
Rendezvous Layer Protocols for

Bluetooth-Enabled Smart Devices �

Frank Siegemund and Michael Rohs

Distributed Systems Group, Institute of Information Systems, Swiss Federal Institute
of Technology (ETH) Zurich, 8092 Zurich, Switzerland

{siegemun|rohs}@inf.ethz.ch

Abstract. Communication platforms for ubiquitous computing need to
be flexible, self-organizing, highly scalable and energy efficient, because in
the envisioned scenarios a large number of autonomous entities communi-
cate in potentially unpredictable ways. Short-range wireless technologies
form the basis of such communication platforms. In this paper we inves-
tigate device discovery in Bluetooth, a candidate wireless technology for
ubiquitous computing. Detecting new devices accounts for a significant
portion of the total energy consumption in Bluetooth. It is argued that
the standard Bluetooth rendezvous protocols for device detection are not
well suited for ubiquitous computing scenarios, because they do not scale
to a large number of devices, take too long to complete, and consume too
much energy. Based on theoretical considerations, practical experiments
and simulation results, recommendations for choosing inquiry parameters
that optimize discovery performance are given. We propose an adaptive
rendezvous protocol that significantly increases the performance of the
inquiry procedure by implementing cooperative device discovery. Also
higher level methods to optimize discovery performance, specifically the
use of sensory data and context information, are considered.

1 Introduction

Ubiquitous computing [10, 11] envisions that information technology is present
throughout the physical environment, integrated in a broad range of everyday
objects. Thereby, information technology becomes omnipresent but at the same
time also invisible to users. Everyday items are augmented with self-awareness
and awareness of their surroundings in order to provide new functionality and
novel interaction patterns.

A first step towards this vision is to attach small computing devices to ev-
eryday objects. Smart things sense their surroundings and cooperate with one
another. Information processing takes place autonomously in the background,
unsupervised by human beings. To collect information about their surroundings,

� Part of this work was conducted in the Smart-Its project, which is funded by the
European Commission (contract No. IST-2000-25428) and the Swiss Federal Office
for Education and Science (BBW No. 00.0281).

smart artifacts need to be equipped with sensors for various physical parame-
ters. To cooperate with other entities, e.g. to distribute collected sensor data
or to use services offered by other entities, smart artifacts need to be able to
communicate.
The communication of smart objects poses several challenging problems: the

communication technology must be unobtrusive; the scarce radio resources must
be used effectively in order to achieve scalability; communication must hap-
pen without mediation, spontaneously and without administration; previously
unknown devices have to be discovered automatically; a wide range of commu-
nication patterns and traffic volumes must be accommodated for; and the least
energy possible must be used.
In the Smart-Its project [17] small computing devices – so-called Smart-

Its – were developed that are attached to everyday items providing them with
collective awareness and supporting intelligent collaborative behavior. As a com-
munication platform we investigate low-power fixed-frequency modules as well
as Bluetooth [5], which is a frequency-hopping system. Fig. 1 shows a Smart-It
equipped with a Bluetooth module and an attached sensor board [13].

pluggable
sensor
board

Bluetooth
module

Atmel micro-
controller

Fig. 1. A Bluetooth-enabled Smart-Its prototype

One reason for using Bluetooth in the Smart-Its project is that frequency-
hopping as a spread-spectrum technique offers higher robustness and scalability
than fixed-frequency systems. Smart-Its are designed to operate in areas with
dozens of devices in range and are going to be equipped not only with standard
sensors for temperature and acceleration but also with more data intensive sen-
sors such as low resolution cameras. Hence, scalability in terms of number of
devices in communication range and volume of data traffic is crucial.
The issue we focus on in this paper is the discovery of new devices, which

is a necessary task for each device in an ad hoc network. Device detection is
an essential part of the rendezvous layer. The challenge is to find all potential
communication partners present in communication range using the shortest time
and the least amount of energy possible. This issue is critical if a huge number
of devices are present as in the scenarios envisioned. Although Bluetooth seems
to be a promising technology for ubiquitous computing, the insufficient scalabil-

ity and high energy consumption of its rendezvous layer limit its applicability.
While investigating Bluetooth, we found that the Bluetooth modes for device
detection – Inquiry and Inquiry Scan – consume significantly more energy
than normal receive and transmit modes. For the modules used in the Smart-Its
project, energy consumption in Inquiry mode is approximately twice as high as
in transmit mode [12, 14]. Therefore, our goal in this paper is to reduce the en-
ergy consumption of Bluetooth’s rendezvous layer during device discovery, while
at the same time increasing its scalability. This is achieved through appropriate
settings for the inquiry parameters, an adaptive protocol for cooperative device
discovery, and the utilization of context information.
Due to a limited number of available Bluetooth modules and their restricted

functionality, the performance evaluation of Bluetooth’s rendezvous layer and of
the proposed adaptions are based on simulation results with the Network Simu-
lator (ns-2) [15] and BlueHoc [16], an open-source Bluetooth simulator provided
by IBM. Considerable extensions of BlueHoc were necessary to carry out the
simulation experiments described in this paper.
The remainder of the paper is structured as follows: Section 2 motivates

the need for a rendezvous layer in ad-hoc networks in general. Section 3 intro-
duces the Bluetooth inquiry procedure in particular, while section 4 evaluates its
performance in terms of time to complete, energy consumption, and scalability.
Section 5 discusses how to set the Bluetooth inquiry parameters in order to opti-
mize performance. In section 6 we present an adaptive rendezvous layer protocol
that optimizes discovery performance in settings with many devices present. In
section 7 several possibilities for the utilization of context information in device
discovery are explored. We conclude with a general judgement of the Bluetooth
discovery process and give some suggestions for improvements.

2 The Rendezvous Layer

In mobile ad hoc environments of smart devices, units initially posses no in-
formation about nearby devices, and no centralized instance exists where de-
vices can acquire information about their environment. Therefore, protocols are
needed that provide energy-efficient means for detecting new devices and enable
peer communications in mobile environments. The rendezvous layer contains
such protocols. A rendezvous layer for fixed-frequency systems introduced in [4]
provides a mechanism for node discovery using a beaconing approach and imple-
ments power saving meachnisms that allow units to be put in sleep modes be-
tween communication periods. Our approach to the rendezvous layer is different
in that we concentrate on Bluetooth’s device discovery and try to minimize power
consumption by minimizing the time units have to stay in power-consuming de-
vice detection modes. Scheduled rendezvous are not an issue of this paper.
The rendezvous layer enables devices to communicate with each other by

helping them to find potential communication partners. The actual data traffic
after connection establishment, however, does not flow through the rendezvous
layer. The term “layer” might therefore be misleading, but it emphasizes that

Fig. 2. Communication platform architecture for smart devices

the results of rendezvous layer protocols are a precondition for communication
and that every mobile node generally needs to use rendezvous protocols to be
able to connect to other devices.
Fig. 2 shows a possible communication platform architecture for smart de-

vices. The actual position of the rendezvous layer strongly depends on the con-
crete design. It is possible that it reaches down to the hardware layer, e.g. when
low-power RF detection circuits are used to detect other devices. For fixed-
frequency systems, [4] distinguishes between client and server beaconing. In
the envisioned ubiquitous computing application scenarios there are no fixed
client/server roles. Hence, it seems advantageous to distinguish between dynam-
ically assigned roles such as service provider and service consumer. In general
each device acts both as service provider and service consumer.
The rendezvous layer for frequency hopping systems is more complicated

than for fixed-frequency solutions. This is mainly due to an initial frequency
discrepancy between devices. Frequency hopping systems also result in a much
higher energy consumption of the rendezvous layer compared to fixed-frequency
systems. In Bluetooth, the rendezvous layer mainly consists of the Inquiry and
Inquiry Scan procedures.

3 Bluetooth’s Inquiry Procedure

The Bluetooth standard introduces an Inquiry procedure for device detection
and a Page procedure for connection establishment. Both are asymmetric pro-
cesses initiated by the unit that wants to collect device information or create a
connection. The initiating unit spends significantly more energy than the unit
that is inquired or paged, because it stays in Inquiry or Page mode for a long
time whereas the other device enters a scanning mode only periodically for short
time intervals. The Page and Inquiry procedures resemble each other in that
they both have to overcome an initial frequency discrepancy between devices.
However, the paging unit has an estimate of the scanning unit’s current clock
which was acquired during a preceding inquiry.

During the inquiry process, the unit that wants to find devices in communica-
tion range periodically enters the Inquiry state. Devices that want to advertise
their presence and thereby agree to be found by other devices enter the In-
quiry Scan state regularly. Typically, in the envisioned application scenarios
devices enter both states, Inquiry and Inquiry Scan, in certain time inter-
vals. But in order to ensure that two devices find each other, one has to be
in Inquiry and the other in Inquiry Scan state simultaneously. To prevent
devices from synchronizing their inquiry states, the time between the start of
two consecutive inquiries, Tinquiry, has to be randomly distributed in an interval
[Tmininquiry, T

max
inquiry]. Fig. 3 and Tab. 1 show the parameters influencing Bluetooth’s

inquiry procedure.

Unit A

Unit B

Overlapping
inquiry windows

Tw inquiry

Tinquiry

Tw inquiryscan Tinquiryscan

Fig. 3. Important inquiry parameters

The device in Inquiry state broadcasts ID packets on different frequencies
at twice the usual hopping rate. That is, it sends two ID packets in a 625 µs
wide slot, and afterwards listens for 625µs for responses from other devices.
This is repeated for the duration of the entire inquiry window, Tw inquiry, which
is typically in the range of several seconds. There exists a unique inquiry hop-
ping sequence comprising 32 frequencies1 on which an inquirer sends out ID
packets. This sequence is the same for all devices, only the phase within the
sequence is determined by the native clock CLKN of the inquiring unit and
therefore specific for each device. Furthermore, for each 1.28 s the inquiry hop-
ping sequence is divided into two disjunct, consecutive trains A and B, each
containing 16 frequencies. The inquirer needs Ttrain = 10 ms to both send on all
frequencies in a single train and check for potential responses. According to the
Bluetooth specification [5], the frequencies in “a single train must be repeated
for at least Ninquiry = 256 times before a new train is used”. The phase Xp in
the inquiry hopping sequence that determines the frequency at which ID packets
are transmitted is calculated as follows:

Xp = [CLKN16−12+ koffset+(CLKN4−2,0−CLKN16−12)mod 16]mod 32 (1)

1 This paper concentrates on Bluetooth’s 79 hop system because it is applied in the
vast majority of countries in the European Union and in the USA. In case of the
reduced hop system, the inquiry hopping sequence contains only 16 frequencies.

In equation 1, CLKNx−y,z denotes bits x to y and bit z of the inquiring unit’s
native clock. koffset ∈ {24, 8} selects the active train A or B of the inquirer. koffset
is changed after a single train is repeated Ninquiry times. The frequencies within
each train are shifted by one phase every 1.28 s, since after this time CLKN16−12
changes. CLKN has a resolution of 312.5 µs. (CLKN4−2,0−CLKN16−12)mod 16
determines the phase within each train. The expression CLKN16−12 is necessary
to avoid omitting a frequency when CLKN16−12 changes, since this could lead
to a repetitive mismatch between inquiring and scanning unit.

Inquiry

Inquiry Scan

random back-off delay

2.56 s

Train A Train ATrain B Train B

Every 1.28 s frequencies
in trains are shifted by 1.

Inquiry Response

ID packets

FHS packet

11.25 ms

Fig. 4. Overview of the inquiry procedure

The device that agrees to be found enters the Inquiry Scan state peri-
odically. The time between two consecutive inquiry scans is determined by the
inquiry scan interval Tinqscan. The inquiry scan window, Tw inqscan, specifies the
time a unit stays in Inquiry Scan mode. During that time the unit listens at
a single frequency in the inquiry hopping sequence for ID packets from the in-
quirer. The current phase in the inquiry hopping sequence is determined by its
native clock [5]:

Xp = CLKN16−12. (2)

The Bluetooth standard defines Tw inqscan ≥ Ttrain = 10 ms in order to
ensure that a frequency synchronization between inquiring and scanning unit
takes place when the scanning frequency is in the currently active train of the
inquirer. Also, the condition Tinqscan ≤ 2.56 s must hold. When the unit in In-
quiry Scan mode receives an ID packet, it leaves the Inquiry Scan mode for
a random backoff delay which is evenly distributed between [0, . . . , 639.375]ms.
This reduces the probability that units simultaneously transmit response pack-
ets on the same frequency. Afterwards, the unit enters Inquiry Response state
and again listens for ID packets of the inquiring unit. When the unit in Inquiry
Response state achieves frequency synchronization, it transmits a packet con-
taining device information such as its current clock timing and its Bluetooth
device address to the inquirer.

4 Performance of Bluetooth’s Inquiry Procedure

A characteristic feature of ubiquitous computing settings is the presence of many
highly autonomous, mobile devices with distinctive resource restrictions in a
relatively small area. The aspects of scalability, energy consumption, and device
detection delay are therefore crucial when evaluating Bluetooth’s rendezvous
protocols.

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

R
es

po
ns

es
 p

er
 in

qu
iry

 (
av

er
ag

e)

Number of devices

Tw inquiry = 2.56 s,
without duplicates

Tw inquiry = 2.56 s,
with duplicates

Tw inquiry = 10.24 s,
without duplicates

Tw inquiry = 10.24 s,
with duplicates

Fig. 5. Responses during inquiry subject to the number of devices in range considering
different inquiry windows

According to datasheets [14] and experimental measurements [12], the energy
consumption in Inquiry and Inquiry Scan state is approximately twice as high
as in normal receive and transmit modes. The Bluetooth standard suggests that
devices could enter Inquiry mode for 10.24 s every minute. This means that
Bluetooth devices would spend approximately 17% of their lifetime in Inquiry
mode. Besides an unacceptably high energy consumption, this also leads to poor
performance if many devices are present. Above all, in Inquiry mode a Blue-
tooth unit cannot actively exchange application data with other devices. Fig. 5
shows the average number of responses during inquiry subject to the number of
potential communication partners in range. It indicates that in the presence of
only a limited number of devices practically all units are found, when Tw inquiry
is chosen as suggested in the standard. It also indicates that performance dete-
riorates as the number of devices grows, in that a smaller and smaller portion
of devices are discovered. The reasons are manifold and are discussed in more
detail in the following sections:

– Because of a long random backoff delay, Tw inqscan must be very large when
the scanning unit is supposed to answer more than once during one scan
window. Large scan windows are undesirable because they are repeatedly
blocking the device.

– Since the relative clock differences of Bluetooth units remain unchanged, a
unit tends to answer the same device in consecutive Inquiry Scan intervals
(cf. equations 1 and 2). Fig. 5 shows that the overall number of responses
is sufficiently high, but the same device often answers the same inquirer in
consecutive inquiry scan intervals. This prevents the device from responding
to other devices. Only in Inquiry Response state an offset is added to the
scanning frequency after each response. However, multiple responses during
a single inquiry scan window are only possible when the window is relatively
large, which is undesirable in the envisioned application scenarios.

– Large
Tw inquiry
Tinquiry

values lead to high numbers of overlapping inquiry windows

where the devices cannot find each other.

Regarding scalability and energy consumption the rendezvous layer must be
designed to support inquiry parameter settings such that

– the overall time a unit has to stay in Inquiry and Inquiry Scan modes is
minimized,

– the probability for overlapping Inquiry and Inquiry Scan states is maxi-
mized,

– the probability for overlapping Inquiry modes in different units is reduced,
and

– the time for the frequency synchronization delay between inquiring and in-
quired device is as low as possible.

Decreasing the value of
Tw inquiry
Tinquiry

leads to fewer overlapping inquiry inter-

vals. Since Tinquiry cannot be predetermined but generally depends on sensory
input and application restrictions, one purpose of the rendezvous layer is to de-
crease Tw inquiry, the inquiry window. Small Tw inquiry values reduce the energy
consumption and decrease the number of duplicate responses and overlapping in-
quiry intervals. However, Tw inquiry cannot be decreased arbitrarily. Fig. 5 shows
the average number of devices found during a 2.56 s compared to a 10.24 s in-
quiry window subject to the number of devices in range. In 2.56 s the inquirer
can probe only at a single train, which limits the number of responses. But com-
pared to Twinquiry = 10.24 s, in the presence of many devices fewer duplicate
responses are received, much less energy is consumed, and proportionally more
devices are found. In settings with many devices, increasing Tw inquiry will not re-
sult in the discovery of significantly more devices, because the devices will block
each other. Even with large inquiry windows, in settings with many devices not
all devices in range are found.

5 Inquiry and Inquiry Scan Settings

Device discovery in Bluetooth is performed in the Inquiry and Inquiry Scan
procedures which are controlled by various parameters. These are shown in Fig. 3
and Tab. 1. Tinquiry and Tinqscan denote the interval between the start of two
consecutive inquiries and inquiry scans, respectively. Tw inquiry and Tw inqscan

specify the duration of a single inquiry and inquiry scan, respectively. Nmaxdevices

depends on the memory restrictions of a device in that it restricts the number of
inquiry responses that are processed. As pointed out before, Tinquiry depends on
specific applications and sensory input. Therefore, the rendezvous layer does not
influence Tinquiry and N

max
devices settings. The train repetition number Ninquiry

defines the number of times a single train is repeated by the inquirer before a
new train is used.

Table 1. Inquiry and inquiry scan parameters

Parameter Description

Tinquiry inquiry scan interval
Tw inquiry inquiry window, Tw inquiry ≤ Tinquiry
Tinqscan inquiry scan interval, Tinqscan ≤ 2.56 s [5]
Tw inqscan inquiry scan window, Ttrain = 10 ms

2 ≤ Tw inqscan ≤ Tinqscan
Nmaxdevices maximum number of responses processed in a single inquiry
Ninquiry train repetition number, Ninquiry ≥ 256 (predefined, fixed)

5.1 The Inquiry Scan Window

A suitable value for the inquiry scan window is the minimal setting Tw inqscan =
Ttrain = 10 ms

2. Here, Ttrain is the time period for the inquirer to send at
all Ntrain = 16 frequencies in the active train. Tw inqscan should only be in-
creased when Ninquiry is noticeable smaller than 256 (which is not the case in
Bluetooth), because the inquirer consecutively sends on more than Ntrain fre-
quencies only when it switches between different trains. This happens just every
Ttrain ∗Ninquiry seconds and would not justify the additional time a unit would
have to spend in Inquiry Scan mode.
In an error-free environment, Tw inqscan = Ttrain seems to be the best choice.

However, in ubiquitous computing application scenarios where the probability of
packet loss is relatively high, we suggest to choose Tw inqscan = 2∗Ttrain = 20ms
to ensure that an inquirer can send ID packets at each frequency in its active
train twice. If the ID packet that was sent at the scanning frequency gets lost, the
inquirer can send it again at this frequency. Fig. 6 and 7 show the average number
of devices found during inquiry considering inquiry scan windows of varying
length in an error-free environment. Noticeably more devices are only found when
Tw inqscan is substantially increased, because in this case the probability that a
train switch takes place during scanning is significantly higher. However, since
all connections have to be suspended during scanning, substantially increasing
Tw inqscan is not recommendable. Instead, as Fig. 6 and 7 suggest, decreasing the

2 The definition of the Write Inquiry Scan Activity HCI command says that
Tw inqscan ≥ 11.25 ms.

0

2

4

6

8

10

12

14

4 8 12 16

Tw inqscan = 10 ms
Tw inqscan = 20 ms
Tw inqscan = 320 ms

Tinqscan = 2.56 s,
50 s ≤ Tinquiry ≤ 60 s,
Tw inquiry = 5.12 s

Number of devices

N
um

be
r

of
 r

es
po

ns
es

 (
av

er
ag

e
)

Fig. 6. Average number of devices found during inquiry subject to Tw inqscan and
number of devices in range, Tinqscan = 2.56 s

inquiry scan interval is much more effective regarding both energy consumption
and the number of devices found. Increasing Tw inqscan by a factor of 32 from
10 ms to 320 ms is not as effective as lowering Tinqscan from 2.56 s to 1 s regarding
the number of devices that are found during inquiry and the energy consumed.

5.2 The Inquiry Scan Interval

The inquiry scan interval, Tinqscan, denotes the time between the start of two
consecutive inquiry scans. The condition Tinqscan ≤ 2.56 s must hold. Tinqscan
is chosen such that the overall energy consumption of the whole system of par-
ticipating nodes is reduced. Consequently, the scan interval can be shortened
when in return the inquiry window of other devices can be reduced. Since ev-
ery unit generally attains both inquiry and inquiry scan modes regularly, this
is beneficial for the whole system of smart devices as well as for single units. A
module in continuous Inquiry mode consumes significantly more energy than
in periodic Inquiry Scan mode when the inquiry scan window is sufficiently
small as suggested in section 5.1.

Tinqscan can be used to control the accessibility of single devices. A short
inquiry scan interval entails that the device can easily be found by other devices.
On the other hand, a low value of Tinqscan also means that the device might
respond more often to the same device during consecutive inquiry windows.

In order to decrease the time a unit has to stay in continuous Inquiry mode
it is desirable that the first and second frequency synchronization before and
after the random backoff delay (cf. Fig. 4) take place before a train switch in
the inquiring unit occurs. Since a train switch takes place every Ttrain ∗Ninquiry
seconds, a first approximation for a suitable Tinqscan is

Tinqscan ≤ Ttrain ∗Ninquiry −RBmax − Ttrain (3)

Here, RBmax = 639.375 ms is the maximum random backoff delay. For the
standard settings and Ninquiry = 256 this results to Tinqscan ≤ 1910.625 ms.

0

2

4

6

8

10

12

14

4 8 12 16
Number of devices

N
um

be
r

of
 r

es
po

ns
es

 (
av

er
ag

e
)

Tw inqscan = 10 ms
Tw inqscan = 20 ms
Tw inqscan = 320 ms

Tinqscan = 1.00 s,
50 s ≤ Tinquiry ≤ 60 s,
Tw inquiry = 5.12 s

Fig. 7. Average number of devices found during inquiry considering a different value
for Tinqscan (1.00 s) compared to Fig. 6 (2.56 s)

The above settings ensure that when there are only two devices and one
of them enters Inquiry mode, the inquirer has to stay in inquiry mode for
only 5.12 s (instead of 10.24 s) to find the other device with high probability.
Especially in the presence of many devices it is worthwhile to decrease Tinqscan
further. A lower value than 1910.625 ms leads to a higher energy consumption
for scanning. But on the other hand, Tw inquiry can be reduced to Ninquiry ∗
Ttrain + Tinqscan +RBmax + Ttrain. Furthermore, a device with a short inquiry
scan interval can respond to other devices more frequently.

5.3 The Inquiry Window

The inquiry window, Tw inquiry, denotes the time a unit continuously stays in
Inquiry mode. Since Inquiry is a mode with very high energy consumption,
Tw inquiry should be as low as possible. In settings with a low number of Blue-
tooth devices, a unit might prolong the inquiry window until no new devices are
found for a certain amount of time. However, as shown before (cf. section 4) in
environments with a large number of devices, prolonged inquiry windows make
the rendezvous layer inefficient because of overlapping inquiry windows, high
energy consumption, and decreased accessibility of inquiring devices. Further-
more, even in settings with large inquiry windows it cannot be assured that all
potential communication partners are found.
When equation 3 holds for all devices d ∈ D in communication range, a

good lower bound for the inquiry window parameter would be Tw inquiry =

maxd∈D{(�
Ttrain∗Ninquiry
Tinqscan(d)

� + 1) ∗ Tinqscan(d)} + RBmax, where D is the set of

devices in range and Tinqscan(d) the inquiry scan interval of device d. This set-
ting ensures that without overlapping inquiry windows and only a few devices in
range all potential communication partners can be found with high probability.
A generally appropriate setting for Tw inquiry is Tw inquiry = 2 ∗ Ninquiry ∗

Ttrain = 5.12 s, when Tinqscan and Tw inqscan are selected as recommended in
the previous sections. This enables the inquiring device to probe at frequencies
in both trains for an equal amount of time and provides sufficient time to select

responses. On the other hand the number of duplicate responses is relatively low
and the energy consumption is much lower than for the suggested 10.24 s in the
Bluetooth standard.

However, Tw inquiry = 5.12 s might be a suboptimal choice for environments
with only few devices and is still very energy consuming. The next section deals
with an adaptive protocol for Bluetooth-enabled smart devices that performs well
independently of the number of devices present and further reduces Tw inquiry to
save energy.

6 An adaptive rendezvous layer protocol for cooperative
device discovery

The performance of the standard Bluetooth inquiry procedure is sufficient for
settings with a limited number of devices in communication range. But the per-
formance decreases significantly with a rising number of units. In such environ-
ments only a fraction of the potential communication partners are found – even
when Tw inquiry is high. Unfortunately, large values for Tw inquiry result in many
duplicate responses, overlapping inquiry windows, and poor overall performance
(cf. section 4).

In settings with many devices, it is more appropriate to discover devices in
a cooperative fashion. Cooperative device discovery splits up the task of finding
communication partners between multiple units. One idea is to let only one
or two units per piconet [5] handle rendezvous tasks on behalf of the whole
piconet; another is to utilize inquiry results of other devices that responded
during inquiry. The goal of such measures is to reduce the overall number of
devices that take part in inquiry and the overall time units have to stay in
Inquiry mode in order to discover more devices in less time using less energy.

In the adaptive protocol proposed here, a unit starts inquiry for a certain
time window and accumulates responses from other devices. Although units
do not know how many devices are in range, they can estimate their number
considering the number of devices that responded during the first seconds of an
inquiry. When, after a given time interval, more devices than a predetermined
threshold were discovered, it concludes that many devices are in range, stops the
inquiry, builds up connections to some of those devices, and gets further discovery
information from them. By selecting devices with appropriate clock values, this
can be done in such a way that a large subset of the available devices is covered,
as explained below.

The advantage of this approach is that it splits up the responsibility for
inquiry between different nodes and, more importantly, that the time interval
after which inquiry is canceled when a sufficient number of responses are ac-
cumulated can be very short. In fact, we suggest a value of only 2.56 s. Dur-
ing this interval an inquirer only inquires at frequencies in a single train since
Ttrain ∗Ninquiry ≥ 2.56 s (cf. section 3). That is, in the average case only 50% of
devices in range can be found during the first phase of the protocol. However, the

timing information transferred during inquiry responses enables the original in-
quirer to identify devices that during their inquiries discover a subset of devices
not found by direct inquiry. It might seem that connecting to another device
consumes the energy saved by a shorter inquiry for the paging process – which is
also very energy intensive. But since the timing information of this device were
transferred during a recent inquiry response, connection establishment is almost
instantaneous. The simulation results show that the overall execution time for
the adaptive protocol is only slightly longer than the interval after which the
actual inquiry is stopped.
In the following, the algorithm for the inquirer is depicted. The inquiry

scan settings in participating Bluetooth units should be chosen as described
in section 5. The protocol can be implemented on top of Bluetooth’s Host Con-
troller Interface (HCI) without changing lower layers of Bluetooth. An initial-
ization for all Bluetooth-enabled smart devices should include enabling page
and inquiry scans (HCI Write Scan Enable) and setting the inquiry and page
parameters (HCI Write Inquiry Scan Activity, HCI Write Page Scan Activity).
Furthermore, the page timeout should be chosen as low as possible in order to
prevent a device from paging a unit that left its communication range for a long
time (HCI Write Page Timeout). After sending inquiry responses, units should
enter Page Scan state to ensure fast connection establishment.

BRLP (Bluetooth Rendezvous Layer Protocol)
Input:
Inquiry settings for inquirer: Tinquiry ∈ [Tmininquiry, T

max
inquiry], Tw inquiry, N

max
devices

Time interval for normal inquiry: BRLP timeout
Threshold for device responses: BRLP size
Number of devices to retrieve discovery information from: Nselect

Output:
Bluetooth device addresses and clock settings of devices

ensure(Tmininquiry > Tw inquiry)
inqtimer = random(Tmininquiry, T

max
inquiry)

do forever
if time over(inqtimer) then
responses.delete()
HCI Inquiry(ALL DEVICES, Tw inquiry, N

max
devices)

inqtimer = random(Tmininquiry, T
max
inquiry)

BRLP timer = BRLP timeout
end if

end do

inquiry response event handler(Inquiry Response Event e)
begin
response = e.getResponse()
responses.add(response)
if not time over(BRLP timer) and responses.size > BRLP size then

HCI Inquiry Cancel()
selected responses = responses.select(Nselect)
for all sr in selected responses do
HCI Create Connection(sr)3

end for
end if

end

connection complete event handler(Connection Complete Event e)
begin
get assembled devices(e.connection handle);

end

The suggested protocol decreases the level of confidence in the obtained re-
sults, because they are partially retrieved indirectly from other devices and might
refer to units outside the communication range. This is not a severe problem,
because direct results might also be inaccurate – e.g. obsolete because of mo-
bility – and the algorithm has to deal with uncertain results anyway. Section 7
shows how sensory input can be used to decrease this uncertainty. Also, in order
to inhibit error propagation, a unit is only allowed to pass on discovery informa-
tion that it learned from its own most recent inquiry procedure. A low value for
BRLP size means that only a few inquiry results are available to be transferred
to other devices. This entails that this parameter should be adapted after each
inquiry process. A variation of the described protocol is to carry out normal in-
quiry for a certain amount of time (for example 2.56 s) regardless of the number
of devices found during this inquiry window. When more than a given threshold
of units have been found after this period, connections to some of these devices
are established and discovery information is requested.

To clarify the performance of the adaptive part of the algorithm, Fig. 8
shows the average number of devices found considering a very low value for
BRLP size. It considers only the cases in which after 2.56 s inquiry connections
to other devices are established to request discovery information. From the set of
inquiry results two devices are selected to retrieve further discovery information
from (Nselected = 2). The selection criteria are explained below. The average
total time for the initial 2.56 s inquiry, connection establishment, and transfer
of discovery information from the two selected devices was 3.44 s. Compared
to normal inquiry with Twinquiry = 10.24 s a better performance regarding the
number of responses is achieved, and the time a unit has to stay in inquiry mode
is reduced significantly. Therefore, the adaptive protocol results in substantial
energy savings, enables units to enter energy-saving modes more frequently, and
leaves more time for application specific tasks.

The selection of units to retrieve discovery information from is important for
the performance of the adaptive algorithm. The retrieved discovery information

3 See the definition of HCI Create Connection for the exact sequence of parameters.

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

U
ni

qu
e

re
sp

on
se

s
pe

r
in

qu
iry

 (
av

er
ag

e)

Number of devices

Adaptive protocol,
total responses

Normal inquiry,
Tw inquiry = 10.24s

Adaptive protocol (2nd phase):
transferred device information

Adaptive protocol (1st phase):
2.56s initial inquiry

Fig. 8. Average number of discovery responses accumulated with the adaptive protocol
(Nselected = 2)

is only useful if it contains inquiry results from devices not already found by
direct inquiry. The probability for this is highest, when devices with appropriate
clock offsets are selected. The clock offsets are part of the inquiry results.

0 1 2
3

4

5

6

7

8

9

10

11

12
13

14
15161718

19
20

21

22

23

24

25

26

27

28
29

30
31

CLKN16-12(I)

CLKN16-12(S1) =
CLKN16-12(I) – 8

CLKN16-12(S2) =
CLKN16-12(I) + 7

CLKN16-12(S1)

CLKN16-12(S2)

Fig. 9. Phases covered by different units relative to CLKNI16−12 during inquiry in
train A

When the timeout for the initial inquiry, BRLP timeout, is lower than or
equal to Ttrain ∗ Ninquiry = 2.56 s – which is desirable regarding energy con-
sumption – only the frequencies of a single train are inquired. Let I be the in-
quiring and S a scanning unit that responded to I during the initial inquiry
window. CLKN I16−12 and CLKN

S
16−12 shall be bits 12 to 16 of the native

clock of I and S, respectively. The frequencies at which I inquires and S scans
only depend on CLKN I16−12 and CLKN

S
16−12 (cf. equations 1 and 2). Let the

first active train during inquiry be train A. Then, the phases of the frequen-

cies in the active train are [CLKN I16−12 − 8, . . . , CLKN
I
16−12 + 7] (mod 32).

When CLKNS16−12 ∈ [CLKN
I
16−12 − 8, . . . , CLKN

I
16−12 + 7] during one in-

quiry scan interval this will also be the case during all successive inquiry scan
intervals due to constant clock differences. This is important: because of given
constant clock differences it does not matter when a device enters inquiry state.
It will always find the same devices scanning at frequencies in the same train,
because the frequencies in a train also depend on CLKN16−12. This implies
that I should select a device S to obtain discovery information from, such that
|CLKN I16−12 − CLKN

S
16−12| is maximal.

Fig. 9 illustrates this in the light of a concrete example. The semicircles show
the frequency phases covered by units I , S1, and S2 during inquiry in train A
relative to CLKN I16−12. The inquiry of I results in the discovery of two units,

S1 and S2. The clock offset of S1 is CLKN
S1
16−12 − CLKN

I
16−12 = −8; that of

S2 is CLKN
S2
16−12 − CLKN

I
16−12 = 7. These relative clock differences remain

constant over a longer period of time, although the CLKN16−12 change every
1.28 s, possibly at different times, rotating the halfcircles right. Fig. 9 shows that
S1 and S2 in their inquiries cover frequency phases relative to CLKN

I
16−12 that

are not traversed by I . Units scanning at these phases with a relative distance
larger than 7 or lower than −8 are never found by I , regardless of the current
value of CLKN16−12. Since the clock offsets of S1 and S2 are maximal, they
cover the maximal number of phases relative to CLKN I16−12 not traversed by
I . By transitively selecting devices from the discovery information of S1 and S2
it is possible for I to choose devices that have optimal clock offsets in order to
cover a large area of phases. In the same way that a device Sopt is an optimal
choice for I , I vice versa is an optimal choice for Sopt – the relationship is
symmetric. Therefore in a setting with a large number of devices present, a few
devices can form stable subgroups to cooperatively perform device discovery.
They complement each other, and the whole system as well as individual units
profit in terms of energy savings, number of devices discovered, and shorter
discovery delays.

7 Using sensory input to improve rendezvous-layer
protocol performance

When everyday items are augmented with information processing capabilities
they will provide information about their environment to other devices, thus
enabling collaborative perception of the environment. In the Smart-Its project,
smart devices are equipped with a wide variety of different sensors for physical
parameters like temperature, acceleration, etc. An interesting question is how
sensory data that is accumulated independently from the communication plat-
form can be used to improve rendezvous layer protocol performance. The idea
to take advantage of context information – especially location – in communica-
tion protocols has also been used to improve other protocol layers, e.g. routing
protocols [8].

If sensory input from acceleration or general location sensors are available,
the inquiry parameter settings are adapted when a device moves. Since it is more
probable that a moving device enters a new environment, the inquiry window is
prolonged or the inquiry interval is shortened in order to discover new devices.
In this case only individual devices increase their inquiry window; this does not
lead to a deterioration of the rendezvous layer protocol performance of the whole
system. Alternatively, the inquiry scan interval is reduced to ensure that other
units can access the device faster. In general, all sensory input that could lead to
an increased access to the device could result in the same adjustment of inquiry
setting parameters.

Context information can also be used to implement the select routine in
the adaptive rendezvous layer protocol. The purpose of the select statement
is to choose such devices among all units that responded during inquiry, for
which the uncertainty of transferring obsolete device information is as low as
possible. When no sensory input is available, devices are selected as shown in
the previous section or randomly from the set of devices that already responded
during inquiry. But when context information is available, then it should be
used to select devices that are as near as possible, that inquired at different
frequencies, and that started inquiry most recently. In the Bluetooth 1.1 standard
there exists a link manager protocol (LMP) command to determine the signal
strength to other Bluetooth devices. This information could be used to evaluate
whether the device is suitable to get device information from.

8 Conclusion

The standard inquiry procedure of Bluetooth consumes much energy which is
problematic for communicating smart devices in ubiquitous computing settings.
This paper showed how the standard inquiry parameters can be adapted to
decrease power consumption and increase the scalability of the inquiry proce-
dure. Since typically smart devices perceive their environment through sensors,
we also presented ways for using sensory input to improve the performance of
Bluetooth’s rendezvous layer.

Furthermore, it was pointed out that the scalability of Bluetooth’s inquiry
procedure is not sufficient if many devices are present. As a result from this ob-
servation, an adaptive protocol for cooperative device detection was introduced
that reduces energy consumption and improves scalability for environments with
many devices.

The properties of Bluetooth’s rendezvous layer that have the strongest impact
on device detection delay are a relatively high random backoff delay and the
existence of two separate frequency trains. In terms of the rendezvous layer for
general frequency hopping systems there should be only a single train comprising
all 32 frequencies of the inquiry hopping sequence. Alternatively, Ninquiry could
be reduced to one, and the minimum inquiry scan window should be increased to
20 ms. It is important to note that even with these adaptations the majority of

parameter selection rules and the adaptive rendezvous layer protocol presented
in this paper are still applicable.

References

1. Mattisson, Sven: Low-Power Considerations in the Design of Bluetooth. Interna-
tional Symposium on Low Power Electronics and Design, ISLPED 2000, Rapallo,
Italy, 2000.

2. Salonidis, T.; Bhagwat, P.; Tassiulas, L.; LaMaire, R.: Distributed topology con-
struction of Bluetooth personal area networks. In: Proceedings of INFOCOM 2001,
IEEE, Volume: 3, 2001, pp. 1577-1586.

3. Salonidis, T.; Bhagwat, P.; Tassiulas, L.: Proximity awareness and fast connec-
tion establishment in Bluetooth. First Annual Workshop on Mobile and Ad Hoc
Networking and Computing, MobiHOC, 2000.

4. Girling, Gray; Wa, Jennifer Li Kam; Osborn, Paul; Stefanova, Radina: The Design
and Implementation of a Low Power Ad Hoc Protocol Stack. In: IEEE Personal
Communications, Vol. 4, No. 5, pp. 8-15, October 1997.

5. Bluetooth Special Interest Group: Specification of the Bluetooth System, Core.
Version 1.1, February 2001.

6. Haartsen, Jaap C.: The Bluetooth Radio System. In: IEEE Personal Communica-
tions, February 2000.

7. Gomie, N.; van Dyck, R. E.; Soltanian, A.: Interference of Bluetooth and IEEE
802.11: Simulation Modeling and Performance Evaluation. ACM MSWiM 2001,
The Fourth ACM International Workshop on Modeling, Analysis and Simulation
of Wireless and Mobile Systems 2001, July 2001, Rome, Italy, 2001.

8. Ko, Young-Bae; Vaidya, Nitin H.: Location-Aided Routing (LAR) in Mobile Ad
Hoc Networks. MOBICOM 98, Dallas, Texas, USA, 1998.

9. Feeney, Laura Marie; Nilsson, Martin: Investigating the Energy Consumption of a
Wireless Network Interface in an Ad Hoc Networking Environment. IEEE INFO-
COM 2001, Anchorage, Alaska, April 2001.

10. Mattern, Friedemann: The Vision and Technical Foundations of Ubiquitous Com-
puting. In: Upgrade European Online Magazine, pp. 5-8, October 2001.

11. Weiser, Mark: The Computer for the Twenty-First Century. In: Scientific Ameri-
can, pp. 94-100, September 1991.

12. Kasten, Oliver; Langheinrich, Marc: First Experiences with Bluetooth in the
Smart-Its Distributed Sensor Network. Workshop on Ubiquitous Computing and
Communications. In: Proceedings PACT 2001, October 2001.

13. Moser, Thomas; Karrer, Lukas: The EventCollector Concept, Distributed Infras-
tructure for Event Generation & Dissemination in Ad Hoc Networks. Diploma
thesis, ETH Zurich, March 2001.

14. Ericsson Microelectronics: ROK 101 007 Bluetooth Module Datasheet Rev. PA5.
April 2000.

15. The Network Simulator - ns-2: http://www.isi.edu/nsnam/ns/.
16. BlueHoc, An Open-Source Bluetooth Simulator:
http://oss.software.ibm.com/developerworks/opensource/bluehoc/.

17. The Smart-Its Project: http://www.smart-its.org.

