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Abstract Creating networks of “smart things” found in the physical world (e.g., 

with RFID, wireless sensor and actuator networks, embedded devices) on a large 

scale has become the goal of a variety of recent research activities. Rather than 

exposing real-world data and functionality through vertical system designs, we 

propose to make them an integral part of the Web. As a result, smart things be-

come easier to build upon. In such an architecture, popular Web technologies 

(e.g., HTML, JavaScript, Ajax, PHP, Ruby) can be used to build applications in-

volving smart things, and users can leverage well-known Web mechanisms (e.g., 

browsing, searching, bookmarking, caching, linking) to interact with and share 

these devices. In this chapter, we describe the Web of Things (WoT) architecture 

and best practices based on the RESTful principles that have already contributed 

to the popular success, scalability, and evolvability of the Web. We discuss sever-

al prototypes using these principles, which connect environmental sensor nodes, 

energy monitoring systems, and RFID-tagged objects to the Web. We also show 

how Web-enabled smart things can be used in lightweight ad-hoc applications, 

called “physical Mashups”, and discuss some of the remaining challenges towards 

the global World Wide Web of Things. 

5.1 From the Internet of Things to the Web of Things 

As more and more devices are getting connected to the Internet, the next logical 

step is to use the World Wide Web and its associated technologies as a platform 

for smart things (i.e., sensor and actuator networks, embedded devices, electronic 

appliances and digitally enhanced everyday objects). Several years ago, in the 

                                                        
1 The original publication is available at www.springerlink.com published in the book: 

“Architecting the Internet of Things”, edited by M. Harrison, F. Michahelles and D. Uck-

elmann. 

http://www.springerlink.com/
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Cool Town project, Kindberg et al. (Kindberg et al. 2002) proposed to link physi-

cal objects with Web pages containing information and associated services. Using 

infrared interfaces or bar codes on objects, users could retrieve the URI of the as-

sociated page simply by interacting with the object. Another way to use the Web 

for real-world objects is to incorporate smart things into a standardised Web ser-

vice architecture (using standards, such as SOAP, WSDL, UDDI) (Guinard et al. 

2010d). In practice, this would often be too heavy and complex for simple objects. 

  Instead of these heavyweight Web services (SOAP/WSDL, etc.), often referred 

to as WS-* technologies, recent “Web of Things” projects (Wilde 2007; Guinard 

et al. 2010c; Luckenbach et al. 2005; Stirbu 2008) have explored simple embed-

ded Hypertext Transfer Protocol (HTTP) servers and Web 2.0 technology. In fact, 

recent embedded Web servers with advanced features (such as concurrent connec-

tions or server push for event notifications), can be implemented with only 8 KB 

of memory and no operating system support, thanks to efficient cross-layer 

TCP/HTTP optimisations, and can therefore run on tiny embedded systems, such 

as smart cards (Duquennoy et al. 2009). Since embedded Web servers in an Inter-

net of Things generally have fewer resources than Web clients, such as browsers 

or mobile phones, Asynchronous JavaScript and XML (Ajax) has proven to be a 

good way of transferring some of the server workload to the client.  

  So far, projects and initiatives, subsumed here under the umbrella term “Internet 

of Things”, have focused mainly on establishing connectivity in a variety of chal-

lenging and constrained networking environments. A promising next step is to 

build scalable interaction models on top of this basic network connectivity and 

thus focus on the application layer. In the Web of Things concept, smart things 

and their services are fully integrated in the Web by reusing and adapting technol-

ogies and patterns commonly used for traditional Web content. More precisely, ti-

ny Web servers are embedded into smart things and the REST architectural style 

(Richardson and Ruby 2007; Fielding 2000) is applied to resources in the physical 

world (Guinard et al. 2010c; Luckenbach et al. 2005; Duquennoy et al. 2009; Hui 

and Culler 2008). The essence of REST is to focus on creating loosely coupled 

services on the Web, so that they can be easily reused. REST is the architectural 

style of the Web (implemented by URIs, HTTP, and standardised media types, 

such as HTML and Extensible Markup Language (XML) and uses URIs for iden-

tifying resources on the Web. It abstracts services in a uniform interface (HTTP’s 

methods) from their application-specific semantics and provides mechanisms for 

clients to select the best possible representations for interactions. This makes it an 

ideal candidate to build a “universal” architecture and Application Programming 

Interface (API) for smart things. As we will explain in this chapter, the services 

that smart things expose on the Web usually take the form of a structured XML 

document or a JavaScript Object Notation (JSON) object, which are directly ma-

chine-readable. These formats can be understood not only by machines, but are al-

so reasonably accessible to people; provided meaningful markup elements and va-

riable names are used and documentation is made available. They can also be 
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supplemented with semantic information using microformats, so that smart things 

can not only communicate on the Web, but also provide a user-friendly represen-

tation of themselves. This makes it possible to interact with them via Web brows-

ers and thus explore the world of smart things with its many relationships (via 

links to other related things). Dynamically generated real-world data on smart ob-

jects can be displayed on such “representative” Web pages, and then processed 

with Web 2.0 tools. For example, things can be indexed like Web pages via their 

representations, users can “google” for them, and their URI can be emailed to 

friends or it can be bookmarked. The physical objects themselves can become ac-

tive and publish blogs or inform each other using services, such as Twitter.2 The 

general idea is that the Web is being used as a decentralised information system 

for easily exposing new services and applications, made possible, directly or indi-

rectly, by smart things.  

 

  The Web-enablement of smart things delivers more flexibility and customisation 

possibilities for end-users. As an example, tech-savvy end-users, at ease with new 

technologies, can easily build small applications on top of their appliances. Fol-

lowing the trend of Web 2.0 participatory services, in particular Web Mashups 

(Zang et al. 2008), users can create applications mixing real-world devices, such 

as home appliances, with virtual services on the Web. This type of applications is 

often referred to as physical Mashup (Wilde 2007, Guinard et al. 2010c). As an 

example, a music system could be connected to Facebook or Twitter in order to 

post the songs one mostly listens to. On the Web, this type of small, ad-hoc appli-

cation is usually created through a Mashup editor (e.g., Yahoo Pipes3), which is a 

Web platform that enables tech-saavy users (i.e., proficient users of technology)  

to visually create simple rules to compose Web sites and data sources. We de-

scribe how these principles and tools can also be applied to empower the user to 

create physical Mashups on top of their things. 

  In Section 2 and 3 we provide a “cookbook” describing the design steps towards 

embedding smart things into the Web. We also discuss a number of patterns and 

illustrate them via real prototypes that we have developed over the past few years. 

In Section 4, we use three concrete prototypes to exemplify how developers, do-

main-experts, and tech-savvy users can all benefit from a composable Web of 

Things. Finally, in Section 5 and 6 we discuss the remaining challenges towards 

implementing a World Wide Web of Things. 

                                                        
2 http://www.twitter.com 
3 http://pipes.yahoo.com/pipes/ 
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5.2 Designing RESTful Smart Things 

The “Web of Things” can be realised by applying principles of Web architecture, 

so that real-world objects and embedded devices can blend seamlessly into the 

Web. Instead of using the Web as a transport infrastructure – as done when using 

WS-* Web services – we aim at making devices an integral part of the Web and 

its infrastructure and tools by using HTTP as an application layer protocol. 

  The main contribution of the “Web of Things” approach is to offer a foundation 

for the next step beyond basic network connectivity. We hope that the Web of 

Things can do for real-world resources what the Web did for information re-

sources: basic connectivity was a necessary, but not a sufficient condition for the 

Internet to grow as spectacularly as it is still growing today; it was the architecture 

of the Web that allowed data and services to be shared in a way that was unheard 

of before, and that spurred the decentralised growth of what was made available 

on the Web. 

  In this section, we describe the use of REST (Fielding 2000) as a universal inte-

raction architecture, so that interactions with smart things can be built around un-

iversally supported methods (Pautasso and Wilde 2009). 

  In the following, we provide a set of guidelines to Web-enable smart things and 

illustrate them with concrete examples of implemented prototypes. As case study, 

we describe how we Web-enabled a wireless sensor network (Sun SPOT4). These 

guidelines are based on the concepts of Resource Oriented Architecture (ROA), 

described by Richardson and Ruby (Richardson and Ruby 2007). Our main goal is 

to focus on how these concepts can be applied and adapted in order to apply to 

smart things. 

5.2.1 Modeling Functionality as Linked Resources 

The central idea of REST revolves around the notion of a resource as any compo-

nent of an application that is worth being uniquely identified and linked to. On the 

Web, the identification of resources relies on Uniform Resource Identifiers 

(URIs), and representations retrieved through resource interactions contain links to 

other resources, so that applications can follow links through an interconnected 

web of resources. Clients of RESTful services are supposed to follow these links, 

just like one browses Web pages, in order to find resources to interact with. This 

allows clients to “explore” a service simply by browsing it, and in many cases, 

services will use a variety of link types to establish different relationships between 

resources. 

                                                        
4 http://www.sunspotworld.com 
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  In the case of the Sun SPOT, each node has a few sensors (light, temperature, ac-

celerometer, etc.), actuators (digital outputs, LEDs, etc.), and a number of internal 

components (radio, battery). Each of these components is modeled as a resource 

and assigned a URI. For instance, typing a URI such as  

http://.../sunspots/spot1/sensors/light  

in a browser requests a representation of the resource light of the resource sensors 

of spot1. Resources are primarily structured hierarchically and each resource also 

provides links back to its parent and forward to its children. As an example, the 

resource  

http://.../sunspots/spot1/sensors/ 

provides a list of links to all the sensors offered by spot1. This interlinking of re-

sources that is established through both, resource links and hierarchical URI, is not 

strictly necessary, but well-designed URIs make it easier for developers to “under-

stand” resource relationship and even allow non-link based “ad-hoc interactions”, 

such as “hacking” a URI by removing some structure and still expecting for it to 

work somehow.5 

  In a nutshell, the first step when Web-enabling a smart thing is to design its re-

source network. Identification of resources and their relationships are the two im-

portant aspects of this step.  

5.2.2 Representing Resources 

Resources are abstract entities and are not bound to any particular representation. 

Thus, several formats can be used to represent a single resource. However, agreed-

upon resource representation formats make it much easier for a decentralised sys-

tem of clients and servers to interact without the need for individual negotiations. 

On the Web, media type support in HTTP and the Hypertext Markup Language 

(HTML) allow peers to cooperate without individual agreements. It further allows 

clients to navigate amongst the resources using hyperlinks.  

 

  For machine-to-machine communication, other media types, such as the XML 

and the JSON have gained widespread support across services and client plat-

                                                        
5
 In some browsers this “URI hacking” is even part of the UI, where a “go up” function in the 

browser simply removes anything behind the last slash character in the current URI and expects 

that the Web site will serve a useful representation at that guessed URI. 
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forms. JSON is a lightweight alternative to XML that is widely used in Web 2.0 

applications.6 

  In the case of smart things, we suggest support for at least an HTML representa-

tion to ensure browsability by humans. Note that since HTML is a rather verbose 

format, it might not be directly served by the things themselves, but by interme-

diate proxies, as described in Section 0. For machine-to-machine communications, 

we suggest using JSON. Since JSON is a more lightweight format compared to 

XML, we believe that it is better adapted to devices with limited capabilities such 

as smart things. Furthermore, it can directly be parsed to JavaScript objects. This 

makes it an ideal candidate for integration into Web Mashups. 

  In the Sun SPOT example, each resource provides both, an HTML and a JSON 

representation. As an example, the listing in Figure 5.1a shows the JSON repre-

sentation of the temperature resource of a Sun SPOT and Figure 5.1b shows the 

same resource represented as an HTML page with links to parents, subresources, 

and related resources. 

1 {"resource": 

2 {"methods":["GET"], 

3 "name":"Temperature", 

4 "children":[], 

5 "content":  

6 [{"description":"Current Temperature", 

7 "name":"Current Ambient Temperature", 

8 "value":"27.75"}]}} 

Fig. 5.1a JSON Representation of the Temperature Resource of a Sun SPOT 

 

 

                                                        
6 http://www.json.org 
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Fig. 5.1b HTML Representation (Rendered by a Browser) of the Temperature Resource of a Sun 

SPOT Containing Links to Parent and Related Resources 

5.2.3 Servicing Through a Uniform Interface 

In REST, interacting with resources and retrieving their representations all hap-

pens through a uniform interface which specifies a service contract between the 

clients and servers. The uniform interface is based on the identification (and thus 

interaction) of resources, and in case of the Web, this interface is defined by the 

HTTP. We concentrate on three particular parts of this interface: operations, con-

tent-negotiation, and status codes. 

5.2.3.1 Operations 

HTTP provides four main methods to interact with resources, often also referred 

to as “verbs”: GET, PUT, POST, and DELETE. GET is used to retrieve the repre-

sentation of a resource. PUT is used to update the state of an existing resource or 

to create a resource by providing its identifier. POST creates a new resource with-

out specifying any identifier. DELETE is used to remove (or “unbind”) a resource.  

  In the Web of Things, these operations map rather naturally, since smart things 

usually offer quite simple and atomic operations. As an example, a GET on  

http://.../spot1/sensors/temperature 

returns the temperature observed by spot1, i.e., it retrieves the current representa-

tion of the temperature resource. A PUT on  

http://.../sunspots/spot1/actuators/leds/1 

with the updated JSON representation {”status”:”on”} (which was first retrieved 

with a GET on /leds/1) switches on the first LED of the Sun SPOT, i.e., it updates 

the state of the LED resource. A POST on  

http://.../spot1/sensors/temperature/rules  

with a JSON representation of the rule as {“threshold”:35} encapsulated in the 

HTTP body, creates a rule that will notify the caller whenever the temperature is 

higher than 35 degrees, i.e., it creates a new rule resource without explicitly pro-

viding an identifier. Finally, a DELETE on  

http://.../spot 
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is used to shutdown the node, or a DELETE on  

http://.../spot1/sensors/temperature/rules/1  

is used to remove rule number 1. 

  Additionally, another less-known verb is specified in HTTP and implemented by 

most Web servers: OPTIONS can be used to retrieve the operations that are al-

lowed on a resource. In a programmable Web of Things, this feature is quite use-

ful, since it allows applications to find out at runtime what operations are allowed 

for any URI. As an example, an OPTIONS request on  

http://.../sunspots/spot1/sensors/tilt 

returns GET, OPTIONS. 

5.2.3.2 Content Negotiation 

HTTP also specifies a mechanism for clients and servers to communicate about 

the requested and provided representations for any given resource; this mechanism 

is called content negotiation. Since content negotiation is built into the uniform in-

terface of HTTP, clients and servers have agreed-upon ways in which they can ex-

change information about requested and available resource representations, and 

the negotiation allows clients and servers to choose the best representation for a 

given scenario. 

  A typical content-negotiation for the Sun SPOTs looks as follows. The client be-

gins with a GET request on  

http://.../spot1/sensors/temperature/rules 

  It also sets the Accept header of the HTTP request to a weighted list of media 

types it understands, for example to: application/json;q=1, application/xml;q=0.5. 

The server then tries to serve the best possible format it knows about and specifies 

it in the Content-Type of the HTTP response. In our case, the Sun SPOT cannot 

offer XML and would thus return a JSON representation and set the HTTP header 

Content-Type: application/json. 

5.2.3.3 Status Codes 

Finally, the status of a response is represented by standardised status codes sent 

back as part of the header in the HTTP message. There exist several dozens of 

codes which each have well-known meaning for HTTP clients. In a Web of 
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Things, this is very valuable since it gives us a lightweight but yet powerful way 

of notifying abnormal requests execution. 

As an example, a POST request on  

http://.../sunspots/spot1/sensors/acceleration  

returns a 405 status code that the client has to interpret as the notification that “the 

method specified in the request is not allowed for the resource identified by the 

request URI.” 

5.2.4 Syndicating Things 

Many applications for smart things require syndicating information about objects 

or collections of objects. With Atom, the Web has a standardised and RESTful 

model for interacting with collections, and the Atom Publishing Protocol (Atom-

Pub) extends Atom’s read-only interactions with methods for write access to col-

lections. Because Atom is RESTful, interactions with Atom feeds can be based on 

simple GET operations which can then be cached. Atom enables decoupled scena-

rios by allowing clients to monitor smart things by subscribing to feeds and pol-

ling a feed on a remote server, instead of directly polling data from each device. 

  We implemented this model for the Sun SPOTs, since it fits the interaction mod-

el of sensor networks. Thus, the nodes can be controlled (e.g., turning LEDs on, 

enabling the digital outputs, etc.) using synchronous HTTP calls (client pull) as 

explained before, but can also be monitored by subscribing to feeds (node push). 

For example, a subscription to a feed can be done by creating a new “rule” on a 

sensor resource and POSTing a threshold (e.g., > 100). 

http://.../sunspots/spot1/sensors/light/rules 

  In response, the Sun SPOT returns a URI to an Atom feed. Every time the thre-

shold is reached, the node pushes a JSON message to the Atom server using 

AtomPub. This allows for thousands of clients to monitor a single sensor by out-

sourcing the processing onto an intermediate, more powerful server. 

5.2.5 Things Calling Back: Web Hooks 

While Atom allows asynchronous communication between clients and smart 

things, clients still need to pull the feed server on a regular basis to get data. In ad-

dition to being inefficient in terms of communications, this might be problematic 
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for scenarios where the focus is on monitoring. This is often the case with applica-

tions communicating with wireless sensor networks. 

  For those applications, we suggest supporting HTTP callbacks, sometimes called 

Web hooks.7 Web hooks are a mechanism for clients and applications that want to 

receive notifications from other Web sites using user-defined callbacks over 

HTTP. Users can specify a callback URI where the application will POST data to 

once an event occurs. This mechanism has been used by the PayPal service which 

allows you to specify a URI to be triggered by the service once payment has been 

accepted.  

  As an example, let us consider again the case of creating a new rule on a Sun 

SPOT: 

http://.../sunspots/spot1/sensors/light/rules 

  Now, alongside with the rule, the client POSTs a URI on which it will listen for 

incoming messages. Every time the threshold is reached, the node (or an interme-

diate) will push a JSON message to the given URI(s).  

  Using Web hooks is a first step towards bi-directional, real-time interaction with 

smart things. However, this model has a number of limitations as it requires from 

clients to have a public URI where data can be posted to, which is rarely the case 

when clients are behind a firewall. We will discuss further solutions in Section 0. 

5.3 Web-enabling Constrained Devices 

Although Web servers are likely to be embedded into more and more devices, we 

cannot assume that every smart device will directly offer a RESTful interface. In 

some cases, it makes sense to hide the platform-dependent protocol to access the 

resources of a particular device, and to expose them as RESTful service provided 

by a gateway. The actual interactions behind that RESTful service are invisible 

and often will include specialised protocols for the specific implementation scena-

rio. REST defines the notion of intermediaries as a core part of the architectural 

style, and therefore such a design can easily be achieved by implementing the 

RESTful service on intermediaries. By using either proxies or reverse proxies, it is 

furthermore possible to establish such an intermediary from the client or from the 

server side, effectively introducing a robust pattern for wrapping non-RESTful 

services in RESTful abstractions. 

  In practice, two solutions are possible: Web connectivity directly on the smart 

things, or indirectly through a proxy. Previous work has shown that serving con-

                                                        
7 http://www.webhooks.org 
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tent using Web servers on resource-constrained devices is feasible (Duquennoy et 

al. 2009). Also, in the foreseeable future, most embedded platforms will have na-

tive support for TCP/IP connectivity (in particular with 6LowPAN (Hui and Cul-

ler 2008), therefore, a Web server on most devices is a reasonable assumption. 

This approach is sometimes desirable, as there is no need to translate HTTP re-

quests from Web clients into the appropriate protocol for the different devices, and 

thus devices can be directly integrated and make their RESTful APIs directly ac-

cessible on the Web, as shown in the right part of Figure 5.2. 

 

 

Fig. 5.2 Web and Internet Integration with Smart Gateways and Direct Integration 

  However, when an on-board HTTP server is not possible or not desirable, Web 

integration takes place using a reverse proxy that bridges devices that are not di-

rectly accessible as Web resources. We call such as proxy a Smart Gateway (Trifa 

et al. 2009) to account for the fact that it is a network component that does more 

than only data forwarding. A Smart Gateway is a Web server that hides the actual 

communication between networked devices (e.g., Bluetooth or Zigbee) and the 

clients through the use of dedicated drivers behind a RESTful service. From the 
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Web clients’ perspective, the actual Web-enabling process is fully transparent, as 

interactions are HTTP in both cases. 

  As an example, consider a request to a sensor node coming from the Web 

through the RESTful service. The gateway maps this request to a request into the 

proprietary API of the node and transmits it using the communication protocol un-

derstood by the sensor node. A Smart Gateway can support several types of devic-

es through a driver architecture, as shown in Figure 5.3, where the gateway sup-

ports three types of devices and their corresponding communication protocols. 

Ideally, gateways should have a small memory footprint to be integrated into em-

bedded computers already present in network infrastructures, such as wireless rou-

ters, set-top boxes, or Network Attached Storage (NAS) devices. 

  Aside from connecting limited devices to the Web, a Smart Gateway can also 

provide more complex functions to devices such as orchestration and composition 

of several low-level services, offered by various devices into higher-level services 

available through the RESTful service. For example, if an embedded device 

measures the energy consumption of appliances, the Smart Gateway could provide 

a service that returns the total energy consumption as a sum of the data collected 

by all the devices connected to the gateway. Additionally, a gateway could take 

care of notifying all the URI call-backs (or Web hooks) whenever a given condi-

tion is met.  

Example: A Smart Gateway for Smart Meters 

A prototype for a smart meter infrastructure illustrates the application of the WoT 

architecture and the concept of Smart Gateways for monitoring and controlling the 

energy consumption of households. We used intelligent power sockets, called 

Plogg8, which can measure the electricity consumption of the appliance plugged 

into them. Each Plogg is also a wireless sensor node that communicates over Blu-

etooth or Zigbee. However, the integration interface offered by the Ploggs is pro-

prietary, which makes the development of applications using Ploggs rather te-

dious, and does not allow for easy Web integration. 

                                                        
8 http://www.plogginternational.com 
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Fig. 5.3 Appliances Attached to Ploggs Power Outlets Which Communicate with a Smart Gate-

way Offering the Ploggs’ Functionalities as RESTful Web Services 

  The Web-oriented architecture we have implemented using the Ploggs is based 

on five main layers as shown in Figure 5.3. The Device Layer is composed of ap-

pliances we want to monitor and control through the system. In the Sensing Layer, 

each of these appliances is then plugged into a Plogg sensor node. In the Gateway 

Layer, the Ploggs are discovered and managed by a Smart Gateway as described 

before. In the Mashup layer the Ploggs’ services are composed together to create 

an energy monitoring and control application, using Web scripting languages or 

composition tools. Finally, this application is made available through a Web User 
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Interface in a Web browser (e.g., on a mobile phone, a desktop computer, a tablet 

PC, etc.) 

  The Smart Gateway in this example is a C++ application running on an embed-

ded machine, whose role is to automatically find all the Ploggs in the environment 

and make them available as Web resources. The gateway first periodically looks 

for the Ploggs in the area by scanning the environment for Bluetooth devices. The 

next step is to expose them as RESTful resources. A small footprint Web server 

(Mongoose9) is used to enable access to the Ploggs’ functionalities over the Web, 

simply by mapping URIs to the various requests of the native Plogg Bluetooth 

API. 

  In addition to discovering the Ploggs and mapping their functionalities to URIs, 

the Smart Gateway has two other important features. First, it offers local aggre-

gates of device-level services. For example, the gateway offers a service that re-

turns the combined electricity consumption of all the Ploggs found at any given 

time. The second feature is that the gateway can represent resources in various 

formats. By default an HTML page with links to the resources, is returned, this 

ensures browsability. Using this representation the user can literally “browse” 

with any Web client the structure of smart meters to identify the one he or she 

wants to use and directly test the Ploggs by clicking on links (e.g., for the HTTP 

GET method) or filling forms (e.g., for the POST method). Alternatively, the 

Smart Gateway can also represent results of resources like JSON, to ease the inte-

gration with other Web applications. 

  To illustrate the concept from a client point of view, let us briefly describe an ex-

ample of interaction between a client application (e.g., written in Ajax) and the 

Ploggs’ RESTful Smart Gateway. First, the client contacts the root URI of the ap-

plication  

http://.../EnergieVisible/SmartMeters/  

with the GET method. The server responds with the list of all the smart meters 

connected to the gateway.  

  Afterwards, the client selects from that list the device it wants to interact with 

identified by a URI  

http://.../EnergieVisible/SmartMeters/RoomLamp  

alongside with the format it wants to get back (using HTTP content negotiation, 

see Section 5.2.3). By issuing a GET request on this resource with the Accept 

header set to application/json;q=1, it gets back a JSON representation as shown in 

Figure 5.4 below. In the response message of this listing, the client finds energy 

                                                        
9 http://code.google.com/p/mongoose 
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consumption data (e.g., current consumption, global consumption, etc.) as well as 

hyperlinks to related resources. Using these links, the client can discover other re-

lated “services”.  

1 GET /EnergieVisible/SmartMeters/RoomLamp  

2 [...] HTTP/1.x 200 OK 

3 Content-Type: application/json 

4 { 

5   “deviceName”:  “RoomLamp”, 

6   “currentWatts”:  60.52, 

7   “KWh”:  40.3, 

8   “maxWattage”:  80.56 

9   “links”: 

10   [{“aggregate”:  “../all”}, 

11   {“load”: “../load”}, 

12   {“status”:  “/status”}] 

13 }, {...}] 

Fig. 5.4 JSON Representation of a Plogg connected to a Lamp 

As an example, by contacting  

http://.../RoomLamp/status  

with the standard OPTIONS method, the client gets back a list of the methods al-

lowed on the status resource (e.g., Allow: GET, HEAD, POST, PUT). By sending 

the PUT method to this URI alongside with the representation (e.g., JSON)  {“sta-

tu”:”off”}, the appliance plugged into the Plogg is turned off. 

  The Web-enabling of the Ploggs through a Smart Gateway allows building fully 

Web-based energy monitoring applications. It also enables simple interactions, 

such as bookmarking connected appliances, and control or monitor them from any 

device (e.g., a mobile phone, an embedded computer, a wireless sensor node, etc.), 

offering a standard Web browser or understanding the HTTP protocol. 

5.4 Physical Mashups: Recomposing the Physical World 

In this section, we illustrate how the Web of Things concepts and architecture fa-

cilitates the creation of Mashups in the physical world. A Web Mashup is an ap-

plication that takes several Web resources and uses them to create a new applica-

tion. Unlike traditional forms of integration, Mashups focus mainly on 

opportunistic integration occurring on the Web for an end-user’s personal use and 

generally for non-critical applications (Yu et al. 2008). They are usually created 
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ad-hoc, using lightweight and well-known Web technologies, such as JavaScript 

and HTML, and contribute to serving short terms needs. As an example, a Mashup 

can be created to display, on Google Maps, the location of all the pictures posted 

to Flickr.10 

  By extending the Mashup concept to physical objects and applying RESTful pat-

terns to smart things, we allow their seamless integration into the Web, thus enabl-

ing a new range of applications based on this unified view of a Web of informa-

tion resources and physical objects. We call this concept “physical Mashup”, 

because it is directly inspired from Web 2.0 Mashups. 

  In this section, we present three Mashups representing three different use cases. 

In the first prototype, we create an energy monitoring and control system based on 

the Ploggs Smart Gateway. In the second, we show how domain experts (e.g., 

product managers, marketing executives, etc.) can leverage such tools to build a 

business intelligence platform suited to their business needs. In the last example, 

we show how end-users could use a visual physical Mashup editor to dynamically 

“configure” their home appliances. 

                                                        
10 http://www.flickr.com 
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5.4.1 Energy Aware Mashup: “Energie Visible” 

 

 

Fig. 5.5 The Web-Based User Interface for Monitoring and Controlling the Ploggs 

In this first example, we create a Mashup to help households to understand their 

energy consumption and to be able to remotely monitor and control it. 

  The idea of the “Energie Visible”11 project is to offer a Web dashboard that 

enables people to visualise and control the energy consumption of their household 

appliances. The dashboard is shown in Figure 5.5 and provides six real-time inter-

active graphs. The four graphs on the right side provide detailed information about 

the current electricity consumption of all the detected Ploggs. 

  Thanks to the Ploggs Smart Gateway described before, the dashboard can be im-

plemented using any Web scripting language or tool (PHP, Ruby, Python, Java-

Script, etc.). The Energie visible application was built using Google Web Toolkit 

(GWT)12, which is a platform for developing JavaScript Web applications in Java, 

and provides a large number of easily customisable widgets. To display the cur-

rent energy consumption in real time, the application simply sends HTTP GET re-

quests to the gateway  

                                                        
11 The project is available on http://www.webofthings.com/energievisible 
12 http://code.google.com/webtoolkit/ 
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http://.../EnergieVisible/SmartMeters/all.json  

on a regular basis or subscribes to this resource using Web hooks. The resulting 

feed entry is then dispatched to the corresponding graphs widgets, which can di-

rectly parse JSON, and extract the relevant data in it to be displayed. 

  The “Energie Visible” prototype was deployed at the headquarters of a private 

foundation working on sustainability (cudrefin0213) and has now been running re-

liably since November 2008.  

  The aim of the project was to help visitors and members to better understand how 

much each device consumes in operation and in standby. The Ploggs are used to 

monitor the energy consumption of various devices, such as a fridge, a kettle, sev-

eral printers, a file server, computers and screens. A large display in the office 

enables people passing by to experiment with the energy consumption of the de-

vices. The staff can also access the user interface of any Plogg with the Web 

browser of their office computer. 

5.4.2 Business Intelligence Mashup: RESTful EPCIS 

 

 

Fig. 5.6 Architecture of the RESTful EPCIS Based on the Jersey RESTful Framework and Dep-

loyed on Top of the Fosstrak EPCIS 

The Electronic Product Code (EPC) Network (Floerkemeier et al. 2007) is a set of 

standards established by industrial key players towards a uniform platform for 

tracking and discovering RFID-tagged objects and goods in supply chains. This 

network offers a standardised server-side EPC Information Service (EPCIS) for 

                                                        
13 http://cudrefin02.ch 
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managing and offering access to track and trace RFID events. Implementations of 

EPCIS provide a standard query and capture API through WS-* Web Services. 

  In order to integrate not only embedded devices, but also RFID-tagged everyday 

items into the Web of Things, we use the concepts presented to turn the EPCIS in-

to a “Smart Gateway”. This helps to better grasp the benefits of a seamless Web 

integration based on REST, as opposed to using HTTP as a transport protocol only 

(as WS-* Web Services use it). 

  The EPCIS offers three core features. First, it offers an interface to query for 

RFID events. The WS-* interface, however, does not allow to directly query for 

RFID events using Web languages, such as JavaScript or HTML. More important-

ly, it does not allow to explore the EPCIS using a Web browser, or to search for 

tagged objects or exchange links pointing to traces of tagged objects. To remedy 

the problem, we implemented a RESTful translation of the EPCIS WS-* interface. 

  As shown in Figure 5.6, the RESTful EPCIS (Guinard et al. 2010b) is a software 

module based on Jersey14, a software framework for building RESTful applica-

tions. Clients of the RESTful EPCIS, such as browsers or Web applications, can 

query for tagged objects directly using REST and its uniform HTTP interface. Re-

quests are then translated by the framework into WS-* calls on the standard 

EPCIS interface. This allows for the RESTful EPCIS to serve data provided by 

any implementation of the EPCIS standard. In our case we use Fosstrak (Floerke-

meier et al. 2007)15, an open source implementation of the standard. 

  The first benefit of the RESTful EPCIS is that every RFID event, reader, tagged 

object or location is turned into a Web resource and gets a globally resolvable 

URI, which uniquely identifies it and can be used to retrieve various representa-

tions. EPCIS queries are transformed into compositions of these identifiers and 

can be directly executed in the browser, sent by email, or bookmarked. As an ex-

ample, a factory manager who wants to know what tagged objects enter his factory 

can bookmark a URI, such as: 

http://.../epcis/rest/location/urn:company:factory1/reader/urn:company:entra

nce:1 

  Furthermore, these URIs are linked together through their representations in or-

der to reflect the relationships of the physical world. This makes the RESTful 

EPCIS directly browsable. Indeed, in addition to the XML representation of 

tagged objects offered by the standard, it also provides HTML, JSON and Atom 

representations. With the HTML representation, end-users can literally browse 

tagged things and their traces simply by following hyperlinks in the very same 

                                                        
14 http://jersey.dev.java.net 
15 http://www.fosstrak.org 
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way as they browse the Web of documents. For example, a location offers links to 

co-located RFID readers. 

  With the Atom representation, end-users can formulate queries by browsing the 

hyperlinked EPCIS and obtain the updated results represented as Atom feeds, 

which browsers can understand and directly subscribe, too. As an example, a 

product manager can create a feed in order to be automatically updated in his 

browser whenever one of his products is ready to be shipped. He can then use the 

URI of the feed to send it to his most important customers so that they could track 

the goods’ progress as well. This is a simple but very useful use case, which 

would require a dedicated client to be developed and installed by each customer in 

the case of the WS-* based EPCIS. 

5.4.3 A Mashup Editor for the Smart Home 

Tech-savvy users can create Web Mashups using “Mashup editors”, such as Ya-

hoo Pipes. These editors usually provide visual components representing Web 

sites and operations (add, filter, etc.) that users only needs to connect (or pipe) to-

gether to create new applications. We wanted to apply the same principles to allow 

users to create physical Mashups without requiring any programming skills. 

 

 

Fig. 5.7 The Physical Mashup Framework 
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  We briefly introduce our physical Mashup architecture and two Mashup editors 

built on top of it. As shown in Figure 5.7, the system is composed of four main 

parts. We first have RESTful, Web-enabled, smart things and appliances. In our 

prototype, we tag them with small 2D barcodes in order to ease their identification 

with mobile phones. We then have “virtual” services on the Web, such as Twitter, 

Google Visualisation API, Google Talk, etc. In the middle, the Mashup server 

framework allows to compose services of different smart appliances as well as vir-

tual services on the Web. It is in charge of executing the workflows created by 

end-users in their Mashup applications. It discovers, listens, and interacts with the 

devices over their RESTful API. The last components are the Mashup editors 

themselves, which allow users to create Mashup applications very easily. 

  We implemented two Mashup editors using this architecture. The first one is 

based on the Clickscript project.16 A Firefox plugin written on top of an Ajax li-

brary allows people to visually create Web Mashups by connecting building 

blocks of resources (Web sites) and operations (greater than, if/then, loops, etc.). 

Since it is written in JavaScript, Clickscript cannot use resources based on proprie-

tary service protocols. However, it can easily access RESTful services, such as 

those provided by Web-enabled smart appliances. This makes it straightforward to 

create Clickscript building blocks that represent smart appliances. The Mashup 

shown in Figure 5.8 gets the room temperature by GETting the temperature re-

source. If it is below 36 degrees, it turns off the Web-enabled air-conditioning sys-

tem. 

  The second editor was implemented on the Android Mobile Phone. Once again, 

thanks to the support of HTTP in Android, RESTful communication with smart 

appliances was straightforward. Similarly to Clickscript, the mobile editor allows 

the creation of simple Mashups. However, due to the screen constraints of the mo-

bile phone, a Mashup is created by going through a wizard. Users first select the 

appliances they want to include in the Mashup. They do this simply by scanning a 

barcode on the appliance using the phone’s camera. These codes are basically 

pointing back to the root URLs of the appliance’s RESTful APIs. They then set up 

the rules they want to implement and the virtual services they want to interact 

with. For example, users can create a Mashup that switches on their appliances, 

e.g, turning the heating up, whenever their phone detects that they are moving to-

wards home (based on their GPS traces). 

 

                                                        
16 http://www.clickscript.ch 
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Fig. 5.8 Using the Clickscript Mashup Editor to Create a Physical Mashup by Connecting Build-

ing Blocks Directly to a Browser 

5.5 Advanced Concepts: The Future Web of Things 

So far, we have shown how Web standards and design principles can be leveraged 

for smart things. While this seems to be a rather adequate architecture for the Web 

of Things, many open challenges remain. In this section, we explore three such 

challenges, and sketch potential solutions for each. We begin by discussing the 

needs for real-time data of many smart things applications. Then, we address the 

challenges of finding and understanding services available in a global Web of 

Things. We finally look at mechanisms for sharing smart things.  

5.5.1 Real-time Web of Things 

HTTP is a stateless client/server protocol where interactions are always initiated 

by the client, and there is no protocol context bigger than a request/response ex-

change. This interaction model is well-suited for control-oriented applications 

where clients read/write data from/to embedded devices. However, this client-

initiated interaction models seem inappropriate for bi-directional event-based and 

streaming systems, where data must be sent asynchronously to the clients as soon 

as it is produced. 

 

  For example, many pervasive scenarios must deal with real-time information to 

combine stored or streaming data from various sources to detect spatial or tempor-

al patterns, as is the case in many environmental monitoring applications. As such 

applications are often event-based and embedded devices usually have a low-duty 
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cycle (i.e., sleep most of the time), smart things should also be able to push data to 

clients (rather than being continuously polled). To support the complex, data-

centric queries required for such scenarios, more flexible data models are required 

to expose sensor data streams over the Web. In this section, we explore the recent 

developments in the real-time Web to build such a data model that is more suited 

to the data-centric, stream-based nature of sensor-driven applications.  

  As mentioned before, using syndication protocols, such as Atom, improves the 

model when monitoring, since devices can publish data asynchronously using 

AtomPub on an intermediate server or Smart Gateway. Nevertheless, clients still 

have to pull data from Atom servers. Web streaming media protocols (RTP/RTSP) 

have enabled transmission of potentially infinite data objects, such as Internet ra-

dio stations. Sensor streams are similar to streaming media in this respect. Howev-

er, streaming media mainly support play and pause commands, which are insuffi-

cient for sensor streams where more elaborate control commands are needed. The 

Extensible Messaging and Presence Protocol (XMPP)17 is an open standard for 

real-time communication based on exchanges of XML messages, and powers a 

wide range of applications including instant messaging (Google Talk is based on 

XMPP). Although widely used and successful, XMPP is a fairly complex stan-

dard, which is often too heavy for the limited resources of embedded devices used 

in sensor networks. 

  An alternative type of Web applications that attempt to eliminate the limitations 

of the traditional HTTP polling has become increasingly popular. This model, 

called Comet18 (also called HTTP streaming or server push), enables a Web server 

to push data back to the browser without the client requesting it explicitly. Since 

browsers are not designed with server-sent events in mind, Web application de-

velopers have tried to work around several specification loopholes to implement 

Comet-like behavior, each with different benefits and drawbacks. One general 

idea is that a Web server does not terminate the TCP connection after response da-

ta has been served to a client, but leaves the connection open to send further 

events. 

  Based on this brief overview, one can observe that the tradeoff between scalabili-

ty and query expressiveness is also present in the Web world. However, as the re-

cent developments in Web techniques have allowed to build efficient and scalable 

publish/subscribe systems, we suggest that a Web-based pub/sub model could be 

used to connect sensor networks with applications. PubSubHubbub (PuSH)19 is a 

simple, open pub/sub protocol as an extension to Atom and RSS. Parties (servers) 

speaking the PuSH protocol can get near-instant notifications (via callbacks) when 

                                                        
17 http://www.xmpp.org 
18 http://www.tinyurl.com/tc95h 
19 http://code.google.com/p/pubsubhubbub 
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a feed they are interested in is updated. PuSH can also be used as a general-

purpose messaging protocol for devices (Trifa et al. 2010).  

  The following model can be used to enable Web-based stream processing appli-

cations where users can post queries using an HTTP request to one or more sen-

sors. The HTTP request shown in Figure 5.9, collects the light and temperature 

sensor readings twice per second (the ds.freq=2 Hz parameter) only if the light 

sensor value is not over “200” and the temperature reading is less than “19”: 

1 POST /datastreams/ HTTP/1.1 

2 Content-Type: 

application/x-www-form-urlencoded 

3  

4 ds.device=purpleSensor 

5 &ds.data=temperature,light 

6 &ds.freq=2 

7 &ds.filter=light <= 200 && temperature < 19 

Fig. 5.9 HTTP Request Collecting Light and Temperature Sensor Readings 

  As a result, a specific pub/sub feed will be created on a pub/sub broker as a 

stream (sequence of messages) in which all the data matching the request will be 

pushed by the stream processing engine. This allows decoupling the application 

from the stream processing engine, which can be easily replaced, as long as it sup-

ports the same interface to process Web requests and also can push the matching 

data into the pub/sub broker.  

  All the data samples corresponding to these queries are then pushed into a feed 

on the message broker, where users can subscribe using the PuSH protocol. They 

will then receive the data from the stream pushed from the broker via callbacks.   

  Although HTTP was not designed for real-time stream delivery, exploratory re-

search in the Web of Things area shows promising results when using Web stan-

dards to interact with distributed sensors and actuators (Trifa et al. 2010). The loss 

in raw performance and latency, due to verbose HTTP requests, is compensated by 

allowing sensor networks to be exposed in an easily accessible and universal way. 

Additionally, thanks to the many advantages offered by Web standards, such as 

transparent proxies, declarative Web-based queries can be mapped to the special-

ised processing features of sensor networks, therefore, one can still take advantage 

of the optimisations and advanced processing implemented within sensor net-

works and other stream processing systems.  

 

  While it is clear that a Web of Things needs more developments and standards in 

the areas that we have described, the developments of recent years and the fore-

seeable future of HTML5 and its Web Sockets and Server-Sent Events is a sign of 
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developments moving in the right direction for the WoT. However, it is an impor-

tant task for Internet of Things researchers to identify the shortcomings of the cur-

rent Web architecture and propose solutions that work well for monitoring the real 

world and still integrate well with the Web.  

5.5.2 Finding and Describing Smart Things 

Another major challenge for a global Web of Things is searching and finding rele-

vant devices among billions of smart things that will be connected to the Web. 

Finding them by browsing HTML pages with hyperlinks is literally impossible in 

this case, hence the idea of searching for smart things. Searching for things is sig-

nificantly more complicated than searching for documents, as things are tightly 

bound to contextual information, such as location, are often moving from one con-

text to another, and have no obvious easily indexable properties, such as human-

readable text in the case of documents. 

  Beyond location, smart things need a mechanism to describe themselves and 

their services to be (automatically) discovered and used. But what is the best way 

to describe a thing on the Web so that both, humans and machines, can understand 

what services it provides? This problem is not inherent to smart things, but more 

generally a complex problem of describing services, which has always been an 

important challenge to be tackled in the Web research community, usually in the 

area of the Semantic Web.20 

  To overcome the rather limited descriptive power of resources on the Web, sev-

eral languages have been proposed, such as RDF21 or Microformats22. Designed 

for both, human and machines, Microformats provide a simple way to add seman-

tics to Web resources. There is not one single Microformat, but rather a number of 

them, each one for a particular domain; a “geo” and “adr” microformat for de-

scribing places or an “hProduct” and “hReview” microformat for describing prod-

ucts and what people think about them. Each Microformat undergoes a “standardi-

sation” process that ensures its content to be widely understood and used, if 

accepted. 

  Microformats are especially interesting in a Web of Things for two reasons; first 

they are directly embedded into Web pages and thus can be used to semantically 

annotate the HTML representation of a thing’s RESTful API. Secondly, Micro-

formats (as well as RDFa) are increasingly supported by search engines, such as 

Google and Yahoo, where it is used to enhance the search results. For example, 

                                                        
20 http://www.w3.org/standards/semanticweb/ 
21 http://www.w3.org/RDF/ 
22 http://www.microformats.org 
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the “Geo” Microformat could be used to localise search results close to you or, in 

our context, to localise smart things in your direct vicinity. 

  More concretely, we use a compound of several microformats to describe our 

smart things. This helps the things to be searched by humans using traditional or 

dedicated search engines, but it also helps them being “discovered” and under-

stood by software applications in order to automatically use them. As an example, 

in Figure 5.10 we use 5 microformats to describe a Sun SPOT and embed this se-

mantic information directly in the HTML representation of the SPOT resources. 

 

 

Fig. 5.10 Compound Microformats for Describing a Sun SPOT Using the Geo, hCard, hProduct 

and hReview Microformats 

  The listing shown in Figure 5.11 shows how to define the formal name (fn) of the 

Sun SPOT as well as an authoritative URL, where more information about the de-

vice can be found. We provide this semantic markup in the HTML representation 

of a Sun SPOT: 

1 <span class=”fn”>Sun SPOT</span> 

2 <span class=”URL> 

3     <a href=”http://sunspotworld.com</a> 

4 </span>  

Fig. 5.11 Snippet of the HTML Representation of a Sun SPOT Including the hProduct Micro-

formats 

  While there is still much research to be undertaken to be able to search for and 

discover smart things, the recent developments of the Web standards are going in 

the right direction for globally supporting such semantic descriptions. Indeed, a 
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derivative form of the already well supported Microformats, called Microdata,23 

might be part of the HTML 5 standard and might be widely adopted and unders-

tood by most next generation Web browsers and other Web clients. 

5.5.3 Sharing Smart Things 

The success of Web 2.0 Mashups depends on the trend for Web 2.0 service pro-

viders (e.g., Google, Twitter, Wordpress, etc.) to provide access to some of their 

services through relatively simple, often RESTful, open APIs on the Web. Mashup 

developers often share their Mashups on the Web and expose them through open 

APIs as well, making the service ecosystem grow with each application and Ma-

shup. Figure 5.12 shows the simplified component architecture of a Social Access 

Controller (SAC), which serves as authentication proxy between clients and smart 

things. 

  To ensure the success of physical Mashups, they need to replicate the same level 

of openness. However, enabling such an open model for a Web of Things requires 

a sharing mechanism for physical things supporting access control to the RESTful 

services provided by devices. For example, one could share the energy consump-

tion sensors in one’s house with the community. However, this is a potentially 

risky process, given that these devices are part of our everyday life and their pub-

lic sharing might result in serious privacy implications (if almost no energy has 

been used recently, the home owners may be on vacation and burglars might look 

for these kinds of patterns). HTTP already provides authentication mechanisms 

(e.g., HTTP Authentication24) based on credentials and server-managed user 

groups. While this solution is already available for free on most (embedded) Web 

servers, it still presents a number of drawbacks in the WoT context. First, for a 

large number of smart things it becomes quite unmanageable to share credentials 

for each of them. Then, as the shared resources are not advertised anywhere, shar-

ing also requires the use of secondary channels, such as sending emails containing 

credentials to people. Several platforms, such as SenseWeb (Luo et al. 2008)or 

Pachube25 propose to overcome these limitations by providing a central platform 

for people to share their sensor data. However, these approaches are based on a 

centralised data repository and are not designed to support decentralisation and di-

rect interaction with smart things.  

  A promising solution is to leverage existing social structures of social networks 

(e.g., Facebook, Linkedin, Twitter, etc.) and their (open) APIs to share things. Us-

ing social networks enables users to share things with people they know and trust 

                                                        
23 http://dev.w3.org/html5/md/ 
24 http://www.ietf.org/rfc/rfc2617.txt 
25 http://www.pachube.com 
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(e.g., relatives, friends, colleagues, fellow researchers, etc.), without the need to 

recreate yet another social network or user database from scratch on a new online 

service. Additionally, this enables advertising and sharing through a unique chan-

nel: you can use various well-known social networks to inform your friends about 

the sensors you shared with them by automatically posting messages to their pro-

file or newsfeed. 

  The SAC platform (Guinard et al. 2010a) is an implementation of this idea. SAC 

is an authentication proxy between clients (e.g., Web browsers) and smart things. 

Rather than maintaining its own database or list of trusted connections and creden-

tials – as it would be done with simple HTTP authentication – SAC connects to a 

number of social networks (e.g., Twitter, Facebook, LinkedIn, etc.) to extract all 

potential users and groups one could share with. 

 

 

Fig. 5.12 Simplified Component Architecture of the SAC  

  This is possible as most social networks offer a Web API (e.g., Facebook Con-

nect26). Providing an open Web API is one of the success factors of social net-

works themselves. Indeed, these APIs allow third-party Web applications to be 

built using partial data extracted from the social networks and thus to enhance the 

functionality of the social networks.  

  The sharing process occurs in three phases. First, the smart things owner accesses 

SAC by logging in, using at least one of his social networks credentials. SAC then 

uses delegated authentication with the social network to identify the owner. Af-

terwards, the smart thing to be shared has to be crawled in order to identify the re-

                                                        
26 http://developers.facebook.com/connect.php 
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sources and capabilities of its RESTful services, i.e., which functionalities can be 

shared for that thing. Finally, the user generates the access control list of the smart 

thing by selecting which friends can interact with what resource. 

  When an owner shares resources with a trusted connection, the latter is informed 

about it directly on their social network. In case of Facebook, it publishes a mes-

sage to the news feed of the friend. In case of Twitter it simply tweets a message 

to the trusted connection (e.g., “Rachel shared her Ploggs Energy sensors with 

you”). The posted message also contains a link that redirects to the shared re-

source. The link does not point to the smart thing directly but to an instance of 

SAC that acts as the authentication proxy, as shown in Figure 5.12 When a trusted 

connection uses the provided link, SAC will verify its identity. If the friend is 

logged in successfully with one of their social networks, SAC will internally 

check whether this person also has access to the requested resource. If it is the 

case, SAC logs on the shared resource using the credentials provided by the owner 

when registering the resource. It then redirects the HTTP request of the trusted 

connection to the shared resource. Finally, it redirects the result directly to the 

HTTP client of the trusted connection, for example to a Web browser. 

5.6 Discussing the Future Web of Things 

Thanks to the wide availability of HTTP libraries and clients, and to the loose 

coupling, simplicity, and scalability properties of RESTful architectures, RESTful 

applications have rapidly become one of the most practical integration architec-

tures. This makes it desirable to use Web standards for interacting with smart 

things. Although HTTP introduces a communication overhead and increases aver-

age response latency, it is still sufficient for many pervasive scenarios where long-

er delays do not affect user experience (Drytkiewicz et al. 2004; Priyantha et al. 

2008). Previous work (Trifa et al. 2009; Yazar and Dunkels 2009) has shown that 

the performance of using HTTP as a data exchange protocol is largely sufficient 

for common pervasive scenarios, especially when only a few concurrent users are 

accessing the same resource simultaneously (200 ms mean response time with 100 

concurrent users on a 1.1 GHz server running a Smart Gateway). We have also 

shown that caching techniques can significantly improve the performance of con-

current sensor data reading by using tools used for massively scalable Web sites 

(Trifa et al. 2009). These techniques can be directly applied to Web devices, given 

that devices have on-board HTTP support. 

  Web 2.0 Mashups have significantly lowered the entry barrier for the develop-

ment of Web applications, which is now accessible to non-programmers. It should 

be noted that a resource-oriented approach should not be universally considered as 

the miracle solution for every problem. In particular, scenarios with very specific 

requirements, such as high performance real-time communications, might benefit 
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from tightly coupled systems based on different system architectures. However, 

for less constrained applications, where massive scalability, ad-hoc interaction, 

and serendipitous re-use are necessary, Web standards allow any device to speak 

the same language as other services on the Web. This makes the integration of the 

real-world with any other Web content much easier, so that physical things can be 

bookmarked, browsed, searched for, and used just like any other Web resource.  

  Based on our personal experience, the drawbacks of Web architectures are easily 

offset by a notable simplification of the application design, integration, and dep-

loyment processes (Guinard et al. 2009), in particular when comparing RESTful 

devices with other systems for embedded devices, such as WS-* Web services. As 

an example, the Plogg RESTful Gateway and the Sun SPOTs have been used by 

external development teams who read about our project on our Web site. In the 

first case, the idea was to build a mobile energy monitoring application based on 

the iPhone that communicates with the Ploggs. In the second case, the goal was to 
demonstrate the use of a browser-based JavaScript Mashup editor with real-world 

services. According to interviews we conducted with these developers, their expe-

rience confirmed ours. They enjoyed using the RESTful smart things, in particular 

the ease of use of a RESTful Web API versus a different kind of API. For the 

iPhone application, a native API to Bluetooth did not exist at that time. However, 

like for almost any platform an HTTP (and JSON) library was available. One of 

the developers mentioned a learning curve for REST but emphasised the fact that 

it was still rather simple and that once it was learnt, the same principles could be 

used to interact with a large number of services. They finally noted the direct inte-

gration to HTML and Web browsers as one of the most prevalent benefits. 

5.7 Conclusion 

In this chapter, we suggested that Web technologies are – contrary to popular be-

lief – a suitable protocol for building applications on top of services offered by 

smart things. After summarising the core design principles of Web architecture, 

we proposed an architecture for the Web of Things based on the concepts of 

REST, syndication for smart things, Web Hooks, and Smart Gateways. We dem-

onstrate the idea with several prototypes.  

  Thanks to the loose-coupling, simplicity and scalability of RESTful architec-

tures, and the wide availability of HTTP libraries and clients, RESTful architec-

tures are becoming one of the most ubiquitous and lightweight integration plat-

forms. Because of this, using Web standards to interact with smart things seems to 

be increasingly adequate. Although HTTP introduces a communication overhead 

and increases average latency, it is sufficient for many pervasive scenarios where 

such longer delays do not affect user experience.  
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  Introducing support for Web standards at the device-level is beneficial for devel-

oping a new generation of networked devices that are much simpler to deploy, 

program, and reuse. Applying the same design principles that supported the suc-

cess of the Web, in particular openness, connectedness, and simplicity, can signif-

icantly leverage the ubiquity and versatility of the Web as a common ground for 

supporting interactions between devices and applications. Furthermore, as most 

mobile devices have already Web connectivity and Web browsers, and most pro-

gramming environments support HTTP, we tap into the very large Web developer 

community as potential application developers for the Web of Things. 
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