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Abstract—Elaborating demand side management strategies is
crucial for integrating electricity from renewable sources into the
electrical grid. Though future demand side will largely depend
on an automatic control of larger loads, it is also widely agreed
upon that consumer behavior will play an important role as well
- be it by purchasing respective automation techniques or by
shifting the use of appliances to other times of the day. Doing
so, it becomes possible to select households that offer sufficient
load shifting potential, and to overcome undirected and thus,
expensive campaigns. To our knowledge, this perspective is still
under-researched, especially when it comes to clustering methods
on load consumption data with a focus on peak detection accuracy
to provide customer segmentation.

Using the data collected in the Irish CER dataset, which
contains readings for more than 4000 residential customers over
a period of 18 months at 30-minute intervals, we show that the
whole clustering of the time series, with a few adaptations on
the usage of the K-Means algorithm, provides better clustering
results without sacrificing practical feasibility. Characteristic load
profiles allow us to segment the customers, address groups of
households with similar consumption patterns and determine
on the fly the cluster membership of a given load curve. This
will support decision making regarding the investments in load
shifting campaigns to prevent over or under-dimensioning linked
to peak energy demand.

I. INTRODUCTION

As the generation of electricity from renewable resources
does not fully rely upon a previously defined and arbitrary
schedule, but is the result of varying environmental parameters,
the required flexibility to balance supply and demand will
increasingly be achieved by managing the demand side of the
grid. This will require a more thorough appreciation of the
network flow and usage, and contrasts with the current set-up,
where synthetic load profiles are commonly used to provision
for energy, although they constitute an average profile for all
households. More fine-grained information about the specific
consumption patterns could allow for a better understanding of
when and which customers are responsible for the peak-time
energy consumption, which is costly for the energy providers.

While extensive work has been carried out on producing
an estimation of the load consumption, we are focusing on
identifying the characteristic load profiles. The novelty resides

in the fact that although clustering methods have been tested
on smart-metering data, they were mostly intended as an
exploratory phase or as a proof of concept that the data can be
segmented. For this reason, evaluation means of the obtained
clusters still need to be defined in order to be applicable for
clearly defined use cases.

We see three major advantages that relate to (i) provid-
ing detailed insights about household load curves in general
(ii) being able to identify “hurtful” households, which helps
to focus the cost of mitigation to the relevant ones (iii) having
a means that can assist in determining the customer value
up to the point where tariffs may depend on the load curve,
even in the household segment. A non exhaustive list would
comprehend measures such as sending prompts, extended
information on utility bills, behavioral cues e.g., to collect
bonus points for a desired change of load profile type, enabling
energy consulting teams to pre-select households that are given
priority for automatic load shifting measures or evaluating the
effects of load shifting campaigns in a very focused way.

The work is of special interest as it can be implemented
without hardware investments beyond off the shelf deploy-
ment of smart-metering infrastructures, using well known but
specifically adapted clustering techniques. It relies on a new
approach to select the appropriate parameters and establishing
characteristic cluster profiles as references to determine cluster
membership on the fly.

The paper is structured as follows. We review the related
work in Section II. Then, we present the methodology to build
the clustering framework in Section III and discuss the results
in Section IV. We provide insights on possible applications
and research tracks in Section V.

II. RELATED WORK

Load forecasting has been explored with the aim of predict-
ing the load to be provisioned based on historic data by [1].
To our knowledge, [2] also investigated the Irish CER dataset,
but the work focuses on the segmentation of households and
relies more on survey data, which relates to a classification
task. While clustering has been considered by [3]–[9], an



evaluation of the “quality” of the obtained clusters has not yet
been undertaken: this relates to the choice of the clustering
algorithm, the distance measure that is examined and an
analysis and discussion of shapes of the obtained characteristic
load profiles. [10] has provided a very thorough analysis and
comparison of different clustering techniques. The work of
[11] shows that care must be taken when mining data from
time series to be able to justify the claims related to the results
of an empirical evaluation.

III. METHODOLOGY

We concentrate on cluster consumption patterns based on
peak positions, which can be identified as hurtful moments
of the day for energy providers. This would allow not only
to characterize populations of customers, but also to react to
the more demanding profiles. The latter can be enabled by
adopting a strategy of contacting them and offering counseling
or different tariffs, in order to influence their consumption
behavior to fit the utility companies’ goals. To target customers
that are more likely to react positively to such stimuli, their
selection can be supported by favoring stable behaviors over
time (households that don’t significantly change their time of
peak consumption from one week to the other, which can be
seen as stable1). A way for the utility companies to better
provision for their network without relying only on synthetic
load profiles can be foreseen, which might be aggregating
the information too much and thus, be less adaptive to the
specificity of the population of customers that are served.

The Irish CER dataset contains 30-minute readings of 4225
residential customers, which were collected over a period of
18 months throughout Ireland. Building the analysis with these
data allows to show that the results are significant and not
influenced by an ill-sampled, hence not representative enough
set of households.

To achieve robust results, the first task consists in assessing
the quality of the input and deciding the format of the object
to be clustered. Then, we explore suitable clustering methods
and the choice of parameters that can enable the identification
of peaks in the load curves.

A. Data pre-processing

Overall, we focus on the shape of the curve instead of the
exact amount of consumed energy. The goal is not to forecast
the load at any point in time, but rather to target a set of
clusters that diverge in the position of their peaks throughout
the day. We review the required steps to build the objects that
will be clustered.

1) Cleaning of the dataset: Best practice in data mining
consists in verifying the quality of the input. Given the reports
[12] and [13], we assumed the presence of potential hardware
failure and discarded the data collected from the first month.
0 kWh readings were nevertheless identified throughout the
span of the data collection. Their presence could be attributed

1On the contrary, it could be argued that unstable households are of interest.
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Fig. 1. Daily curves for one household with multiple consecutive 0 kWh
readings. We notice that the issue is not related to one single day of the
week, but over any day of the week.

to smart-metering faults2. Different reasons could be suggested
such as blackouts (in the case where the smart-meter is
self-powered, such reading could be happening). Figure 1,
shows the case of one particular household with multiple
0 kWh readings. We can clearly see that this pattern does
not apply only to specific weekdays, but to any day of the
week. Hence, we decided to investigate the occurrence of the
null measurements through histograms of their distribution.
The adopted strategy relied on evaluating the proportion of
incriminated consecutive measurements. When looking at the
maximum length of consecutive null readings, the number of
affected daily curves quickly dropped below 100 as the length
of the sequence increased. This motivated the choice of a
sequence of five 0 kWh records as a cut-off value for the
removal of incriminated curves. This allowed the discarding
of a very negligible number of curves overall (0.55% to 0.8%
of all curves in the datasets listed in Table II).

The data were collected at a frequency of once every 30
minutes, providing 48 samples per day. However, this was not
the case when daylight saving time (DST) was implemented.
In the case of shifting to winter time, one additional hour
was added to the daily readings, implying that 50 samples
were recorded and when moving to summer time, one hour
disappeared, thus only 46 samples were kept. This was mit-
igated by correcting the incriminated days and transforming
the corresponding vectors of readings into regular 48-sample
vectors. For this reason, the third and fourth samples on the
winter DST day were discarded, since they are duplicated
readings from 1 am to 2 am. Regarding the summer time,
as records from 2 am to 2:59 am were missing, the average
of the first hour of data was replicated.

2) Splitting the dataset: Some authors highlighted and
incorporated seasonal differences in their implementation and
analysis such as [14]. The dataset was divided into summer
and winter data, as some seasonality effect was expected to
influence the shape of profiles. For each “season”, four weeks
of data was used as “training data” to build the cluster profiles,
while the larger corresponding sets can be designated as “test
data”.

20 kWh readings should not happen: http://www.ss3meteronline.co.uk/faq.
html



3) Focusing on the load curves shapes: We decided to
evaluate weekday patterns by averaging weekly data from
Monday to Friday and removing special days such as public
holidays. The variation from one weekday to the other was
not significant enough to build separate patterns for each day
as expressed in [14].

The interest being primarily the overall shape of the load
profiles, we considered the effect of a Wiener filter to remove
the oscillations, which, in the framework set-up, are less
relevant than the most prominent peaks. For this purpose, we
selected different smoothing windows.

Similarly, we examined different normalization and scaling
methods that are presented in [15]. As described in [15],
normalizing each curve by dividing it by its maximum value
not only preserves the shape of the curve, but also provides a
scaling between 0 and 1 of all measurements. This preserves
the relative variability between each reading and renders each
object independent from each other and from the dataset (this
is not the case if column-wise modifications are applied on
the raw data for example). This was further consolidated by
comparing the outcome of the clustering using the different
normalizing techniques, which provided the most differenti-
ated cluster profiles, i.e. cluster separation.

We performed formatting on really low consumption load
curves, to deal with cases where the dwelling is left inhabited
and which are expected to only present a base-load consump-
tion. To determine the threshold to separate base-load/standby
consumption from “real” user triggered consumption patterns,
we plotted a histogram of the distribution of the average
weekly consumption. For bins of 0.025 kWh from 0.025
kWh to 3 kWh (the maximum), we determined that for
all average weekly figures below 0.125 kWh3 the order of
magnitude of the affected curves shifts from less than 300
to 500 curves4, as in Figure 2. This step was implemented
to identify consumption patterns which should be treated as
flat consumption cases (after the scaling, flat curves would be
modeled as a vector with components equal to 1) and avoid
them having an out of proportion impact on the clustering once
that the normalization is applied and their shape magnified.

B. Clustering

1) Algorithms: We applied the most common clustering
methods and rated them with the goal of finding clusters
which group households based on their ability to single
out peak consumption over the day. For this purpose, we
examined different choices of parameters for the following
clustering techniques : hierarchical clustering, K-Means and
Self-Organizing Maps (SOM) dimension reduction followed
by K-Means. We are aware of the curse of dimensionality,
which has been covered by many authors such as more recently
and particularly thoroughly by [17]. The latter implies that
points in higher dimensionality cannot be differentiated as

3 [16] determined that this value is on average 112 W in the case of
households in New Zealand.

45.5% of all weekly curves

Fig. 2. Histogram of the distribution of the average weekly consumption
using a log scale for 0.025 kWh bins.

summarized in Equation 1.

lim
d→∞

Var

(
‖Xd‖
E‖Xd‖

)
= 0⇒ Dmax −Dmin

Dmin
→ 0 (1)

The difference in performance of the whole clustering of
the time series were evaluated against the extraction of a
subset of features as listed in [18] or the usage of Pricincipal
Components Analysis (PCA) to reduce the dimensionality of
the data.

2) Number of clusters: We compared the performance of
the clustering against the formation of 5 to 14 clusters, as more
clusters would lead to over-fitting and overcome the purpose
of simplifying the visualization of households consumption
patterns. We also expected that a higher number of clusters
would lead to some clusters containing very few load curves
with isolated shapes, instead of being able to generalize and
highlight common features of the data.

3) Combination of parameters: To decide upon the most
appropriate clustering framework to suit our goal of identifying
different peaks, we evaluated the following combinations of
parameters:
• whole time series clustering and extraction of features
• Wiener filter window (no filtering, 2 to 5 samples win-

dows length)
• number of clusters (from 5 to 14)
• combination of different clustering algorithms and dis-

tances as seen in Table I.
In particular, the whole time series clustering consisted

of using 48-dimension load curves representing the average
weekday consumption. We also needed to adapt the vectors
when using the correlation and cosine distances. It required
the data to be standardized column-wise, as the object we
clustered were scaled between 0 and 1, implying that they had
a relatively small standard deviation. We chose to evaluate the
effectiveness of reducing the dimension of the input vectors
to mitigate the curse of dimensionality. This was achieved
by extracting 18 features, which comprehended statistical data
over parts of the day (such as mean, standard deviation, min



TABLE I
COMBINATION OF THE EVALUATED CLUSTERING ALGORITHMS AND

DISTANCE MEASURES

Clustering technique Distance
SOM + K-Means Manhattan
SOM + K-Means Euclidean

K-Means Manhattan
K-Means Euclidean
K-Means Correlation
K-Means Cosine

Hierarchical Manhattan
Hierarchical Euclidean
Hierarchical Correlation
Hierarchical Cosine

and max) and ratios based on [18] and peak data, i.e., number
of peaks during parts of the days. Alternatively, we selected
the most significant PCA components (with contribution over
1%, which means 17 components).

After some preliminary testing, we adapted both the K-
Means and hierarchical clustering methods in combination
with the correlation and the cosine distances. Since the flat
consumption patterns could not be singled out, we applied a
two-phase clustering consisting of pre-applying the K-Means
algorithm with the same settings but choosing the Euclidean
distance to isolate the flat load curves. The clustering with
the current choice of parameters was then carried out on the
remaining curves.

The data were stored in a PostgreSQL database. Scripts
to fetch and format the data were written in Python and
Shell. For the clustering part, Matlab’s implementation of the
clustering algorithms was used, along with the SOM toolbox5

and peakdet toolbox6 for determining the peaks.

C. Similarity ranking

The usage of characteristic load profiles and their integration
into an online portal can save the cost of re-clustering data
for the new load curves. Selecting the cluster they belong
to relates to selecting the most similar characteristic load
profile, i.e., having the smallest distance. This allows to
significantly reduce the cost of assigning a household’s weekly
consumption pattern to one of those clusters and thus permits
a more scalable implementation. Also, it serves as a validation
means for pondering the clustering accuracy.

For this purpose, we examined different distance measures
such as the Manhattan, Euclidean and cosine distances along
with the correlation between the household load curve and the
load profiles. We focused on their ability to match a given
load curve to the most similar reference curve.

IV. RESULTS ANALYSIS

A. Data

The work presented in [14] takes the seasonal component
into consideration and more recently, the U.S. Energy Infor-

5http://www.cis.hut.fi/somtoolbox/
6http://www.billauer.co.il/peakdet.html

TABLE II
WINTER AND SUMMER “TRAINING” AND “TEST”-SETS. THE TABLE ALSO

CONTAINS THE TOTAL NUMBER OF DAILY LOAD CURVES AND THE
CORRESPONDING REMOVED CURVES.

Start date End date # Days # Weeks Removed Total
08/17/09 09/13/09 28 4 651 118271
08/17/09 10/31/10 287 41 720 118300
10/26/09 11/22/09 28 4 7153 1212138
10/26/09 12/31/10 215 31 7257 908177

mation Admnistration has reported that homes show seasonal
variation in electricity use7. For this reason, 4 different subsets
were built from the CER Irish dataset, which was collected
from July 14, 2009 to December 31, 2010 as can be seen in
Table II. DST dates for Ireland were used as benchmarks for
separating winter from summer, i.e. October 25, 2009, March
28, 2010 and October 31, 2010.

B. Evaluation of the clustering

The selection of the most fitted clustering method and pa-
rameters relies on the target of identifying hurtful consumption
behaviors as peaks. The performance of the clustering is in
consequence based on how the peaks of different load curves
match the peaks of the load profiles produced by the clustering.
For this purpose, a binary vector li for the ith load curve and a
binary vector for its corresponding cluster ci are built, taking
the value 1 when a peak is at a given position. The ratio of
matching peaks is computed as in Equation 2, where < li, ci >
represents the inner product of the two binary vectors.

mi =



<li,ci>
48∑

k=1

li(k)

if
48∑
k=1

li(k) > 0

1 if
48∑
k=1

li(k) = 0 and
48∑
k=1

ci(k) = 0

0 otherwise

(2)

Then the “score” used is the average of Equation 2 over all
curves in the considered dataset as in Equation 3. We refer to
it as the peak match score.

1

N

N∑
i=1

mi (3)

We use a second score for rating the distinctiveness of
the characteristic load profiles. This consists of summing the
Hamming distances of all pairs of the binary representation of
the cluster profiles.

The 20 top scoring configurations of parameters are high-
lighted in Table III. Although the scoring functions offer a
quantitative way of evaluating the clustering, they merely
provide a set of candidates that will be evaluated visually. The
candidates for the best clustering parametrization combines the
idea that the load curves have to match the characteristic load
profiles and the latter have to be distinct from each other.

7http://www.eia.gov/todayinenergy/detail.cfm?id=10211#



TABLE III
20 TOP SCORING CONFIGURATIONS OF PARAMETERS FOR THE CLUSTERING

Type of clustering Algorithm Distance Filt. Window # Clusters Peak Match Score Distinctiveness Score
Whole clust. K-Means Correlation 5 14 0.2199 290
Whole clust. K-Means Correlation 5 13 0.21554 236
Whole clust. K-Means Correlation 4 14 0.21425 290
Whole clust. K-Means Correlation 5 12 0.21182 190
Whole clust. K-Means Correlation 4 13 0.20963 236
Whole clust. K-Means Correlation 5 11 0.2059 162
Whole clust. K-Means Correlation 4 12 0.20321 204
Whole clust. SOM + K-Means Euclidean 5 14 0.20179 273
Whole clust. K-Means Cosine 5 14 0.20156 260
Whole clust. SOM + K-Means Manhattan 5 14 0.19824 259
Whole clust. K-Means Correlation 4 11 0.19778 174
Whole clust. K-Means Euclidean 5 13 0.19673 192
Whole clust. K-Means Correlation 3 14 0.19624 290
Whole clust. SOM + K-Means Manhattan 5 13 0.19614 230
Whole clust. K-Means Cosine 5 13 0.19597 210
Whole clust. K-Means Correlation 2 14 0.19548 276
Whole clust. K-Means Cosine 5 12 0.1951 192
Whole clust. SOM + K-Means Euclidean 5 13 0.19502 230
Whole clust. K-Means Correlation 5 10 0.1946 136
Whole clust. K-Means Correlation 2 13 0.19417 238

Extracting features from the load curves leads to the issue
of scaling them appropriately so that the components of the
vector are not overpowering each other during the process of
clustering, which is for example avoided when using the whole
time series, as all readings are scaled. Overall, reducing the
dimensionality from the 48-reading vector proved less suc-
cessful as the scoring revealed that the peak match score was
well below 10%. The presence of stacked versions of the same
cluster was most prominent and hence, the distinctiveness of
the clusters was not assured.

Also, distance measures such as the Euclidean and Manhat-
tan distances tend to aggregate the points to the same cluster,
as the notion of position of the peaks is absorbed through
the summing. Thus, other attempts, such as transforming the
load curve into a binary vector that marks the position of the
peaks or padding the original load curve with its binary peak
representation, did not succeed either.

Trading off these scores, K-Means with the correlation as
a distance measure was selected. Also, the load curves were
smoothed through the usage of a Wiener filter of window 3
(i.e. for each value of the load curve and 3 neighbors on the
left on 3 on the right are used), which corresponds to using
data in the scope of 1.5 hours around each measurement to
correct the oscillations, which are considered as noise.

The “appropriate” number of clusters was 14 (15, if count-
ing the group of flat curves that were excluded by the first
clustering phase). The results can be seen in Figure 3, in
contrast with Figure 4, where not all clusters are as distinct
and we see stacked versions of the same flat cluster and
overlapping peaks.

Fig. 3. 15 clusters (i.e., 14 + 1, obtained through first phase flat curves
separation), K-Means, correlation, filter window = 3 on the training summer
dataset. All characteristic load curves differ in the position of their peak.

Fig. 4. 14 (i.e. 14 clusters with SOM + K-Means), Euclidean, filter window
= 5 on the training summer dataset. Clusters 1 and 2 are not distinguishable
as their peaks are located at the same positions.



Fig. 5. Comparison between the clusters built from the “training” set from
Figure 3. The dash-line curves represent the new cluster profiles using the
summer “test” set using the cosine distance as the similarity measure.

C. Comparison with similarity distance ranking classification

Different distance measures to rank the similarity of the
load curves to the cluster profiles were tested to determine the
smallest distance to classify the curve into the right bin and
assess the “quality” of the initial clustering on the training set.
As can be seen in Figure 5, the best results are achieved with
the cosine distance as the resulting cluster averages match the
reference characteristic load profiles.

V. CONCLUSIONS AND OUTLOOK

We proposed a method to build cluster profiles with the
objective of identifying hurtful behaviors from the utility
companies’ viewpoint. Once that the clusters are built, the
classification of a household consumption pattern from one
week to the other is achieved by ranking the similarity of each
curve to the previously established “reference” consumption
patterns. Overall, the clustering produces distinctive enough
characteristic load profiles to target the discrimination of con-
sumption patterns based on the peaks positions. “Classifying”
households based on these profiles requires little overhead,
which would permit an integration in an online portal and
lead to more applications for the utility companies.

The segmentation of the households will allow the utility
companies to get a better understanding of what consumption
profiles exist among their customers and their proportion,
instead of relying on an oversimplification of the consumer-
base through the usage of the synthetic load profiles. Based
on the energy provider’s appreciation of what pattern is more
hurtful, specific segments of customer can be easily selected
and addressed. An application that could be foreseen would
be to understand how the households’ consumption evolves
over time and target either the more stable households (i.e.
selecting a threshold, as the percentage of weeks a specific
household remains in the same cluster or simply select the
top x number of households that have remained stable over
time). This can be implemented in the frame of an awareness
raising campaign as to maximize the chance of them reacting
to a stimuli such as differentiated tariffs as a way of inciting
load shifting.

We are aiming at expanding our analysis by verifying
whether an underlying Markov chain could allow us to es-

timate the likelihood of a household to change their consump-
tion from one week to the other, but also to highlight whether
regional factors can impact the shape of the characteristic
load profiles. Also, we are looking at finding out if household
characteristics, which were also collected through surveys in
the frame of the CER data collection can be mapped to the
cluster profiles.
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