
2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 1301

Estimating Human Interactions with Electrical
Appliances for Activity-based Energy Savings

Recommendations
Hông-Ân Cao

Department of Computer Science
ETH Zurich, Switzerland

Email: hong-an.cao@inf.ethz.ch

Tri Kurniawan Wijaya, Karl Aberer
Department of Computer Science

EPFL, Switzerland
Email: {tri-kurniawan.wijaya,

karl.aberer}@epfl.ch

Nuno Nunes
Madeira Interactive Technologies Institute

Funchal, Portugal
Email: njn@uma.pt

Abstract— Since the power consumption of different electrical
appliances in a household can be recorded by individual smart
meters, it becomes possible to start considering in more detail the
interactions of the residents with those devices throughout the
day. Appliances’ usages should not be considered as independent
events, but rather as enablers for activities. Leveraging activity
knowledge over time will allow us to design personalized energy
efficient measures. We envision the design of future ambient
intelligence systems, where the smart home can optimize the
energy consumption in regards to the lifestyles of its residents and
the smart grid’s needs. In this work, we propose an automated
method for determining when an electrical device is triggered
by households’ residents solely from its power trace. Knowing
when an appliance is in use is required for identifying recurrent
patterns that could later be understood as activities.

Index Terms—Time series analysis; Data mining, Information
search and retrieval; Clustering; Smart energy; Smart meters;
Activity inference; Appliances states; Energy data analytics;
Datasets; Algorithms

I. INTRODUCTION

The future smart grid offers the possibility of having fine-
grained information and capabilities to monitor its status in
real time. Implementing real-time and personalized feedback
could amount to a substantial energy reduction in the residen-
tial segment [1]. This should be considered with the potential
savings during peak time, when high penalties might become a
reality in the future. It can also be the cornerstone of future off-
the-grid scenarios as micro-generation and battery technolo-
gies become more affordable. Focusing on the household scale
offers an alternative to aggregating levels in Demand Response
Systems. In the context of the smart home, one could foresee
trading off users’ lifestyle preferences and comfort with saving
measures, while preserving the privacy of the residents, by
providing an optimization inside households.

From a technical standpoint, it has yet to be decided how
much information should be collected, i.e., the granularity of
such data, and which additional sensors should be integrated
to provide a better understanding of how energy is consumed.
To this end, the access to disaggregated data requires the
setup of data collection architectures with prohibitive costs.

One practical alternative is single point, non-intrusive sens-
ing of aggregated energy which involves the development
of Non-Intrusive Load Monitoring (NILM) algorithms on
existing household-level aggregated data to differentiate the
devices in use [2]. Given the recent release of a large dataset
with appliance-level measurements, abstracting the usage of
electrical devices in households by investigating the motives
behind them being triggered by a user becomes possible.
This involves unraveling information from the collected power
measurements and finding out when and how they are used in
conjunction.

Until smart appliances become widespread, determining the
state of an appliance and in particular, when it is active from
when it is idle or in standby mode, can only rely on disaggre-
gated power time series. We investigate how an appliance’s
trace properties can be leveraged without side information
that could assess the proximity of the residents, nor ground
truth data from a journal that documents the activities in
the household, to determine when there is interaction with
an appliance to carry out a human activity. Setting fixed
thresholds based on the analysis of a set of known appliances
and building databases of signatures will not scale with the
release of new models of appliances, as their characteristics
are expected to evolve as devices become more efficient
due to technological improvements. Instead, determining these
thresholds agnostically of the appliances’ types, models and
brands, based on statistical properties of their consumption,
would be adaptable for existing and next generation devices.

In order to determine which appliances are utilized con-
jointly and linked to a human activity, our contribution is to
distinguish the active consumption from the baseline and noise
in their power traces. Our method could be extended to other
types of sensors, where it is necessary to determine useful
measurements from baseline noise (such as in the case of
inertial sensors).

The remainder of this paper is organized as follows. Section
II presents related work. Section III introduces the methodol-
ogy for the automatic thresholding. Section IV shows the algo-
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rithm’s evaluation through experimental results. We conclude
by discussing future work in Section V.

II. RELATED WORK

Activity recognition is a long-established field of research.
Previous work looked at human trajectories, interactions with
objects or social activities [3]. However, most approaches
neither target energy conservation, nor use the electricity con-
sumption as an input variable for the recognition of activities.
Thus, our goal of estimating human interactions with electrical
appliances agnostically is most closely related to recent work
on demand side management. The ability to accurately predict
future energy needs is the cornerstone in proper demand side
management, and many research efforts have been devoted to
this in the last couple of years [4]. Some of the investigated
methods rely heavily on past consumption data to predict
future demand, and therefore, we argue that our research can
be of added value in this situations, especially given the high
granularity of data (one measurement per minute) that can
be easily modified to test different predictions periods (e.g.
hour, day, week) to evaluate the outcomes of the prediction
algorithms in a variety of energy consumption scenarios,
including off-the-grid households.

Previous work used statistical attributes of the data to
determine occupancy, we are however assessing activities that
incur energy consumption [5]. While NILM has focused on
disaggregating loads by supervised learning through ON-OFF
events [6], state detection for modeling and maintaining ap-
pliances’ signatures [7], [8], spike detection [9] or an analysis
of the different appliances patterns [10], determining when
an appliance is active, often relies on using a predefined
threshold [11]. Activity recognition in households can be
assisted through sensor deployment in households [12]–[15]
or WiFi signatures [16]. When real-life deployments were not
possible, prior work used simulated power traces for investi-
gating human activities in households [17]–[19]. Attempts at
using existing publicly released datasets to identify appliances
that are used in conjunction and the flexibility of their usage
in households have utilized the REDD dataset to support their
analysis but have used predefined thresholds for determining
when the appliances were on ON or OFF [20].

Our approach attempts to tackle the known limitations of
current eco-feedback systems, which focuses on increasing
efficiency by raising end-user awareness of how their actions
impact the use of energy. Our previous research [21] showed
that energy disaggregation strategies, commonly used in eco-
feedback systems, are overwhelming for most users, as they
lose interest and show relapsing behaviors in their energy
conservation actions. From the initial challenge of creating
effective low-cost disaggregation strategies we faced the new
problem of generating meaningful strategies to re-aggregate
consumption data that could effectively lead to long-term
sustainable energy conservation practices in domestic environ-
ments.

III. METHODOLOGY

Using only electrical loads (no side information, nor ground
truth), it is necessary to evaluate how to differentiate baseline
consumption that can be considered as noise, from human-
triggered actions. While it would be possible to handpick a
threshold to decide when the appliance is powered on and
serving a human activity, such a process would be done
arbitrarily and would not be generalizable given the multitude
of brands and models in consumer electronics and how they
change and evolve due to technological advances. To this
end, we developed an automated way of deciding when an
appliance reaches a power level high enough, such that it
can be regarded as being used by a human being. This
requires considering each household separately and learning
from the specificity of each trace. Such method relates to
image thresholding, an essential method for isolating objects
or other relevant information in digital images [22].

A. State Estimation

We consider two types of power traces, namely appliance-
level data (single appliances), and circuit-level data (aggre-
gated readings recorded by instrumenting circuits at the room
level, or obtained from a power strip). We refer to both as
appliances from now on. We explain how different power
levels are linked to the appliance’s state and its utilization.

Since a human being is not activating the appliances
throughout the day, we can distinguish between an idle state
(off / stand-by mode, typically low power levels) and an
active state (when the residents are powering it on or actively
interacting with it). We notice, for example, in the case of
a washing machine, that several mechanisms allow running
different washing programs and cycles throughout its time
of use (soaking, spinning, etc.). In the case of data being
collected at the circuit level, we could expect to observe
different devices (lights, smaller consumer electronics) being
turned on. Each mode of functioning can be related to the
internal state of an appliance in the case of single appliances or
to different electrical devices being switched on in the case of
circuit level data and operating at different power levels [23].
So, we rely on this to suggest that different states in the use of
an appliance are linked to different levels of power. Following
this idea, we want to observe the relationships between power
levels in the distribution of the power measurements of an
appliance.

Although we intend to discover activities in a data-driven
manner, i.e., without a-priori knowledge, nor human labeling,
we have in mind for the time-being high level activities
(such as cooking, cleaning, etc.). This means that we do
not dwell into the intricacy of the different stages involved
in an activity (in the case of cooking: cleaning vegetables,
heating ingredients, eating, etc.). Thus, if we consider a power
strip in the kitchen and its respective power readings, the
transitions in the traces might be due to smaller appliances
being powered on (kettle, mixer, etc.). However, since, they
are not disaggregated, they cannot be labeled and cannot be
directly used. This is why we focus on the overall duration of
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the interaction with an appliance, not differentiating between
all the stages and sub-activities it might involve, thus we only
consider two appliance states, i.e., idle or active.

B. Gaussian Mixture Model

We model the distribution of power levels by approximating
it with a Gaussian Mixture Model (GMM) [24]. A GMM
is a probabilistic model that assumes that the data points
under consideration are generated from a mixture of a finite
number of Gaussian distributions. The estimation of the means
and covariances that define the Gaussians is obtained by
achieving the maximum likelihood of the mixture through
the Expectation-Maximization algorithm (also known as EM).
We refer the reader to Section 6.8 and Chapter 8 of [25]
for a formal definition of the GMM and the EM algorithm
respectively.

The different modes of an appliance’s power distribution can
be attributed to the different internal states of the appliance or
to the sequence of appliances being activated in the case of
circuit-level data. Given that most of the appliances operate
at low power levels during their idle period, the idle state
can be identified as the first set of correlated measurements.
Thus, we locate the point that lies in the first valley of the
Gaussian mixture (the first Gaussian identified by its mean at
µ1 represents the idle status, while starting from the second
Gaussian centered at µ2, the appliance is considered in use).
We define the bottom of the valley as the minimum of the
distribution between the first and the second Gaussians as in
Equation 1 for p being the multimodal distribution modeled by
the GMM. In the case where the GMM overfits close small
peaks, we merge those peaks and identify µ1 as the largest
mean in the set of adjacent peaks.

argmin
µ1≤x≤µ2

p(x) (1)

We propose GMMthresh as the procedure to determine the
best GMM fit for an appliance’s distribution and to locate the
threshold between the first two modes of the distribution as
can be seen in Algorithm 1.

IV. EMPIRICAL EVALUATIONS

A. Datasets

The Pecan Street dataset (http://www.pecanstreet.org/) orig-
inally comprised 239 monitored households mostly located in
Texas. Their aggregate power consumption and disaggregated
load readings are provided at a rate of once every minute and
span from January to May 2014. While 70 different types of
appliances are recorded, there are at most 22 actively moni-
tored circuits per household. Appliances with larger ranges of
consumption are for example ovens, dishwashers or furnaces.

We leverage the wisdom of the crowd by using expert
annotated data from the Pecan Street dataset through our
CAFED platform (https://cafed.inf.ethz.ch). This tool allows
us to select and display power time series dynamically to users
that are familiar with the energy domain and have the required
knowledge for discerning when an appliance is active from

Algorithm 1 GMMthresh

Input:
Set of points X = {x1, ..., xN}
Maximum numbers of Gaussians in the mixture M

Output:
The threshold T

1: k ← 1
2: minBIC ←∞
3: bestGMM ← NULL
4: T ← NULL
5: while k ≤M do
6: model← GMM(X, k)
. Determine the Gaussian Mixture Model
GMM for X and k number of Gaussians

7: if model.BIC < minBIC then
8: minBIC ← model.BIC
9: bestGMM ← model

10: k ← k + 1

11: µ← sort(bestGMM .means)
. Sort the means in ascending order

12: T ← argminµ1≤x≤µ2
bestGMM .p(x)

. Find the valley between the first two means

13: return T

when it is idle by looking at its power trace. The user can then
interact with the platform and highlight portions of the time
series where the appliance is active. The expert annotated data
are collected through the platform and made available to other
researchers in the community. Using this expert crowdsourcing
method, over 4500 daily time series have been collected so far
and we believe that the framework could be extended to other
publicly available datasets [26].

B. Parameter selection

Our algorithm considers one month of data per appliance
(to minimize the impact of weather) and to ensure that
enough data are available (some appliances might not be
used frequently on a weekly basis). The readings’ distribution
can be represented by a histogram of the different power
measurements, where the modes coincide with Gaussians and
the peaks with the Gaussians’ means. We observe for each
month that some power level readings amount to thousands of
occurrences, while the magnitude of other representatives is
in the order of hundreds to a few instances as in Figure 1.

Therefore, the data are scaled to lessen the order of mag-
nitude between the measurements, in particular the lower
measurements, since the appliance is expected to be mostly in
idle mode. This amplifies all candidate peaks (Gaussians) with
regards to the more prominent low power peaks. The scaling
of the histogram power distribution consists in selecting for
each bin i, the quantity ni of power measurements in the bin
and to convert it to a logarithmic scale, thus in the order of
C ∗ log(ni + 1), where C is a constant. The rescaling of the
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Fig. 1: Histogram (in log scale) of the monthly power distri-
bution for dishwasher1, where low power measurements are
more represented.

density function amplifies all candidate modes, while reducing
the prominent ones. Additionally, C allows small peaks to
be identified by the GMM by ensuring that enough data are
identified. It is set to the sample size as defined in Equation 2,
where zα

2
is the z-score for a predefined confidence interval,

σ the standard deviation of the sampled data and E the error
margin. We evaluate the manually labeled ground truth data
obtained through the CAFED platform and determine the
standard deviation of the different appliances and households
for the active data. This value does not vary significantly
across the annotated data and is roughly 200 W. For this
purpose, we select this value for σ. For a confidence interval
of 95%, the z-score is defined as 1.96. We target an error
margin of 5 W for the thresholds and thus, E is set at 5. In
this configuration, we set C = 6147.

C = (
zα
2
∗σ

E )2 (2)

We use a parametric implementation for the GMM from
Matlab. The number of Gaussians to be fit to the mixture
model is used as an input parameter. The determination of the
best fitting model relies on the Bayesian Information Criterion
as defined in Equation 3, where k represents the number
of parameters to be estimated (in our case the number of
Gaussians to be fitted), N the sample size and likelihood
the likelihood function to be maximized. We select the best
model by choosing the one with the lowest BIC value, where
k represents the number of Gaussians in the mixture. Addi-
tionally, we evaluate the impact of binning the data (5 W, 10
W), i.e. grouping continuous values in each bin and sampling
values from each bin according to the previously defined log
scaling.

BIC = −2 · log(likelihood) + k · log(N) (3)

C. Evaluation

The evaluation is performed by using January data to
determine the threshold for the active state for a set of 8
monitored appliances combining both single appliances and
circuits as can be seen in Table I. From the CAFED dataset,
we use the first week of February to evaluate the thresholds

TABLE I: Selected appliances and their categories

Appliance Category

bathroom1 Circuit
clotheswasher1 Single Appliance

dishwasher1 Single Appliance
kitchen1 Circuit

light_plugs1 Circuit
livingroom1 Circuit
microwave1 Single Appliance

oven1 Single Appliance

determined for the selected appliances for 10 households.
Additionally, to evaluate the performance of the algorithm over
time and show the effect of the input data in determining the
threshold, we select one household where the thresholds for
the appliances are computed for the first 4 months and use the
subsequent first week of the following month as testing data.
The available input data for the GMM is shown in Table II.

We compare the performance of the GMM thresholding
to two arbitrary thresholds, i.e. 0 W, which can be used in
the case where the baseline is zero and 50 W, which can be
considered as an educated guess for detecting most of the
major appliances [11] and taking into account the standby-
power of most consumer electronics devices [27], [28].

We score the different parametrizations by using common
information retrieval scores as follows. The precision as
defined in Equation 4 measures the fraction of data points
that were actually annotated as active against all data points
that the algorithm determined to be active. The recall as in
Equation 5 measures the proportion of data points that the
algorithm determined to be active in comparison with the
actual number of available active points. Its limitation relies in
the fact that a perfect recall score can be achieved by deciding
that all data points should be considered as active. This is
why, another common score is the F1 score as in Equation
6, which combines both previous measurements and balances
their effect. Additionally, we define a score sH as in Equation
8 based on the Hamming distance as defined in Equation 7.

precision = TP
TP+FP (4)

recall = TP
TP+FN (5)

F1 score = 2 · precision∗recallprecision+recall (6)

dH(a, b) =

n∑
i=0

a(i)⊕ b(i) (7)

sH = 1
N

N∑
j=1

dH(aj , b) (8)

The evaluation is performed by determining the thresholds
in January and evaluating them against the annotated ground
truth of the first seven days of February. We however dis-
tinguish two cases in the handling of the annotated ground
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TABLE II: Appliances per household

household_id bathroom1 clotheswasher1 dishwasher1 kitchen1 light_plugs1 livingroom1 microwave1 oven1

6910 Yes No Yes Yes Yes Yes No No
1632 Yes Yes Yes No Yes No Yes No
5568 Yes Yes Yes No Yes No Yes Yes
2974 Yes Yes Yes Yes No No Yes Yes
9922 No Yes Yes Yes Yes Yes No Yes
9737 No Yes Yes No No No Yes Yes
7982 No Yes Yes No No No Yes Yes
8142 No Yes Yes Yes No No Yes Yes
8197 No No Yes No No No Yes Yes
8669 Yes Yes Yes Yes No Yes Yes Yes

TABLE III: GMM parametrization: selected configuration 15 GMM, no binning (higher is better for the precision, the recall
and F1 score and lower is better for sH)

score gmm bin bathroom1 clotheswasher1 dishwasher1 kitchen1 light_plugs1 livingroom1 microwave1 oven1 avg std

10 1 1.000 1.000 1.000 0.981 1.000 0.992 1.000 1.000 0.997 0.007
10 5 1.000 0.994 1.000 0.981 0.999 0.841 1.000 1.000 0.977 0.055
10 10 1.000 0.999 0.954 0.944 0.999 0.855 0.902 1.000 0.957 0.055
15 1 1.000 1.000 0.999 0.981 1.000 0.992 1.000 0.917 0.986 0.029
15 5 1.000 0.994 0.998 0.981 0.999 0.841 0.999 1.000 0.976 0.055

prec.

15 10 0.804 0.883 0.953 0.944 0.999 0.855 0.902 1.000 0.918 0.069

10 1 0.849 0.806 0.774 0.819 0.622 0.888 0.803 0.840 0.800 0.080
10 5 0.861 0.893 0.826 0.803 0.820 0.888 0.685 0.716 0.812 0.076
10 10 0.862 0.894 0.850 0.916 0.893 0.955 0.697 0.707 0.847 0.095
15 1 0.861 0.807 0.824 0.819 0.821 0.888 0.805 0.842 0.833 0.029
15 5 0.861 0.893 0.849 0.820 0.820 0.888 0.806 0.840 0.847 0.032

recall

15 10 0.993 0.900 0.869 0.916 0.823 0.955 0.818 0.837 0.889 0.064

10 1 0.892 0.875 0.857 0.885 0.699 0.935 0.878 0.900 0.865 0.071
10 5 0.898 0.931 0.889 0.874 0.896 0.837 0.763 0.797 0.861 0.057
10 10 0.899 0.934 0.873 0.923 0.937 0.884 0.690 0.792 0.866 0.085
15 1 0.898 0.875 0.888 0.885 0.899 0.935 0.879 0.875 0.892 0.020
15 5 0.898 0.931 0.902 0.886 0.896 0.837 0.879 0.900 0.891 0.026

F1

15 10 0.804 0.829 0.883 0.923 0.898 0.884 0.807 0.898 0.866 0.046

10 1 6.171 11.625 13.371 109.000 89.190 50.524 13.125 7.762 37.596 40.823
10 5 4.257 5.179 10.643 119.971 48.667 268.286 27.982 10.000 61.873 91.927
10 10 4.086 5.000 12.229 70.771 22.381 149.429 28.571 10.429 37.862 49.981
15 1 4.257 11.607 11.000 109.000 43.762 50.524 12.911 13.929 32.124 35.311
15 5 4.257 5.179 10.200 108.343 48.667 268.286 12.768 7.762 58.183 92.098

sH

15 10 282.314 46.768 11.429 70.771 47.619 149.429 13.232 7.786 78.668 94.378

truth data. In the fetching process of dispatching curves to be
annotated by our contributors, we enforce majority voting, i.e.
each curve should be annotated by 3 users and for each data
point, the most frequent annotation is chosen (2 are necessary
in this case). In the case where 2 annotations per data point
are obtained, annotators could diverge on some annotated
points. This is why in the latter, we evaluate the precision,
recall and F1 score on points where the annotations concord,
while the Hamming score consists on a weighted average of
the individual annotations provided by each annotator as in
Equation 8.

D. Results

As can be seen in Table III, we compute the average scores
per appliance and per household as defined in subsection IV-C.
Then, we combine the scores obtained for all appliances in
each household by averaging them to evaluate the model’s
predictive power. The best approximation for the power distri-
bution should be such that its modes are fitted by the Gaussians
determined by GMMthresh. This means that the best scores

should be achieved, i.e., higher precision, recall and F1 score
and lower Hamming score sH. Two parameters are evaluated:
the number of Gaussians in the model and the effect of the
binning (or rounding) of the power measurements.

We can see from Table III that a configuration allowing
to search for more Gaussians fits the power distribution
more closely. The rounding effect is to reduce the effect of
neighboring modes, allowing to reduce their overfit. However,
aggregating measurements also reduces the accuracy of the
thresholding when modes are adjacent, especially in the case
of the largest tested bin size (10 W). This is particularly
noticeable for appliances whose states operate at a more
fine-grained power scale. Overall, the best configuration that
minimizes the Hamming score (the least differences between
the binary output from the GMM and the annotated data) and
maximizes the F1 score consists in modeling 15 Gaussians and
not binning the data.

The outcome of the algorithm can be seen in Figure 2 in
the case of dishwasher1 (single appliance) and of livingroom1
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(a) Overlay of a histogram and its GMM approximation
for livingroom1 (circuit-level data). Underlying Gaussians in
dashed lines.
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(b) Overlay of a daily power trace and binary decision (idle
below /active above the threshold line) for livingroom1

(c) Overlay of a histogram and its GMM approximation for
dishwasher1 (single appliance data). Underlying Gaussians
in dashed lines.

(d) Overlay of a daily power trace, and binary decision (idle
below /active above the threshold line) for dishwasher1

Fig. 2: Outcome of the GMM for livingroom1 (circuit-level data) and dishwasher1 (single appliance). In (b) and (d), power
below the threshold is considered to be in the idle state, and in the active state otherwise.

(circuit / room). In both cases, as can be seen in the respective
test (annotated) time series in Figures 2d and 2b, 50 W would
not highlight the smaller power measurements (the ramping
up and the ramping down of the device) in the case of
dishwasher1, while in the case of the livingroom1, the baseline
is above 50 W. If the baseline level is close to the arbitrarily
chosen threshold (for testing purposes it was set to 50 W), the
decision for livingroom1 would be to classify it erroneously
as being active throughout the day.

We compare the performance of GMMthresh in terms of the
F1 score and Hamming score sH of the selected model against
the usage of 50 W and 0 W as thresholds. Figure 3 shows
that GMMthresh performs steadily well for all appliances and
consistently outperforming the 0 W threshold. It outperforms
the 50 W threshold in all cases, except for kitchen1 and
light_plugs1. From Table III, the other scores’ performance
similarity is linked to the fact that the determined thresholds
lie generally below 20 W as can also be seen across households
in Figure 6a. dishwasher1 is however better detected by the
GMM and the 50 W thresholds as the determined thresholds
are more spread than in the case of clotheswasher1 as can
be seen in Figure 6a. microwave1 and oven1 show the worst
performance for the 0 W threshold as low power measurements
(< 10 W) are erroneously detected as showcasing human
activity.

In the case of circuit-level data, we have seen that when
the baseline is above 50 W as in Figure 2b, the appliance

is considered active during the whole day. The baseline can
be attributed to consumer electronics for entertainment in the
case of livingroom1 that remain in standby mode and are
thus not voluntarily powered on to be used by the residents.
The predictive power per household combines the scores for
all appliances belonging to each household. As can be seen
in Figure 4, when combining the previous observations, the
GMMthresh performs better overall. While all households
are single-family homes, the performance varies across the
households due to the set of appliances available and the
residents’ lifestyles as can be seen in Figure 6a.

We expect that some appliances are used less frequently
than others (for example oven1). Since the determination of
the threshold through GMMthresh depends on the input data,
we show the scores combined from the thresholds computed
monthly for January through April for household 6910 in
Figures 5. Throughout those 4 months, the GMM maintains
its prediction power close to the 0 W and above the 50 W
thresholds and outperforms both static thresholding methods
in the case of livingroom1. As can be seen from Figure 6b, the
determined thresholds do not vary significantly for appliances
that are used regularly (such as bathroom1 or kitchen1).
dishwasher1 and light_plugs1 show the most variance. Since
the method depends on historical data, it is to be expected that
it requires enough data to estimate the power distribution of
an appliance.
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Fig. 4: Scores (F1 score and Hamming score sH) overview per household
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V. CONCLUSIONS AND FUTURE WORK

In this work, we introduced an automated way of deter-
mining when an appliance is activated by a human being
by filtering out baseline noise from the readings and by
looking at the distribution of the power measurements with
consistently high accuracy. Our methods performed better than
the generally accepted best guess thresholds and achieve an F1
score score of about 0.9 for all appliances that were evaluated.

Having now obtained binary vectors of data, we intend to
consider daily time windows and infer patterns of appliances
being used conjointly and derive temporal rules. In a real-life
deployment, to mitigate the fact that the thresholds depend

on the available data (the appliances have to be used by the
households residents), the accuracy could be improved by
developing an online version of the algorithm with a decay
factor for forgetting past thresholds and balancing with newly
evaluated thresholds.

We believe that our approach for automatically detecting
changes between the active and idle states of appliances could
lead to important and practical applications that move beyond
traditional eco-feedback systems and anticipate distributed
micro-generation scenarios leading to important changes in
energy sustainability and ultimately the utility business. To this
end, we anticipate to provide a combination of (i) actionable
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Fig. 6: Thresholds per appliance for all households and details for household 6910

recommendations for energy conservation including those that
take advantage of the availability of renewable sources and
new battery technologies, (ii) suggesting novel approaches for
in-house automation that could leverage smart appliances and
grid supply / demand balance.
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