Fig. 14.2 Integration approaches to couple legacy and emerging device infrastructure to enter-
prise systems

• Integration via legacy products: several tools are available to the market today,
so we rely to them for providing the connectivity (as it is done today).

• Integration via gateways and service mediators: legacy or resource-scarce de-
vices have their functionality wrapped as a web service at a higher layer, e.g., a
control point (gateway approach) or their functionality is aggregated/composed

S. Karnouskos et al. 430

and a new service depending on (possibly many devices) is created (mediator
approach).

• Web service enabled devices: these have the computational power and commu-
nication capabilities to natively run a stack that provides their functionality as a
set of web services. These devices can be directly discovered and can interact
with each other.

14.3 Enterprise Integration

The SOCRADES integration architecture (SIA as depicted in Figure 14.3) enables
enterprise-level applications to interact with and consume data from a wide range
of networked devices using a high-level, abstract interface that features web ser-
vice standards. Those standards already constitute the standard communication
method used by the components of enterprise-level applications. Web services are
the technology canonically used to implement business processes, which are fre-
quently modelled as orchestrations of available web services. This allows the con-
nected, networked devices to directly participate in business processes while nei-
ther requiring the process modeller nor the process execution engine to know
about the details of the underlying hardware.

Fig. 14.3 The SOCRADES integration architecture

The requirements we want to cover as well as the functionality to be realized is
analysed in de Souza et al. (2008) and Karnouskos et al. (2007). The architecture

14 Real-world Service Interaction with Enterprise Systems 431

implemented hides the heterogeneity of hardware, software, data formats, and
communication protocols that is present in today’s embedded systems. The fol-
lowing layers can be distinguished: application interface, service management,
device management, security, platform abstraction, and devices.

Application interface: this part of the integration architecture features a mes-
saging (or eventing) system, allowing an application to consume any events when-
ever it is ready to and not when a low-level service happens to send them. A so-
called invoker allows buffering invocations to devices that are only intermittently
connected. Finally, a service catalogue enables human users and applications to
find service descriptions and pointers to running service instances. Both atomic
services hosted by the devices and higher-level composed services are listed here.

Service management: all functionality offered by networked devices is ab-
stracted by services. Either devices offer services directly or their functionality is
wrapped by a service representation. On this layer of the integration architecture
and on all layers above, the notion of devices is abstracted from and the only visi-
ble assets are services. An important insight into the service landscape is to have a
repository of all currently connected service instances. This is provided by the
service monitor.

This layer also provides a run-time for the execution of composed services. We
support the composition of business processes primarily by offering an execution
service for underspecified BPEL processes, meaning that service compositions can
be modelled as business processes where the involved partners do not need to be
explicitly specified at design time.

Device management: all devices are dynamically discovered, monitored and
their status is available to the enterprise services. Furthermore, it is possible to re-
motely deploy new services during run-time, in order to satisfy application needs.

Security: both devices and back-end services may only be accessed by clients
that have a certain role and provide correct credentials that authenticate them-
selves. This layer implements the correct handling of security towards the devices
and the enterprise-level applications.

Platform abstraction: as stated before, devices either offer services directly or
their functionality is wrapped into a service representation. This wrapping is actu-
ally carried out on the platform abstraction layer. In the best case, a device offers
discoverable web services on an internet protocol (IP) network. In this case, no
wrapping is needed because services are available already. If the device type,
however, does not have the notion of a service (it might use a message-based or
data-centric communication mechanism), the abstraction into services that offer
operations and emit events can be a complex task. In addition to service-enabling
the communication with devices, this layer also provides a unified view on re-
motely installing or updating the software that runs on devices and enables the de-
vices to communicate natively, i.e. in their own protocol with back-end devices.

Devices: heterogeneous devices are expected to connect to the architecture.
These include industrial devices, home devices, or IT systems such as mobile
phones, personal digital assistants, production machines, robots, building automa-

S. Karnouskos et al. 432

tion systems, cars, sensors and actuators, radio-frequency identification (RFID)
readers, barcode scanners, or power meters. We used several of the listed types of
devices during prototype implementations as shown in the demonstration section.

A single lightweight component called the local discovery unit (LDU) is im-
plemented. It can be downloaded or deployed on any Java-supported device. This
component dynamically discovers devices with respect to the protocols it supports
and connects them to SIA. We can therefore realize very dynamic scenarios,
where an LDU for IP is downloaded and run in a mobile phone, and via its WiFi
interface dynamically finds and uses the functionality of all DPWS-based devices
on the local network. Several LDUs can be deployed on a network allowing for
load balancing as well as wide protocol coverage. Finally, using diverse LDUs,
the SIA is able to realize cross-network and even cross-enterprise dynamic device
discovery and act as mediator of their services. Apart from the LDU, the rest of
the components have been implemented based on open web service standards in
Java EE 5 on the SAP NetWeaver CE platform, using EJB 3.0 and JPA.

Protocols: We expect that heterogeneity in communication protocols will exist
also in the future as it serves different domains and respectively devices.

14.4 Integrating Manufacturing Equipment with the
SOCRADES Integration Architecture

Traditionally, shop-floor data has been integrated with enterprise applications like
ERP using proprietary, custom made, individually developed technologies, e.g. in
the form of file transfers and proprietary middleware layers.

Standard connectors from the OPC Foundation for MES and Distributed Con-
trol Systems lowered the complexity of integration by providing a unified data
format, but each connection must still be statically tailored for a particular group
of devices of a certain vendor because the standard does not define the meaning of
data points. If the same resource has to be used from different system layers or in
a P2P way by other systems on the shop floor, appropriate clients have to be de-
veloped for each interface. Additionally, the old OPC specifications were tightly
coupled with the DCOM technology, making adopters dependent on the Windows
family of operating systems from Microsoft. In 2006, the OPC Foundation started
specifying a new interface standard, OPC UA, as a successor of the native OPC
standards based on COM/DCOM and mitigating some of the mentioned pain
points. However, the idea of using plain web service on devices, creating SOA on
the shop floor, is not implemented well in the new version of the interface stan-
dard. The web services are specified as an optional method to access OPC UA in-
terfaces. A binary transport mechanism is mandatory for OPC UA devices to
communicate. It specifies a very complex metamodel for data and service model-
ing that makes the implementation of servers and clients quite challenging. The
added value over plain web services is questionable. Well-documented web ser-

14 Real-world Service Interaction with Enterprise Systems 433

vice interfaces could give the same value at a fraction of the complexity and still
allow for cross-platform interoperability, flexibility, and dynamic processes.

In the business software domain, web services were originally designed to al-
low cooperation between applications within and across companies, possibly from
different vendors, implemented using different programming languages, and run-
ning on different operating systems. They bring more flexibility and interoperabil-
ity to cross-enterprise transactions that required constant change.

SAP ERP uses iDOCs to pass data between systems. iDOCs are (potentially
large) extensible markup language (XML) documents, which contain data relevant
for business transactions. In more recent versions of the application, using an en-
terprise SOA approach, these transactions are exposed as web services. A central
universal description discovery and integration registry keeps track of services that
can be consumed across the company. This enables ERP transactions to be more
atomic, stand alone, and stateless. SAP ERP systems also provide services, which
are harmonized with enterprise models based on process components, business ob-
jects and global data types. They follow well-defined common rules of business
content. Web service-enabled devices on the shop floor would host services allow-
ing them to directly monitor and influence physical processes. But the fragile na-
ture of a device and its environment can influence the services hosted on the de-
vice. They lead to differences in reliability and availability (compared to regular
enterprise services), which have to be considered when integrating devices on the
shop floor with ERP platforms:

• Devices can be mobile and feature wireless communication, so the services
they offer can appear and disappear on the network (as they connect and dis-
connect).

• Mobile devices can be battery powered and can be unavailable between the
time the battery is exhausted and the time it is replaced.

• Devices might only be able to consume a fraction of the data related to a busi-
ness transaction. Many elements of the XML would be irrelevant for a device.

• Vice versa, a device (e.g. a temperature sensor) cannot be expected to deliver
the correct business context (e.g. the ID of its location in an asset management
application) for the data it reports (this can be expected in an ERP system).

Although deploying web services on devices better embeds them in a com-
pany’s SOA, shop-floor services are more fine-grained and often concentrate on
technical issues. To bridge between the data types and semantics used at device
level and those used at ERP system level, it will in most cases be necessary to use
MES or SOA-based middleware acting as gateways.

As different manufacturers offer devices on the shop floor, they cannot be ex-
pected to have the same micro-controllers, have their communication application
programming interfaces (API’s) implemented in the same language, or run on the
same operating system. However, a production process often requires devices
from different manufacturers to work together. To make this possible today, shop-
floor integrators have to invest heavily in device drivers and gateway mechanisms

S. Karnouskos et al. 434

that take time to develop, are expensive and are difficult to maintain. In the near
future, if devices would use web services, a workflow process can be easily or-
chestrated using modelling languages; they can be easily changed, extended, and
adapted to changing needs of the business. Following an SOA-based approach,
machine functionality offered as services can be used as process steps and there-
fore easily orchestrated. Furthermore, different plant-level systems can gain access
to data from the shop-floor.

Modern manufacturing networks often span across continents. Typical exam-
ples are semiconductor and automobile production. Both industries require a large
number of production steps where some are executed by specialized companies,
e.g., silicon wafers are etched and oxidized at one place whereas cutting and pack-
aging is done at a different location. Sales and distribution are done by yet another
partner while the design and IP on the product is often owned by a company lo-
cated at another side of the globe. Bringing constant change on these highly opti-
mized networks to adapt to market trends or to react to competition is a challeng-
ing task. It is the same difficulty faced when detailed monitoring has to be done on
distributed, multi-party processes and resources, where the monitoring does not
rely on manual data entry, but on actual, near real-time production and progress
figures as they are reported by embedded software in the low-level devices of each
partner. Existing supply chain platforms can hardly fulfil these requirements.

SOA on the shop floor offers such fine-grained, inter-organizational insight
into production. Using standard modelling languages like BPEL or by modeling
executable BPMN 2.0 processes in NetWeaver Composition Environment, work-
flows can be composed without any need for device drivers or knowledge about
the underlying hardware. These workflows can be a part of a business process that
interacts with business software or humans. Manufacturing consortia can now use
shared shop-floor data, derive key performance indicators (KPIs) from business-
to-business partners, and react to market trends faster than before. By analysing
the securely shared shop-floor data and KPIs, the end-to-end process can now be
globally optimized to achieve a better performance compared to local optimization
at each participating entity.

The seamless integration of the shop-floor data into the collaborative produc-
tion process also allows for flexible ways of handling critical events that can occur
at the shop-floor at run-time, such as a machine breakdown. Such events can be
made visible across the whole manufacturing chain among the business partners.
Customers at the end of the chain can be informed about problems, e.g. delayed
delivery or the cancellation of an order in a timely manner. This can reduce costs
and enhance the long-term business relationships.

However, the example of error handling also reveals a strong requirement for
successful adoption of the flexible production networks. For the participating or-
ganizations to be willing to share data that potentially reveals the structure and
performance of their core operations, organizations either need to trust each other
or one of them must have the power to dominate and dictate the conditions of col-

14 Real-world Service Interaction with Enterprise Systems 435

laboration. In both cases, secure and reliable communication between the entities
is required.

14.5 Towards Dynamic Adaptation

The business world is highly competitive and to successfully tackle everyday’s
challenges, operational managers and executives demand high-dependability and
wide visibility into the status of their business process networks. The latest is done
usually via business KPIs. However, to react in a flexible and optimal way to
changing conditions, real-time information must flow via all layers from the shop
floor up to the business process level.

As shown in Figure 14.4, three different phases help us achieve the required
level of flexibility:

• Sense: real-time monitoring over an event-based infrastructure for networked
devices.

• Think: an autonomous decision support system (DSS) guarantees business con-
tinuity.

• Act: decisions taken from the DSS are enforced in the infrastructure.

Fig. 14.4 Towards autonomous systems via cross-layer monitoring, simulation and management

In the centre of the approach is the simulation that provides predicted system
behaviour that is continuously compared with real-world results. The key techni-
cal concept to the whole approach is a cross-layer communication in order to pro-
vide effective monitoring, simulation and management. In this approach we target
two characteristics of an autonomous system:

S. Karnouskos et al. 436

• Self-healing: automatic discovery and correction of faults or possible preven-
tive actions. The system can recover from well-known problems including
those that can be dynamically identified based on the correlation of events
(complex event processing).

• Self-optimization: automatic monitoring and control of resources of the system
can be done, in order for the different components that recognize themselves in
a goal-driven manner with respect to the environmental context they act on. In
that case, early indicators can be correlated and emerging problems are easier
to pinpoint.

Figure 14.5 depicts the architectural approach proposed in this chapter. The
core idea is the dynamic connection of enterprise systems with the shop-floor as-
sisted by a DSS.

Fig. 14.5 Overview of the reactive system

The DSS takes into consideration dynamic data coming from monitoring the
shop floor, running simulations and its results are given as input to the business
process control, the shop-floor and even on fine-tuning the simulation itself. In
this concept, continuous real-time data flow into a monitoring system. In parallel,
a model of the shop-floor executes in a simulator. At specific intervals depending
on the time or tasks, the output of the simulation and the monitoring are evaluated.
Any deviation σ is used as input from the DSS. Parallel to σ, the DSS considers
inputs from the enterprise systems as well as the prediction simulation, which pre-
dicts the next system state(s) of according to the existing models the system will
continue to perform in the same way. The DSS considers all the input and makes
decisions, e.g., for optimizing the performance of the system, preventing faults

14 Real-world Service Interaction with Enterprise Systems 437

that would happen if the mode of operation is unchanged, etc. The DSS decisions
are fed as input to the business systems, the shop-floor, and the simulation itself so
that their behaviour can be adapted. Using precise information on the problems
occurring (or predicted to occur) on the production line, the DSS can define meas-
ures to automatically modify the business process to heal the system. The result is
that we are moving towards a self-* system that monitors and adapts itself accord-
ing to the evaluation of the input from the sources mentioned.

14.5.1 Simulation

Simulating a process workflow as a production model on a computer takes away
the risks of heavy investment. Modelling tools such as flowcharts, process map-
ping, and spreadsheets are often used to identify how the shop floor would look
like for a particular business objective. However, such tools only show the rela-
tionships between processes and do not generally provide any quantitative per-
formance measures. They are static and deterministic and do not consider the dy-
namics of real-life work in progress.

Dynamic production model simulation tools like WITNESS (Ahmed et al.,
2008) and ProModel (www.promodel.com) consider the dynamic characteristics
of production, e.g. process flow, processing times, setup requirement, labour, con-
trol rules, breakdown, shift, loading schedule, etc. We propose to go one step fur-
ther by using the simulation results and comparing them to the live input coming
from the shop floor in order to assess the situation, proactively determine problem
zones, and optimize the shop-floor.

Figure 14.6 presents the generic states of a machine in a production line. Based
on a known machine state, a deterministic action can be performed. Nevertheless,
defining the current state of the machine can be a challenging task. The informa-
tion available to the back-end system consists of a great amount of events trig-
gered through the assembly process. They could be identical to the simulated set
of events and states, or deviate from the simulated conditions. Therefore, it is nec-
essary to process these events in order to identify patterns that indicate which is
the current state of the production line.

The advantage of production model simulation tools is that by changing the
characteristics of production, the results on the shop floor can be accurately de-
termined (Pidd and Robinson, 2007). These tools give a good in-depth understand-
ing of how the manufacturing process would react to different situations on the
shop floor. Such results can be considered as a reference for a series of determinis-
tic characteristics of the shop floor (Ahmed et al., 2008). As depicted in Figure
14.5, we propose a methodology where the workflow of a particular production
process is continually monitored and compared to (pre)simulated results.

S. Karnouskos et al. 438

Fig. 14. 6 Machine states

The state of the actual workflow process is continually monitored and com-
pared with the simulated result on the shop floor. Based on the possible deviation
σ, the workflow process or the business process can be affected. The deviations of
the shop floor behaviour from the expected result of the simulation have to be
categorized in order to determine if the current condition would be tolerable or it
would lead to a critical bottleneck. Various algorithms and methodologies can be
combined to identify and categorize the state of the current production line.

14.5.2 Self-healing Mechanisms

Through a comparison between the expected state (simulation results) and the real
state of the shop floor, it is possible to identify malfunctions in the system. This
information is essential for the system to self-heal.

As an example, consider a knitting factory where T-shirts are manufactured
through sequential steps like cutting, assembly, buttoning, quality check, and
packaging. For instance, as shown in Figure 14.7, if the machine responsible for
executing the process “Cutting 1” fails, the production order of the T-shirts with
quality 3 will stop. This can delay the order delivery, cause reputation loss, and
even breach a contract, which implies high costs to the factory.

If the manufacturer defines a maximum cost for the T-shirt production, it is
possible to re-map the business process to avoid a production halt considering the
new state of the system. This process re-mapping is depicted in Figure 14.7. With
the modification in the business process, the system self-heals and continues the
production, while a maintenance workflow is triggered. Although the item cost in-
creases, it remains within the threshold specified by the manufacturer, and pre-
vents major losses due to production halts.

14 Real-world Service Interaction with Enterprise Systems 439

Fig. 14. 7 Self-healing and self-optimizing process re-route

Another self-healing mechanism investigated by this project explores predic-
tive maintenance and possible production bottlenecks. Based on real-time data
from the shop-floor and having identified the current status of the production line,
it is possible to predict the course of the current production. This is done based on
analysis of the previous production history and also based on the simulated pro-
duction model. The result of such prediction model analysis is forwarded to a
DSS, which then reacts by providing input to the business process modeller (Fig-
ure 14.5). Finally, the integration of ERP business processes and such DSSs can
be performed through the SAP Manufacturing Intelligence and Integration (SAP
MII) tool.

14.5.3 Self-optimizing Mechanisms

Business processes are available as services in the enterprise service repository.
Hence, a set of rules can be modelled in the DSS to invoke a corresponding busi-
ness process at the prediction of a critical bottleneck state on the shop floor. Alter-
natively, shop-floor devices hosting web services can be effectively used in such
scenarios to prevent malfunction or breakdown of the machine. The DSS can re-
duce the production cycle on a particular assembly line when the system foresees
a non-linear increase in temperature or a production variable on the workflow.

We propose to base the optimization process on swarm-intelligent (SI) princi-
ples (Bonabeau et al., 1999). These methods were originally inspired by observa-
tion of various natural phenomena, in particular the collective behaviour of social
insects and flocking and schooling in vertebrates. The application of SI to distrib-
uted, real-time, embedded systems aims at developing robust task-solving meth-
odologies by minimizing the complexity (including the intelligence) of the indi-
vidual units (in our case machines of the assembly line) and emphasizing
parallelism, and self-organization. From an engineering standpoint, the principal
advantages of SI system design are four-fold: scalability, from a few to thousands
of units; flexibility, as units can be dynamically added or removed without explicit

S. Karnouskos et al. 440

reorganization; robustness, not only through unit redundancy but also through an
adequate balance between explorative and exploitative behaviour of the system,
and simplicity (and low-cost) at the individual level, which also increases robust-
ness. These properties would be highly beneficial if applied to machine production
lines, and could be further optimized when machine have access to global infor-
mation about the whole manufacturing process.

In particular, we propose to use threshold-based algorithms (TBA) for a flexi-
ble task allocation mechanism to decide of the dynamic path in the production
line. TBA have been initially used to model the dynamic task allocation decision
process in ant colonies, and has been successfully applied for example for power-
aware optimized load balancing (Cianci et al., 2005). Using TBA at the produc-
tion-line level enables a reactive and fully decentralized decision process done dy-
namically by the machines at run-time, based both on the objects to process, ex-
ternal data (environmental data, priority of the tasks, market values, etc.), and the
proprioceptive data of the machines. TBA model group behaviour based on a
small number of control parameters (thresholds) that affect whether or not a par-
ticular task will be executed by a given machine. For this, every machine has an
internal threshold value which is a function of different dynamic and static factors
(price and time associate with task execution, machine current state, etc.). Each
task to process will have its own stimuli value that will be compared with the
threshold of the machines and will be used to decide which machine will perform
the task. Thresholds are allowed to change and become heterogeneous over time
as a function of stimuli encountered and tasks performed, and this can lead to spe-
cialization and division of labour.

14.6 Concept Validation in Prototypes

We consider some general use cases to illustrate of shop-floors with ERP systems.
Status of machines on the shop floor is usually monitored. This information could
represent completion of an order, number of work pieces produced or even failure
of a machine, which is vital for consecutive production plans.

The main common characteristics we focus on are:

• Smart devices: shop-floor machines and other sensors, PLCs, and IT devices
are the actors forming an “internet of things” in the factory. They all offer their
functions (e.g. start/stop, swap to manual/automatic mode) or status (e.g. power
consumption, mode of operation, usage statistics, etc.) through web service in-
terfaces, either directly or through the use of gateways or mediators.

• Business logic and visualization services: In our prototypes, the business logic
services are supported by a service composition engine and a graphical user in-
terface (GUI) using a visualization toolkit. An operator can use existing tools to
create the business rules. Via visualization tools the plant-floor status and the

14 Real-world Service Interaction with Enterprise Systems 441

overall process execution can be analysed in detail. As an example, the opera-
tor can instantiate and use a set of widgets such as gauges and graphs to moni-
tor in real-time the status of production machines and associate it with the re-
spective orders or business effects.

• Enterprise applications: This refers to high-end business software such as ERP
or product life cycle management. The idea at this level is to visualize proc-
esses rather than the machines executing the processes. This layer is connected
to the plant-floor devices through the other layers. As such it can report ma-
chine failures and plant-floor information on the process visualization and
workflow. Furthermore, business actions (e.g. inform customers about a possi-
ble delay) can be executed based on this timely information.

14.6.1 Machine Monitoring, Dynamic Decision and Order
Adaptation

On a production line we need to monitor a robotic gripper for overheating as this
would cause further malfunctions. As shown in Figure 14.8, a SunSPOT wireless
sensor node is attached to the gripper and checks continuously the temperature at
the relevant location right before the gripper starts its operation, e.g., open or
close.

Fig. 14.8 Overheating monitoring via wireless sensor and ERP-supported control of a process

A PLC controls the robotic gripper and offers its available functionality as sev-
eral web services; the same holds true for the wireless sensor. In SAP MII we have

S. Karnouskos et al. 442

modelled the business logic (shown in Figure 14.9), which takes decisions based
on the data from the robotic gripper and the wireless sensor. The operation of both
devices generates events, which are picked up and consumed by SAP MII as we
extended the tool to subscribe to these.

Fig. 14.9 Modelling business logic in SAP MII

In our scenario, during normal operation the robot gripper should not exceed a
specific temperature limit. If the threshold is exceeded, a business rule triggers
necessary countermeasures, e.g., it stops the gripper in order to prevent damage
and invokes appropriate enterprise-level services. This includes visualizing the
stopping of the gripper and possible delays in production, e.g. by changing the
colour in the management view of the factory as depicted in Figure 14.10. If the
resulting order delay is critical, a notification is generated for the key account
manager, about the fact that an order for his client is in danger of missing the
deadline. The timely information about production delays has the potential to pre-
vent lost sales, which are more likely to occur if customers do not receive their or-
der in time and are not informed promptly and reliably about it. The management
cockpit of Figure 14.11 is another example of web service composition at a higher
layer where we integrate the real-time status of the factory with Google Maps in
order to visualize the overall effect of a single failure that results from an order de-
lay.

Apart from the high-level view for the manager, there is also other visualization
information for the operator. A simple gauge fed with the temperature data pro-
vided by the wireless sensor can be depicted also in real-time via the SAP MII
tool. For this purpose, he uses manufacturing intelligence software and displays
the gauge on a screen situated close to the robot. Finally, the sales manager can
also benefit from the SOA paradigm, as, e.g., the output of the business rule is
connected to an ERP system, which provides up-to-date information about the
execution of the current orders. Whenever the process is stopped because the rule

14 Real-world Service Interaction with Enterprise Systems 443

was triggered, an event is sent to the ERP system through its web service inter-
face. The ERP system then updates the orders accordingly and informs the clients
of a possible delay in the delivery.

Fig. 14.10 Live reporting in SAP MII of the current shop-floor status based on events received
from the devices

Fig. 14.11 High-level factory view in the management cockpit

S. Karnouskos et al. 444

14.6.2 The Future Shop Floor: Mashup of Heterogeneous Service-
oriented-architecture Devices and Services

Today, integrating devices in applications requires not only advanced knowledge
of the device, its configuration and the way it connects, but also the installation of
highly specialized software that glues the data (often in proprietary format) with
applications. Such an integration model is costly, application specific and creates
isolated islands for each shop floor. As a result, it is extremely hard for enterprise
service developers to enrich service functionality with real-time data coming from
the shop floor. The SOA concept has proven very successful for gluing heteroge-
neous systems, and if the same would be applicable for devices this would be a
significant step forward in the direction of coupling the real-world and the busi-
ness world.

To demonstrate the concept we have taken several devices (some of them IP-
enabled) and wrapped their functionality with web services. More specifically as
depicted in Figure 14.12, we have:

• An RFID reader: RFID tags as they appear are read by the reader, which raises
events showing info with respect to the tag. Each tag is considered to be inte-
grated with a product and serves as a token that links it with the business in-
formation (e.g. order).

• A robotic arm: the functionality of the robotic arm controller has been wrapped,
e.g. grab or move.

• An IP electricity switch: an alarm lamp has been attached in an IP electricity
switch, which offers the on/off functionality as a web service.

• A wireless sensor-controlled emergency button: in the IO pins of the SunSPOT
wireless sensor, the emergency button has been attached. The press or release
of it is captured by the SunSPOT, and a web service event is generated.

• A wireless sensor for vibration monitoring: the capability of SunSPOTs to
measure acceleration is used for vibration monitoring via the sensor mounted
on the robotic arm. This monitors the transportation conditions of the product
by the robot to make sure it adheres to the quality guidelines for the specific
product.

Production parts that arrive on the factory shop floor are equipped with RFID tags.
As they reach the processing point, their data is read by an RFID reader. An event
is generated by the reader with all the necessary data, e.g. RFID number, and
placed on the network. The robot gets notified by this event and picks up the pro-
duction part. By matching data from the enterprise system and the RFID tag, it
knows how to further process the part.

In parallel, the SunSPOT mounted on the robot monitors the vibration and if
this exceeds a specific threshold an event is raised to immediately stop the proc-
ess. The same holds true for the emergency switch, if an operator at the shop floor
for any reason wants to immediately stop the process, s/he presses this switch. The

14 Real-world Service Interaction with Enterprise Systems 445

result is captured by the wireless sensor and an event is raised to immediately stop
the robot.

Fig. 14.12 Web-service-enhanced/wrapped heterogeneous devices - RFID readers, sensors, ro-
bot, IP electrical switch, etc

Once an event occurs, the devices process it and react accordingly. As such, the
robot picks the emergency shutdown event and immediately stops its action. Also
the IP electricity switch turns on the emergency light once it receives the event. At
a higher level, there is an enterprise application for shop-floor reporting called
SAP Business Objects. There we have a real-time monitoring of the shop-floor
status as the application also subscribes to all events raised. The plant manager can
immediately see (Figure 14.13) the status of the ERP orders, the production pro-
gress, and the device status, and have a global view of all factories and the possi-
ble side-effects of a production line delay due to shop-floor device malfunctions.

All of the communication is done via web service technologies and the realiza-
tion of this specific scenario was made possible by having a composition of the
available functionality that all devices and applications expose as a service. In leg-
acy systems, integration of a new device or reassignment of its role would result in
reconsidering how the device integrates with other devices and how they control
it. However, with the SOA approach described, a new scenario is possible by
modifying the orchestration of the services already available.

S. Karnouskos et al. 446

Fig. 14.13 Real-time reporting via enterprise visualization tools

14.6.3 Dynamic Supply Chain Management Adaptation

The SAP supply chain management (SCM) production planner (PP) system sup-
ports manufacturing by optimizing throughput times and bottleneck capacities us-
ing new scheduling processes (supply optimization) and by achieving online inte-
gration of production planning and control activities. This provides a transparent
overview of the entire order network. For an optimized schedule in the production
plan, the SAP SCM PP needs data about the available resources from the shop
floor to cross boundary locations.

The quality and validity of the information is important for real-time simulation
of the shop-floor resources. To achieve this, SAP has added MII as an integration
middleware between the MES on the shop-floor and the SAP ERP systems. MII
also offers bidirectional connectivity between the control, field-level systems and
the ERP landscape. As a result, the plant manager could have an overview of ac-
tual orders getting executed on a particular machine and what is the status of that
machine. Moreover intelligent information can be extracted from manufacturing
analytics and performance factors provided by the SAP MII.

14 Real-world Service Interaction with Enterprise Systems 447

In this prototype we have used a test rig that consists of a suite of pneumatic-
based hardware that does operations like picking, placing, moving, drilling, prox-
imity sensing and stocking. The overview of the hardware is pictured in Figure
14.14. The test rig is supported by a 10-bar compressor and operates at 24 V DC
from the power supply unit. It is assumed that it produces tokens, which are drilled
with a hole in the centre. The tokens are supplied from a magazine. The rig drills a
hole on the token, checks its colour and material, and sorts it to the corresponding
storage magazine.

Fig. 14.14 Main operations

The main parts of the test rig (also seen at Figure 14.15) are:

• Input magazine and distributor: this module consists of a shoving-out cylinder
operated pneumatically, a pile magazine, which stocks the red and black tokens
and a swivel arm.

• Proofer: the proofer module consists of the proof station, a rejection cylinder
and a conveyor.

• Rotating work table: this module consists of a turn table, a drill press with
clamping cylinder and a piston that checks for a hole in the token called the
proof cylinder.

• Dispatcher: the dispatcher reads the colour information from the PLC and cal-
culates the trajectory of the vertical and horizontal motion of the linear actua-
tors, picks up the component and moves the actuators towards the storage
magazine where the tokens are stored respective to their colour.

S. Karnouskos et al. 448

Fig. 14.15 Material flow

All these modules are controlled by one PLC. The rig uses the Siemens S7-300
PLC with an OPC DA interface to communicate to an execution system. In this
demonstrator the execution operations on the PLC are wrapped with web services
in a middleware component called the mediator. The mediator monitors data
within the Siemens S7-300 PLC using the OPC interface. It also controls the start
and stop operations of the PLC. A Mediator exposes the start and stop operations
as a web service. These operations can be invoked from the SAP MII software.
The mediator retrieves the status information from the PLC. It propagates this in-
formation as web service events through DPWS and is also visible via enterprise
applications such as the SAP MII. At the end of each operation, there are events
generated by the mediator to SAP MII. Either the successful completion of the op-
eration or the failure of a task is reported. To that extent, we have used DPWS to
connect the enterprise software and test rig via the mediator.

The SAP MII software performs the basic interconnection between the shop
floor and the ERP landscape. SAP MII transactions analyse the results using com-
plex business rules, which are developed using the MII business logic editor. The
rules check which token (red or black) is produced and check against the corre-
sponding production order. If there are more red tokens produced than the ones
required in the production order, they are stored and then logically deducted in the
next production plan, which is already designed and ready to be executed, and in

14 Real-world Service Interaction with Enterprise Systems 449

the pipeline. This does not increase the production time, rather neutralizes the de-
lay. The MII also shows the status of the test rig modules. Figure 14.16 presents
the snapshot of the SAP MII GUI that is visible to the plant-floor manager.

Fig. 14.16 Plant manager’s view based on SAP MII

14.6.4 Taming Protocol Heterogeneity for Enterprise Services

When enterprise application designers develop new features, taming the heteroge-
neity can be a significant burden. The SIA architecture offers a pluggable frame-
work with the aim to abstract the functionality from the protocol itself, at least for
business-related messages that are valuable to the enterprise system. As such,
business applications can be more flexibly developed, while the translation of
messages for a specific protocol is pushed down to the device level.

In this prototype we considered a solar cell manufacturing plant which pro-
duces thin-film photovoltaic cells. Manufacturing such semiconductor devices is
similar to producing integrated circuit chips. Semiconductor manufacturing in-
volves complex and machine intensive workflow processes. This means, machines
from different manufacturers would need to exchange large amounts of data inten-
sively to complete a production process.

Since its specification, the SEMI Equipment Communications Standards
(SECS) has been widely used on the shop floor in a semiconductor fabric (Ci-
metrix, 2009). SECS-II/HSMS offers the possibility of delivering SECS messages
over IP, but only between two points; no multi-point communication is possible-a

S. Karnouskos et al. 450

drawback for most internet-technology-based applications. The thin films are
transported between the processing machines using conveyor belts. We consider
such a conveyor system that is controlled by an OPC UA-based PLC (e.g. Beck-
hoff CX1010). OPC UA-based manufacturing devices are common on the shop
floor like this one. We take the example a step further by monitoring the energy
consumed by the whole shop floor and estimate the energy consumed to produce
one photovoltaic cell. We add a smart meter to the production facility, periodically
record the energy consumption data, and associate the energy costs from an ERP
system. The smart meter would send data using REST-based HTTP packets (see
Figure 14.17) to the enterprise application.

Fig. 14.17 Multi-protocol interaction with web services, REST, OPC-UA and SECS-II/HSMS

Traditionally SECS-II/HSMS messages are sent only from the equipment to the
host interface, which is the MES system. Providing alternative connections or
multiple communication endpoints is rather expensive and requires additional
software development that can be tedious to maintain when the features of the
manufacturing equipment changes. When two entities are trying to connect to
SECS host equipment, the connection is terminated to either one of them for a
brief period; if not, multi-point communication is supported. As a consequence,
challenges arise when trying to make the processes adaptive or trying to extend it
to additional destinations. Introducing variables to adapt to the dynamic nature of
the shop floor is very expensive for companies that span multiple production loca-
tions and several heterogeneous IT systems. We propose to solve this problem by
extending the SECS-II/HSMS with web services. Combining web services with
SECSII/HSMS enables semiconductor manufacturing equipment to report alarms,
events and control signals to a variety of IT systems in the plant directly in real
time, avoiding expensive gateway connectors.

14 Real-world Service Interaction with Enterprise Systems 451

With new and powerful devices on the shop floor, manufacturing equipment
can deliver real-time data to multiple destinations. As a result, a mashup of real-
time data analysis can be done that can lead to estimation of trends from current
production. In this prototype, the energy consumed to produce a photovoltaic cell
can be estimated using web services on traditional protocols and REST-based light
weight frameworks. Simultaneously, standard XML-based technologies like OPC
UA can be mashed up from the device level, offering a new level of energy-aware
production.

14.6.5 Energy Monitoring and Control via Representational State
Transfer

Interacting with devices in many cases should be done very easily, in a short time
and with no strict guarantees or need for a full-blown functionality. As such,
heavyweight web service integration in specific scenarios might not be the best
option; on the contrary, REST integration is a better match for lightweight integra-
tion. In most early web-based approaches, HTTP is used only to transport data be-
tween devices, while in fact HTTP is an application protocol. Projects that specifi-
cally focus on re-using the founding principles of the web as an application
protocol are still not common. Creation of devices that are web-enabled by design,
would facilitate the integration of physical devices with other content on the web.
As pointed out in Guinard and Trifa (2009) and Wilde (2007), REST-enabled de-
vices would not require any additional API or descriptions of resources/functions.

The architectural principle that lies at the heart of the web, namely REST as de-
fined by Roy Fielding (Fielding and Taylor, 2002), shares a similar goal with
more well-known integration techniques such as WS-* web services (SOAP,
WSDL, etc.) or DPWS, which is to increase interoperability for a looser coupling
between the parts of distributed applications. However, the goal of REST is to
achieve this in a more lightweight and simpler manner, and focuses on resources,
and not functions as is the case with WS -* web services. In particular, REST uses
the web as an application platform and fully leverages all the features inherent to
HTTP such as authentication, authorization, encryption, compression, and cach-
ing. This way, REST brings services “on the web, directly from the browser”: re-
sources can be linked and bookmarked and the results are visible with any web
browser, with no need to generate complex source code out of WSDL files to be
able to interact with the service.

Smart gateways can be used to integrate or abstract from the protocol heteroge-
neity. These implement in principle the lowest layers defined in SIA. As an exam-
ple we have created a gateway that runs a web server, and understands the proprie-
tary protocols of different devices that are connected to it through the use of
dedicated drivers. As an example, consider a request to a sensor node coming
from the Web trough the RESTful API. The gateway maps this request to a re-

S. Karnouskos et al. 452

quest in the proprietary API of the node and transmits it using the communication
protocol the sensor node understands (e.g. Zigbee www.zigbee.org). A smart
gateway can support several types of devices through a driver architecture as
shown in Figure 14.18, where the gateway supports three types of devices and
their corresponding communication protocols. Technical details of the Smart
Gateways can be found in Guinard and Trifa (2009) and Trifa et al. (2009).

Fig. 14.18 Device integration via a gateway

In order to empirically analyse and test the potential of the RESTful approach
for real-world services and how our approach could become the basis for the web
of things, we implemented the architecture on two WSNs platforms: the SunSPOT
sensor nodes (www.sunspotworld.com) and the Ploggs energy eensors
(www.plogginternational.com). The Sun SPOT platform is a wireless sensor node
particularly suitable for rapid prototyping of WSNs applications. SunSPOTs run a
small-footprint Java Virtual Machine that enables the nodes to be programmed us-
ing the high-level Java programming language (Java Micro Edition CLDC
java.sun.com/javame). The RESTful architecture we designed and implemented
for the Sun SPOTs is composed of two main parts: a software stack embedded on
each node, and a proxy server to forward the HTTP requests from the web to the
SPOTs. The Ploggs smart gateway is a component written in C++ whose role is to

14 Real-world Service Interaction with Enterprise Systems 453

automatically find all the Ploggs in the environment and make them available as
web resources. The gateway first discovers the Ploggs on a regular basis by scan-
ning the environment for Bluetooth devices. It then filters the identified devices
according to their Bluetooth identifier. The next step is to make their functional-
ities available though simple URLs, and for that a small-footprint web server is
used to enable access to the sensors’ functionalities over the web. This is done by
mapping URLs to native requests on the Plogg Bluetooth API. Hence, requesting
the energy consumption of a Plogg can be done simply be issuing a GET request
on the following URL, as suggested by the REST architectural principles (Fielding
and Taylor, 2002): to http://webofthings.com/energymonitor/ploggs/conveyerbelt.
This returns a JSON (JavaScript Object Notation) json.org/ document containing
information about the energy consumption of the conveyor belt. Note that JSON is
an (compatible) alternative to XML often used as a data exchange format for web
mashups. Since JSON is a lightweight format we believe it quite adapted to de-
vices with limited capabilities.

The idea of the energy visualizer prototype built on top of the Ploggs Smart
Gateway and the RESTful SunSPOT is to offer a dashboard user interface on the
web to control and monitor the energy consumption at the device level. It offers
six real-time and interactive graphs. The four graphs on the right side provide de-
tailed information about the current consumption of all the appliances currently in
the vicinity of the smart gateways. The two remaining graphs show the total con-
sumption (kWh), and respectively a comparison (on the same scale) of all the run-
ning appliances. Finally, a switch button next to the graphs enables one to power
on and off devices over the web.

This dashboard is built as a mashup that uses the RESTful Plogg API in a
Google Web Toolkit (GWT) application code.google.com/webtoolkit/. The GWT
is a powerful platform for building web mashups since it offers a large number of
easily customizable widgets. For the graphs shown on Figure 14.19, we use the
Open Flash Chart GWT Widget Library. This library offers a comprehensive set
of graph widgets.

The ambient meter prototype is implemented on a RESTful SunSPOT which
uses a Ploggs smart gateway for gathering the energy consumption of any place it
is located in. It uses an HTTP connector we implemented in the RESTful Sun
SPOTs to contact the Ploggs smart gateway. Every 5 seconds, the SunSPOT will
poll the following URL using the GET method:
http://localhost/energymonitor/load. The SunSPOT changes its colour according to
the energy consumption of the place it is currently located in. Thus, by combining
these two services, the SunSPOT is turned into an ambient meter that can assess
the energy consumption of the place it is located in, demonstrating the ease of in-
tegrating.

S. Karnouskos et al. 454

Fig. 14.19 Energy monitoring per machine

14.7 Discussion and Future Directions

We have presented how to deploy web services on shop-floor devices to connect
them to enterprise systems. With web services, enterprise systems are also able to
subscribe to events and take advantage of real-time information flow for optimiza-
tion of the production planning or reaction to unexpected changes. The clear ad-
vantage of pushing SOA concepts down to device level is that business application
developers can design and implement new functionality in enterprises without fo-
cusing on the devices but on the services they provide. As such, another abstrac-
tion layer based on well-known and used web service standards will ease the inte-
gration of enterprise and shop-floor systems. The scenario depicted in this chapter
is a proof of concept for this easier and tighter integration. The results show that
the dynamic nature of the shop floor can be utilized efficiently to plan further pro-
duction orders and even implement last-minute changes on the production line us-
ing real-time data (real-time reconfiguration based on the application needs). As
all communication is done via web services (in our case DPWS) it is easy for
other entities (whether they are services or devices) to subscribe and get the neces-
sary info while in parallel being agnostic to the actual implementation details. This
greatly increases interoperability and reduces costly integration time.

In our next steps we plan to further work on better web service integration, also
with the usage of OPC UA as well as improvements regarding fulfilment of typi-

14 Real-world Service Interaction with Enterprise Systems 455

cal industrial automation-specific requirements like real-time constraints, reliabil-
ity, safety, or security. Special attention will be paid to improve easy configuration
of integration components like gateway or mediator based on device description
technology known within industrial automation. This will pave the way for auto-
configuration on the gateway and mediator level and enhance integration of legacy
systems into higher-level management applications.

14.8 Conclusions and Future Work

Ubiquitous, SOA-based device integration leading to interaction of devices with
enterprise services in a timely manner is an important vision that creates substan-
tial impact both from the perspective of research and industrial application. The
paradigm of services on every layer of the network will influence the structure and
operation of future intranets and the future internet. Dynamic service discovery
and composition will enable a new generation of applications that will more
closely couple physical environments and processes with the corresponding mod-
els in business software, which are their virtual counterparts.

We have presented in this chapter the imperatives and motivations for more
dynamic and flexible production lines in the factory of the future. With increasing
competition – but also collaboration – around the globe, more information ex-
change and cross-layer communication is becoming necessary. We have intro-
duced technologies that will be found in the future factory. They will entail more
dynamic and adaptive production equipment that will closely collaborate with
each other through real-world services and adjust its behaviour dynamically. We
described several prototypes that demonstrate our ideas and depicted the applica-
bility of the concept.

To continue our work, we will further investigate collaborative intelligent be-
haviour and improve its stability over distributed infrastructures composed of
large numbers of heterogeneous networked embedded devices. Allowing for a
flexible, semantic discovery of services is also a promising topic for further re-
search, just as providing a rigid security framework for the described environ-
ments.

Acknowledgements The authors would like to thank the European Commission and the part-
ners of the European IST FP6 project "Service-Oriented Cross-layer infRAstructure for Distrib-
uted smart Embedded devices" (SOCRADES - www.socrades.eu), for their support.

References

Ahmed R, Hall T, Wernick P et al. (2008) Software process simulation modelling: A survey of
practice. J. Simul., 2:91–102

S. Karnouskos et al. 456

Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence from natural to artificial sys-
tems. Oxford Univ. Press, New York, 1999

Chan S, Kaler C, Kuehnel T et al. (2005) Devices profile for web services. Microsoft Developers
Network Library

Cianci C, Trifa V, Martinoli A (2005) Threshold-based algorithms for power-aware load balanc-
ing in sensor networks. In: Proceedings of 2005 IEEE Swarm Intelligence Symposium, IEEE-
SIS, Passadena, CA, USA

Cimetrix (2009) SECS/GEM SEMI standards overview, http://www.cimetrix.com/gemintro.cfm
Colombo A W, Karnouskos S (2009) Towards the factory of the future–a service-oriented cross-

layer infrastructure. ICT shaping the world, a scientific view. ETSI, John Wiley and Sons Ltd
de Souza LMS, Spiess P, Guinard D et al. (2008) Socrades: A web service based shop floor in-

tegration infrastructure. In: Proceedings of Internet of Things 2008 Conference, Zurich, Swit-
zerland, 26–28 March

Dickerson R , Lu J, Whitehouse K (2008) Stream feeds: an abstraction for the world wide sensor
web. In: Proceedings of the 1st Internet of Things Conference (IOT), Zurich, Switzerland,
26–28 March

Drytkiewicz W, Radusch I, Arbanowski S et al. (2004) A REST-based protocol for pervasive
systems. In: Proceedings of the IEEE International Conference on Mobile Ad-hoc and Sensor
Systems, pp. 340–348

Fielding RT (2000) Architectural styles and the design of network-based software architectures.
PhD thesis, University of California, Irvine, Irvine, California, USA

Fielding RT, Taylor RN (2002) Principled design of the modern web architecture. ACM Trans.
Internet Techn., 2(2):115–150

Fleisch E, Mattern F (2005) Das Internet der Dinge: Ubiquitous Computing und RFID in der
Praxis: Visionen, Technologien, Anwendungen, Handlungsanleitungen. Springer

Guinard D, Trifa V (2009) Towards the Web of Things: Web Mashups for Embedded Devices.
In : Proceedings of the 2nd Workshop on Mashups, Enterprise Mashups and Lightweight
Composition on the Web (MEM 2009), Madrid, Spain, 20 April

Guinard D, Trifa V, Pham T et al. (2009) Towards physical mashups in the web of things. In:
Proceedings of the 6th International Conference on Networked Sensing Systems (INSS 2009)

Hoyer V, Stanoesvka-Slabeva K, Janner T et al. (2008) Enterprise mashups: design principles
towards the long tail of user needs. In: Proceedings of IEEE Services Computing, 2:601–602

Jammes F, Smit H (2005) Service-oriented paradigms in industrial automation. IEEE Transac-
tions on Industrial Informatics, pp. 62–70

Karnouskos S, Baecker O, de Souza LMS et al. (2007) Integration of soa-ready networked em-
bedded devices in enterprise systems via a cross-layered web service infrastructure. In: Pro-
ceedings of the IEEE Conference on Emerging Technologies and Factory Automation
(ETFA), pp. 293–300

Kennedy P, Bapat V, Kurchina P (2008) In pursuit of the perfect plant. Evolved Technologist,
ISBN 978-0978921866

Liu X, Hui Y, Sun W et al. (2007) Towards service composition based on mashup. In: Proceed-
ings of IEEE Service Computing, pp. 332–339

Luckenbach T, Gober P, Arbanowski S et al. (2005) TinyREST–a protocol for integrating sensor
networks into the internet. In: Proceedings of REALWSN

Mahnke W, Leitner SH, Damm M (2009) OPC Unified Architecture. Springer, 1st edition, ISBN
3540688986

Marin-Perianu M, Meratnia N, Havinga P et al. (2007) Decentralized enterprise systems: a mul-
tiplatform wireless sensor network approach. IEEE, Wireless Communications. ISSN 1536-
1284

Pidd M, Robinson S (2007) Organising insights into simulation practice. In: Proceedings of the
2007 Winter Simulation Conference, pp. 771–775

14 Real-world Service Interaction with Enterprise Systems 457

Priyantha NB, Kansal A, Goraczko M et al. (2008) Tiny web services: design and implementa-
tion of interoperable and evolvable sensor networks. In: Proceedings of the 6th ACM confer-
ence on Embedded Network Sensor Systems, Raleigh, NC, USA, pp. 253–266

SAP (2008) Towards a European Strategy for the Future Internet,
http://www.europeansoftware.org/documents/SAP\s\do5(W)P\s\do5(F)utureInternet.pdf

Trifa V, Wieland S, Guinard D et al. (2009) Design and implementation of a gateway for web-
based interaction and management of embedded devices In: Proceedings of the 2nd Interna-
tional Workshop on Sensor Network Engineering (IWSNE’09), Marina del Rey, CA, USA

Wilde E (2007) Putting things to REST. Technical Report UCB iSchool Report 2007-015,
School of Information, November, UC Berkeley

	14. Real-world Service Interaction with Enterprise Systems in Dynamic Manufacturing Environments
	14.1 Motivation
	14.2 Real-world Awareness
	14.2.1 Device Integration Protocols
	14.2.2 Device-to-Business Coupling
	14.2.3 Integrating Heterogeneous Devices

	14.3 Enterprise Integration
	14.4 Integrating Manufacturing Equipment with the SOCRADES Integration Architecture
	14.5 Towards Dynamic Adaptation
	14.5.1 Simulation
	14.5.2 Self-healing Mechanisms
	14.5.3 Self-optimizing Mechanisms

	14.6 Concept Validation in Prototypes
	14.6.1 Machine Monitoring, Dynamic Decision and OrderAdaptation
	14.6.2 The Future Shop Floor: Mashup of Heterogeneous Service-oriented-architecture Devices and Services
	14.6.3 Dynamic Supply Chain Management Adaptation
	14.6.4 Taming Protocol Heterogeneity for Enterprise Services
	14.6.5 Energy Monitoring and Control via Representational State Transfer

	14.7 Discussion and Future Directions
	14.8 Conclusions and Future Work
	References

