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Abstract— Attaining energy efficiency requires understanding
human behaviors triggering energy consumption within house-
holds. In conjunction to providing appliance-level feedback,
targeting human activities that involve the usage of electrical ap-
pliances can provide a higher abstraction level to bring awareness
to the electricity wastage. In this paper, we make use of a large
dataset with appliance- and circuit-level power data and provide a
framework for determining temporal sequential association rules.
Sequences of time intervals where the appliances are in usage can
vary in their order, duration and the time elapsed between these
events. Our contribution consists in providing a full pipeline for
mining frequent sequential itemsets and a novel way to discover
the time windows during which these sequences of events occur
and to capture their variance in terms of duration and order.
Our method is data-driven and relies on the data’s statistical
properties and allows us to avoid an exhaustive search for the
time windows’ sizes, by relying instead on machine learning
techniques to identify and predict those time windows.

Index Terms—Time series analysis; Data mining; Information
search and retrieval; Clustering; Smart energy; Smartmeters;
Activity inference; Appliances states; Energy data analytics;
Datasets; Algorithms

I. INTRODUCTION

Increasing energy efficiency is part of the goals set by
governments across the world to reduce the energy footprint
and provide sustainable development to all. The advent of
new technologies that permit the monitoring of the electrical
consumption within households, such as with smartmeters and
future smart appliances that are likely to report their own con-
sumption, and progress in control technologies for actuating
different components such as lights or thermometers, offer
prospects to smarten homes by exploiting the large amounts
of data available and derive processes to conserve energy.
The opportunity to collect real-time consumption data prepares
us to contemplate real-time feedback to inform the residents
about their usage of energy [1]. However, the final link to
this chain, from data to action, relies on households’ residents
to assimilate the feedback and to change their relationship
towards their energy consumption. The failure of earlier energy
conservation campaigns was due to the discrepancy between
the residents’ energy knowledge (such as energy units aware-
ness or the evaluation of how much energy an appliance would
consume) and the expected energy reduction that utilities

were aiming by offering money incentives [2]–[5]. Adequate
information has to be provided in assisting the decision making
as has been shown in the process of acquiring new appliances
to reduce future energy costs [6].

While feedback at the appliance level could be provided,
given the unfamiliarity with the energy jargon and the over-
whelming occurrences of when diverse appliances are used
throughout the week, the residents might not be able to asso-
ciate the triggering of an appliance to a behavior to address.
By aggregating interactions with appliances and abstracting
the underlying ongoing activity, the granularity can be reduced.
Also, if a resident were to keep a diary of their daily activities,
since most of them are essential (e.g. cooking), they would be
salient in their memory and thus more easily associated to
effective interactions with electrical devices. Beyond identify-
ing and estimating the amount of energy that is used during
specific human activities, this additional information could be
used to build new strategies within a smart home to improve
and offset energy-hungry behaviors by providing automation
measures to reduce their footprint. This would first require us
to learn what activities can be detected and their scheduling,
and more specifically to predict the time windows where they
might occur.

Our contribution is to provide temporal sequential asso-
ciation rules in a novel way, based on machine learning
techniques, to learn time windows where a rule’s head and
body take place and to exploit historical data and their statis-
tical properties. Given the variance in the usage of different
appliances for completing specific tasks, such as cooking,
where the diversity of the recipes in terms of preparation and
cooking time contributes to the variance in what appliances
and in which order and how long they are used, considering
sequential frequent itemsets allows us to capture rules that still
reflect the underlying behavior. We provide an analysis on
a dataset with disaggregated energy consumption and show
that rules can be learned that reflect expected activities that
should take place within households. Our technique is not
limited to energy data and is thus generalizable to datasets
for which temporal sequential rules should be mined. In
the following, we will review related work in Section II.
Then, we will present the methodology for extracting temporal
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sequential association rules in Section III. Experimental results
on a disaggregated dataset with several households will be
evaluated in Section IV. Finally, we will discuss improvements
and future work in Section V.

II. RELATED WORK

In the frame of Demand Side Management (DSM), the
shifting of select appliances usages and their optimal schedul-
ing to enable the shaving of peak consumption was studied
experimentally [7]–[9]. As more smartmeters are rolled out
and equipped in households, large datasets with aggregate
load consumption are released such as the Irish Commission
for Energy Regulations’ dataset with over 5000 households
or the PG&E dataset, and serve as a basis for research in
customer segmentation or demand forecasting for Demand-
Response strategies [10], [11]. Due to the difficulty to collect
single appliances’ power consumption, previous work relied
on activities as described by human beings to model and
synthesize electrical loads in households [12]. DRSim was
developed as a simulator for DSM systems that is aware of the
current status of the grid and the activities carried out inside
a household and attempts to estimate the potential savings for
demand side policies [13].

Until all households are equipped with smart appliances that
can communicate their consumption and internal states, deter-
mining when an appliance is active or idle (being powered
off or being in standby-mode), requires either datasets with
explicit labeling of these states or an algorithm to determine
them automatically [14], [15]. The Dataport dataset is one
of the largest dataset with 1-minute power data including
disaggregated readings from single appliances and circuit
(such as power strips or rooms) from over 800 households,
but it is still lacking rich metadata such as appliances’ states
and activity annotations. Efforts were directed at expanding
the datasets that are available to the community by learning
from the computer vision community and using crowdsourced
human labeling to acquire labels for providing richer data to
develop and refine algorithms based on machine learning [16].
This retrofitting of existing datasets offers an alternative to
acquiring new datasets, which is prohibitive in terms of
costs and time [17], as consumer electronics is widespread
and requires a large set of smart plugs to be installed
and even special instrumentation for larger appliances with
higher wattage. Preliminary attempts at inferring activities
from households’ non-synthetic electric load curves relied on
aggregated electricity consumption, with few annotations [18].
Activity detection was previously performed by considering
activities as events’ streams and using symbolic analysis with
the specific goal of shifting activities to a more convenient
moment of the day [19] and using an HMM [20], however,
both analyses relied on synthetic data. Attempts at using real
data are linked to the CASAS project [21]–[25] and set in a
students’ apartment, the data were used to extract sensor data
features to link the aggregate household consumption load to
human activities, but failed to address the bias induced by the
inability to discard energy-hungry appliances from the overall

load curve [24], [26]. Another attempt at using real data was
achieved through a push-system for recording user activities
based on the identification of interactive loads by clustering
the states of appliances [27], but still failing to recognize
appliances. This work spawned the analysis of association
rules [28], but considering fixed hourly windows, instead of
mining for variable time intervals and not considering the time
relationships between the time intervals.

The development of APRIORI [29] was followed by differ-
ent sequential pattern mining algorithms such as GSP [30],
WINEPI and MINEPI [31], SPADE [32] or PREFIX-
SPAN [33], they provided sequential pattern analysis but con-
sidered the events to be instantaneous. Temporal pattern min-
ing progressively included different time relationships between
the sequences of events [34]–[37]. A framework for identifying
sequential temporal intervals provided an algorithm based
on APRIORI for learning the association rules by searching
for frequent arrangements of sequences of events, extending
and revising Allen’s temporal relationships and allowing user-
defined constraints for mining the rules, but did not offer the
possibility to mine for the time windows during which the
temporal association rules occurred [38]. Titarl was developed
to learn temporal association rules on symbolic time sequences
(where sensor data were binarized by introducing discretiza-
tion of each variable representing a sensor), but considered
uniformly distributed intervals for the time intervals where the
rules occurred, instead of exploiting the statistical property
of the data [39]. The work was then extended to forecast
temporal intervals by providing a refinement procedure for first
extracting temporal association rules, then merging them [40].

III. METHODOLOGY

If we consider the cooking activity, we expect different
appliances to be used to fulfill this task such as an oven or
a kitchen stove. The triggering of those appliances can then
be followed by the usage of a dishwasher for cleaning the
dishes. Due to the diversity of recipes that can be used for
preparing a meal for example, defining temporal thresholds
for the duration of events during which different appliances
are used is too restrictive and will not capture the variance
in the way corresponding activities are conducted. Thus, to
learn human activities triggering electrical consumption, we
identify co-occurring events and their respective association
rules. We exploit previous work on sequential itemsets mining
by considering temporal relationships between the events and
their respective time intervals allows us to classify and order
these events according to the sequence in which they occur
[38]. This means that different events can follow, contain or
overlap one another. The succession and merging of these
events can be identified as activities. Additionally, we define a
novel method to derive the time windows where these activities
arise and learn the association rules between these activities.
In the following, we describe the methodology for deriving
temporal association rules for sequential events such as defined
in Equation 1 and through our pipeline as can be seen in Figure
1.
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Fig. 1: Pipeline for deriving the temporal association rules

A. Data Binarization

In the case of activities, the events consist in the triggering
and active usage of appliances in residential homes. The data
that are recorded consist in power data and do not contain
information about when appliances are in usage, instead of
being off or in standby-mode. The measurements are converted
to a binary form, where active and idle states are determined
using GMMThresh [14], [15]. This binarization method can be
used for sensor data as well, to distinguish background noise
(idle state) from meaningful readings (active state). For multi-
state data, we advise to define a quantification scheme for the
original data and to create a variable per quantification level
and transform the data accordingly.

B. Sequential Association Rules Mining

Since we want to learn daily temporal association rules,
we can consider that each day of collected data represents
a basket, in the traditional market basket analysis [29]. The
intervals during which the appliances are active represent
the items in each basket. Sequential association rules mining
has been widely studied and defines how frequent sequential
itemsets are extracted [38]. We briefly explain how these asso-
ciation rules are constructed. The events’ intervals E maintain
temporal relationships R and constitute arrangements A =
(E ,R). An arrangement A defines the temporal relationships
between the time intervals where different events take place.
For n events E , E = (E1, ..., En), Pn2 = n!

(n−2)! = m per-
mutations for the pair-wise temporal relationships R(Ei, Ej)
between Ei and Ej can be computed , where i < j and
i, j ∈ {1, ..., n}, thus we can define an m-tuple of pairwise
relationships R = (R1, ..., Rm). The temporal relationships
that are selected in the case of the activities constitute a
generalization of more refined ones [38] and in this paper,
we restrict them to R ∈ {contain, follow , overlap} as in
Figure 2. The search for these arrangements is performed on
an enumeration tree expanded breadth-wise and being pruned
based on a minimum support value. The rules are determined

for each arrangement by considering sub-arrangements and by
extracting all partitions of the set of events into two subsets as
the head and the body of the rule. In order not to repeat rules,
the sub-arrangements are extracted in lexicographic order. The
rules are accepted or discarded following APRIORI’s strategy
[38].

Fig. 2: Time relationships: contain, follow and overlap

A[tAS , tAE ] −→ B[tBS , tBE ] (1)

C. Time Windows

1) Bivariate histograms (or heatmaps): Having determined
the body and head of the rules as two sub-arrangements,
we derive a novel technique for extracting the time windows
during which the rules hold. For this, we build a co-occurrence
matrix for the head and the body of each rule based on the time
intervals during which they occur. To preserve the order of the
rule, i.e. the body and the head respectively, we only consider
the cases where the head’s time intervals are subsequent to
the body’s time intervals. In the reverse case, the rule with
head and body inverted, should it have enough support, will
be processed independently from another arrangement. In
practice, we build a bivariate histogram (or heatmap) for each
minute in a day for both the head and the body of the rule. For
each day, co-occurring minutes for both the head and the body
are marked as zones in the bivariate histogram. For example,
for a particular day, if the head is active from 10 a.m. to 11
a.m. and the body is active from 11:30 a.m. to 2 p.m., the co-
occurring region would be the rectangular area [10:00-11:00;
11:30-14:00], using the 24-hour notation, and would contain
ones, while the other regions zeroes. The bivariate histogram
is created by super-imposing the different co-occurring regions
for each day. As can be seen in Figure 3a, each minute that
has occurred more frequently throughout the dataset, will be
more accounted for than minutes that have happened more
irregularly. It can also be noticed that the matrix is upper
triangular, as we are interested in events (the rule’s head)
appearing after the body’s events.

2) Tolerance regions: The regions of interest for determin-
ing the time windows for the association rules are the temporal
regions that occur the most often. They can be smoothed as
can be seen in Figure 3b by using a kernel density estimation.
Using the bivariate histogram concept allows us to conceptu-
ally assimilate each region as a trivariate Gaussian distribution.
The regions of interest are then the projection of each trivariate
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(a) Bivariate histogram
(heatmap).

(b) Gaussian Kernel Density
Estimation.

Fig. 3: Heatmap and Gaussian Kernel Density Estimation for
an association rule

Gaussian into the horizontal plane. Thus, identifying these
regions can be undertaken by a Gaussian Mixture Model,
where each Gaussian can represent a separate region or cluster
of points. Equation 2 represents a k-dimensional Gaussian
distribution, entirely defined by its mean ~µ and covariance
matrix Σ, defined separately in Equation 3. We will describe
how to derive those regions in the following.

P (~x|~µ,Σ) = 1√
(2π)k|Σ|

exp(− 1
2 (~x− ~µ)TΣ−1(~x− ~µ)) (2)

Σ = E[(~x− ~µ)(~x− ~µ)T ]

where Σij = cov(xi, xj) = E[(xi − µi)(xj − µj)]
The projection of a trivariate Gaussian on the horizontal

plane is a bivariate Gaussian. The region they cover can be
delimited by an isocontour [41] as defined in Equation 3.
These isocontours can be defined by the mean ~µ and the
covariance matrix Σ of the data points clustered within, where
the spread between the data points and the mean is represented
by the Mahalanobis distance d2

Σ(~x, ~µ) as defined in Equation
4. We can define from a k-variate Gaussian distribution an
ellipsoidal region as in Equation 5 where ~µ and Σ are the
sample mean and the sample covariance matrix, respectively,
obtained from the clustered data, where c → χ2

k(p), the
chi-squared distribution with k degrees of freedom and for
covering a p-percentage of the population as the population
size N →∞ [42]. These regions are referred to as statistical
tolerance regions [42]–[44]. They have been used in assem-
bly tolerance for specifying the quality of production to be
achieved [45].1 The population coverage is thus a parameter
for the size of the tolerance area. A closed form solution was
defined for bivariate cases and approximations are available
for higher dimensional distributions [42].

P (~x|~µ,Σ) = c with c ∈ [0; 1] (3)

d2
Σ(~x, ~µ) = (~x− ~µ)TΣ−1(~x− ~µ) (4)

1These should not be confused with confidence regions (or intervals), which
yield the confidence for the sample mean and covariance matrix, as the
experiment is repeated.

R(~µ,Σ, c) = {~x : d2
Σ(~x, ~µ) ≤ c} (5)

To determine the closed form equation of the ellipsoid
defined in Equation 5, we can recall the definition of the
covariance matrix Σ as in Equation 3, which summarizes
the spread of the data. Such observation is the basis to
popular methods such as principal components analysis (PCA),
to transform the data into an orthogonal basis set, where
the first vector of this basis will have the direction of the
largest variance of the data (this consists in performing the
eigendecompostion of the covariance matrix Σ = V LV −1,
where L is the diagonal matrix of eigenvalues and V the
respective eigenvectors). This change of coordinates operates
under a linear transformation T and consists of a rotation
through a matrix R and the scaling of the data points along
each axis through a matrix S2 where T = RS [46], as
illustrated in Figure 4 and Σ = RSSR−1 = TTT , with
S =

√
L and R =

√
V [47], the Cholesky decomposition

of Σ. As can be seen in Figure 5, we can bound the ellipse
by a box to get the approximation of the time intervals during
which the events occur for both the head and the body of a
rule, as the sides of the rectangle delimited by the ellipse’s
extremum points.

Σ =

(
1 0
0 1

)

(a) The covariance matrix is the iden-
tity matrix, data contained in a circle.

Σ =

(
5 −2

−2 5

)

(b) The covariance matrix is a full
matrix. Notice the rotation and the
spread of the data into an ellipse.

Fig. 4: Full and diagonal covariance matrices and correspond-
ing data spread

Without loss of generality, if we consider the case of the
bivariate Gaussian distribution, we can rewrite the density
function as in Equation 7 by taking the covariance matrix Σ
as in Equation 6. We can compute the change of coordinates
as the linear transformation Y = TX . Since the new basis is
orthogonal, the covariance matrix in that basis is a diagonal
matrix as can be seen in Equation 8 as the variables are
uncorrelated, and which can be solved to obtain the covari-
ances σ2

y1
, σ2

y2
and the rotation angle θ as in Equation 9. The

tolerance regions, which we are interested in, are delimited by
isocontours such that f(x1, x2) = c, where c ≥ 0. a = cσy1

is the the semi-major axis of the ellipse and b = cσy2
the

semi-minor axis, respectively.

Σ =

(
σ2

1 σ12

σ12 σ2
2

)
=

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
with ρ = σ12

σ1σ2
(6)

2The matrix is thus diagonal.
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f(x1, x2) = 1

2πσx1
σx2

√
1−ρ2

exp(− 1
2(1−ρ2) [(

x1−µx1

σx1
)2

−2ρ
x1−µx1

σx1

x2−µx2

σx2

+(
x2−µx2

σx2
)2])

(7)

SS = R−1ΣR =⇒(
σ2
y1

0

0 σ2
y1

)
=
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)( σ2
x1

σx1x2
σx1x2

σ2
x2

)(
cos(θ) − sin(θ)
sin(θ) cos(θ)

) (8)


θ = 1

2 arctan
2σx1x2

σ2
x1
−σ2

x2

σ2
y1

=
σ2
x1

+σ2
x2

2 +

√
(σ2
x1
−σ2

x2
)2

4 + σ2
x1x2

σ2
y2

=
σ2
x1

+σ2
x2

2 −
√

(σ2
x1
−σ2

x2
)2

4 + σ2
x1x2

(9)

Additionally, the size of the tolerance region also bears
a statistical meaning that determines the value c. Indeed,
the Mahalanobis distance r to the Gaussian can set the
ellipse’s size as for the bivariate case, it is dependent on the
cumulative distribution of the Gaussian distribution. A closed
form solution based on the cumulative distribution function
as expressed in Equation 10, based on the parametrization of
the ellipse and its Cholesky decomposition [48] and allows us
to determine r based on the probability that an observation
falls within the region delimited by the ellipse defined by
the isocontour at value c. Additionally, the new coordinate
system has an orthogonal basis and the variables y1 and y2

are thus uncorrelated and ρ = 0 and the ellipse’s equation

can be rewritten as
(
y1−µ1

σy1

)2

+
(
y2−µ2

σy2

)2

≤ c2. Each term
y1−µi
σyi

∼ Zi = N (0, 1) contributes as an i.i.d standard distri-
bution, and is therefore equivalent to a chi-square distribution
(U2 =

∑k
i=1 Zi ∼ χ2

k) with k degrees of freedom. The
isocontour can thus be computed for a specific proportion p
of the population to be covered by the tolerance region as
c = χ2

2(p) or c =
√
−2 ln(1− p), equivalently.

F (r) = 1− exp(− r
2

2 ) = p

r = F−1(p) =
√
−2 ln(1− p)

(10)

To define the bounding box to the tolerance ellipse, we use
the general form of the parametric equations of an ellipse as
in Equation 11, obtained by rotating the polar coordinates of
an ellipse through the rotation matrix R. The bounding box
is delimited by lines passing through the extremum points
of the ellipse and can thus be obtained by taking the partial
derivatives of the general parametric equations as in Equation
12 to obtain the values t that should be set in the parametric
equation.{

y1 = µ1 + a cos(t) cos(θ)− b sin(t) sin(θ)

y2 = µ2 + a cos(t) sin(θ) + b sin(t) cos(θ)
(11)

{
∂y1

∂t = 0 ⇐⇒ t = − b
a tan(θ)

∂y2

∂t = 0 ⇐⇒ t = b
a cot(θ)

(12)

Fig. 5: Ellipse rotation and bounding box

Having derived how to obtain the bounding boxes for the
time windows prediction, we use it in conjunction with a
Gaussian Mixture Model that will identify clusters of data
points. If this is successful, a temporal sequential rule as
defined in Equation 1 is added to the set of association rules,
if not it is discarded. If no rule can be determined for the
current itemset, the node is discarded and is not expanded
further. Our platform also includes constraints developed for
an optimistic pruning of the frequent sequential itemsets [38],
such as duration constraints for each arrangement or an ε
time tolerance for the temporal relationships between the
intervals representing the different variables (appliances) that
are considered. It is also easily adapted to enforce constraints
on the time windows for the predictions such that user-defined
time of the day or durations δ as described in Equation 13 can
prune out less relevant rules. The cases described in Equation
13 can be generalized to our general formulation in Equation
1 to perform an exhaustive search for all temporal sequential
association rules.

A{t1} −→ B{t2}
A{t1} −→ B[t2, t3]

A{t1} −→ B{t1 + δ}
(13)

IV. EMPIRICAL EVALUATIONS

A. Dataset

We use the Dataport dataset, with data ranging from
July 2012 until April 2015. The dataset contains 1-minute
appliance-level (washing machines, ovens, etc.) and circuit-
level (rooms, multiplugs for small appliances in the kitchen,
etc.) power data for over 70 types of meters and more than
800 households located mainly in Texas and in California. We
select 16 households with large numbers of appliances. The
data are cleaned to contain only full days (discarding missing
data and daylight saving time days). The measurements are
binarized using GMMThresh [14], [15], which distinguishes
when an appliance is active and thus triggered on to serve an
activity, from when it is idle, being either off or in stand-by
mode. Without loss of generality, we select January data for
deriving the temporal association rules, with some households
having 1, 2 or 3 months worth of data for that specific
month. We remove appliances that are likely to always be
on or exhibit a periodic behavior due to being controlled by
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TABLE I: Households data details, with number of appliances per month for each household id

Household id 624 1464 1632 2018 2472 2974 3615 5568 6139 6348 6378 7510 7982 9776 9922 9926

2013-01 13 17 0 0 0 13 0 9 9 0 0 15 0 0 15 15
2014-01 12 15 14 14 15 11 22 15 14 0 17 12 15 15 15 12
2015-01 14 0 12 14 15 15 9 14 14 18 13 14 0 15 15 13

a timer or a thermostat, such as fridges, freezers, furnaces or
air conditioning units. The selected households and the details
about how many months of data and how many appliances are
considered can be seen in Table I.

The scheduling and duration of usage of different appliances
is expected to vary significantly. We are looking for general
rules and this can be achieved by relaxing the conditions
for the time and the duration of different events and instead
considering sequences of events. While some activities such
as textile care, would mostly have the washing machine first
enabled, then would be followed by the dryer, activities such
as cooking are less likely to preserve the order of different ap-
pliances as cooking relies on very different recipes, involving
different subsets of appliances and durations for each instance.
Thus, if we are interested in the sequence in which different
groups of appliances are used, quantifying their total duration
of usage and the exact time window during which they are
triggered on is likely to fail. Instead, we are searching for
intervals where the appliance is used and the time relationships
between these intervals, accounting for some flexibility on
the intervals’ bounds. However, due to the fact that some
appliances can be used for a very short time, while others are
active for longer periods, we take the precaution to downscale
the data to improve the detection of the time relationships
between the time intervals where they take place. From the 1-
minute data granularity we construct 15-minute intervals. We
mine for the top 1000 (which means we can get more temporal
rules as their number depends on the number of clusters that
are detected) rules extracted from the arrangements in each
household, they replace rules with lower scores.

B. Support and Interestingness Measures

Additional parameters can influence the search for the
temporal sequential association rules platform, such as se-
lecting the support threshold for the frequent itemsets filter-
ing. The interestingness measures used for determining the
association rules and the minimum thresholds for discarding
or accepting them are quite diverse in the litterature. Two
well-known measures are the support defined as supp(X) =
|{t∈D;X⊆t}|

|D| = P (X) and the confidence as conf(X =⇒
Y ) = supp(X∪Y )

supp(X) = P (Y |X) [29]. The tolerance for the time
relationships is represented by an ε slack on the bounderies
of the intervals. Then, for determining the time windows, we
choose a threshold for the bivariate histogram as a minimum
support for how often each minute should have been marked
as occurring, this allows us to discard noise and is similar to
the support filtering when mining for the frequent itemsets.

C. GMM
The type of GMM method, i.e. a standard GMM, a GMM

based on variational inference (VBGMM) and its infinite
GMM counterpart based on a Dirichlet Process (DPGMM)
influences the quality of the clustering and the proportion of
the population that should be covered by the tolerance region
impacts the size of the ellipse for the windows’ prediction. The
DPGMM and the VBGMM rely on a concentration parameter
α as a DP can be described by a Chinese restaurant process
where α is proportional to the probability to join a new
table [49], [50]. A larger α will influence the clustering by
assigning the data to more clusters. To approach the natural
number of clusters in the data, we set α to the proportion
α = #days

#datapoints , which usually oscillates between 0.1 and
0.01 and as can be seen in Figure 6, the more natural clustering
is achieved for α = 0.1.

(a) α = 0.01 (b) α = 0.1

(c) α = 1 (d) α = 10

Fig. 6: Impact of the selection of the concentration factor α
for the DPGMM. In Figures 6a, 6b, 6c, and 6d, α takes the
values 0.01, 0.1, 1, and 10 respectively.

As can be seen in Figures 7 and 8, the quality of the
predictions depends on how many clusters are detected and
how precise the tolerance regions are. The DPGMM and
VBGMM clustering methods overgeneralize the clustering, by
merging smaller clusters into larger ones, often covering areas
as large as a whole day. This in turn creates very large time
windows. The choice of a full covariance matrix instead of a
diagonal matrix also impacts the prediction as it will overfit
the tolerance regions more and create larger time windows
especially in the case of the DPGMM and VBGMM in Figure
8 as the estimated regions of interest are long tilted lines,
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although the Kernel Density Estimation indicates large zones
spawn by different Gaussians. As can be seen in both cases,
the Kernel Density Estimation assigns similar concentrated
regions as the GMM, which instead fits the data better. This
is why we will consider the diagonal covariance matrices in
more details. All evaluated parameters can be found in Table
II.

D. Results

We summarize in Table II the total number of rules for all
households. The number of association rules is the same for
all methods depending on the chosen interestingness measure,
as only the arrangements with enough support or confidence
are selected, which guarantees enough data for the clustering.
The number of distinct temporal rules varies based on the
interestingness measure: the confidence creates significantly
more rules due to its definition. Additionally, the number of
distinct temporal rules also varies across the diverse cluster-
ing methods, due to the overgeneralization of DPGMM and
VBGMM, which often creates tolerance regions covering the
whole day. The threshold for the bivariate histogram should
be chosen as a proportion on the dataset instead of an absolute
value to reduce the noise incurred by the variance. Due to the
type of appliances and circuits monitored in the dataset, most
activities cannot be described in a detailed way.

As for the sequences of appliances or circuits that are
aggregated in the frequent itemsets and eventually split into
rules, we notice that interesting rules are inherent to the
number of appliances that are available in each household
and not so much about the number of days available for the
clustering, as we obtained on average per number of months
of data available per household about the same number of
rules discovered. The configuration we tested was for a small
tolerance to intervals’ relationships misalignment by selecting
an ε of 1 (15 minutes) and thus we are identifying itemsets
where appliances are being used relatively closely in time,
which is fitting for cooking for example. The parameter could
be adapted to relax the constraint for time separation and to
capture appliances’ usages more disconnected in time.

The number of interesting rules is also dependent on
whether or not the household residents were at home and
actually interacted with the devices and circuits, as some
households that only had one month of data showed signif-
icantly more rules than households with three months of data.
This is due to the fact that single appliances were aggregated
such as kitchen appliances (that could contain toasters, coffee
makers, etc.) and some houses were more instrumented than
others and larger appliances such as ovens, cooking ranges,
dishwashers or clothes washers are measured separately, but
not available in all households.

We observe that appliances that are linked to cooking are
identified in rules such as in Figure 9. Similar rules link
ovens to ranges, or kitchen appliances to microwaves. Side
interactions with cooking can be detected such as activities
in bedrooms, bathrooms or living rooms. We also notice
that the usage of cooking appliances can be preceded or

followed by the usage of a dishwasher for cleaning the
dishes. Additionally, dishwashers or clothes washers are used
in conjunction with water heaters, triggered for warming the
water (as it is common for such appliances in the US, where
the appliances are connected to external cold and hot water
sources). In some cases, we could suppose that the residents
were preparing to leave as interactions with kitchen appliances
were followed by activity in the garage, and conversely,
the arrival of the residents could be detected as well. We
verified with the surveys supplied with the Dataport dataset
for some of the households and the rules that were mined
were correlated with the residents’ declarations about the rate
of usage of different appliances (1-3 times per week), which
influences how many rules can be detected. Additionally, in
households where residents mentioned that they sometimes
work at home during the week, more rules could be observed.
The number of residents per dwelling also influenced the
types of rules that could be discovered, due to having noisier
rules due to activities being carried out by different people
concurrently. However the time windows during which rules
were discovered are meaningful when corroborated with the
survey information and times where people can be expected
to be at home.

V. CONCLUSIONS AND FUTURE WORK

We have derived time windows for temporal sequential
association rules based on the co-occurrence of time intervals
through machine learning techniques. Our novel method uses
the statistical properties of the data to efficiently identify time
windows without having to perform an exhaustive search for
their occurrence and duration. It is based on the co-occurrence
of arrangements of sequential events that can be seen as a
bivariate histogram (or heatmap), which can be adjusted to
guarantee that events arise in a significant enough proportion
by applying a support threshold for the co-occurrence matrix.
Using a threshold on the co-occurrence frequency allows us
to eliminate the noise from the variation of the time intervals
and serves as the support filtering in the APRIORI algorithm
when computing the frequent itemsets in a transaction. Each
zone having strong co-occurrence can be approximated by a
trivariate Gaussian distribution. We treat the planar projection
of each Gaussian as a tolerance region, where a percentage
of the population can be covered. As such, each region is
an ellipse, whose area can be adjusted to the probability to
cover a certain percentage of the population. The Gaussians are
discovered by estimating them by a Gaussian Mixture Model,
whose parameters can be used to determine the ellipses. Events
that occur more often are concentrated in different temporal
regions, this is captured by the clustering and the spread of
the points around the mean of the Gaussians. The rules can
be refined by adding more constraints on how the frequent
itemsets are constructed (relaxing the time relationships) and
the search can be parametrized.

Our predictions can be improved by selecting the features
before computing the frequent itemsets selections (by observ-
ing the correlation, auto-correlation with time lags). But also,
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(a) Bivariate histogram (heatmap). (b) KDE for the heatmap.

(c) Elliptical tolerance regions, GMM, diag-
onal covariance matrix Σ.

(d) Elliptical tolerance regions, DPGMM, di-
agonal covariance matrix Σ.

(e) Elliptical tolerance regions, VBGMM,
diagonal covariance matrix Σ.

(f) Elliptical tolerance regions, GMM, full
covariance matrix Σ.

(g) Elliptical tolerance regions, DPGMM, full
covariance matrix Σ.

(h) Elliptical tolerance regions, VBGMM,
full covariance matrix Σ.

Fig. 7: Bivariate histogram and tolerance regions for household 624 where DPGMM overgeneralizes. In Figures 7c, 7d, 7e,
7f, 7g, and 7h, the ? locates the center of the ellipse (as ~µ, the Gaussian’s mean). The dashed, dash-dotted and dotted lines
represent population coverage percentages at 1, 2 and 3 standard deviations σi from the means µi respectively. The colored
tolerance regions show the ellipses and its rectangular bounding boxes.

TABLE II: Parametrization for the temporal sequential association rules and results

GMM Covar. Freq. Supp. Interestingness Min Score Prob. Ellipse Time Supp. Total Nb. Rules Total Nb. Temp Rules

DPGMM diag 0.1 confidence 0.4 0.8 5 14214 55705
VBGMM diag 0.1 confidence 0.4 0.8 5 14214 52840
GMM diag 0.1 confidence 0.4 0.8 5 14214 68493
DPGMM diag 0.1 support 0.4 0.8 5 8173 35048
VBGMM diag 0.1 support 0.4 0.8 5 8173 33140
GMM diag 0.1 support 0.4 0.8 5 8173 40079
DPGMM full 0.1 confidence 0.4 0.8 5 14214 45783
VBGMM full 0.1 confidence 0.4 0.8 5 14214 46513
GMM full 0.1 confidence 0.4 0.8 5 14214 67769
DPGMM full 0.1 support 0.4 0.8 5 8173 28876
VBGMM full 0.1 support 0.4 0.8 5 8173 28674
GMM full 0.1 support 0.4 0.8 5 8173 39859
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(a) Bivariate histogram (heatmap). (b) KDE for the heatmap.

(c) Elliptical tolerance regions, GMM, diag-
onal covariance matrix Σ.

(d) Elliptical tolerance regions, DPGMM, di-
agonal covariance matrix Σ.

(e) Elliptical tolerance regions, VBGMM,
diagonal covariance matrix Σ.

(f) Elliptical tolerance regions, GMM, full
covariance matrix Σ.

(g) Elliptical tolerance regions, DPGMM, full
covariance matrix Σ.

(h) Elliptical tolerance regions, VBGMM,
full covariance matrix Σ.

Fig. 8: Bivariate histogram and tolerance regions for household 2974, where DPGMM and VBGMM overgeneralize and fail
to capture smaller clusters. In Figures 8c, 8d, 8e, 8f, 8g and 8h, the ? locates the center of the ellipse (as ~µ, the Gaussian’s
mean). The dashed, dash-dotted and dotted lines represent population coverage percentages at 1, 2 and 3 standard deviations
σi from the means µi respectively. The colored tolerance regions show the ellipses and its rectangular bounding boxes.

Fig. 9: Kitchen and dishwasher rule, support: 0.548

we plan on collecting ground truth data and applying our anal-
ysis on a dataset with more appliances and activity labels for
validation. Additionally, the temporal pattern analysis can be

extended to accommodate different granularities, e.g., weekly
rules can be mined by changing the data format to weekly data
and thus deliver intervals across weeks instead of days. Our
method is generalizable and can be applied to different datasets
with time series to learn habits (mobility traces, smartphones’
interaction, etc.) through temporal sequential rules and to use
the time windows for scheduling and predictions.
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