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Abstract

Location-aware computing has become one of the most publicly visible

results of ubiquitous computing research, with small, low-power GPS

modules being incorporated in an ever increasing number of consumer

devices. While GPS systems work well in outdoor environments, the

limited propagation characteristics of GPS satellite signals require al-

ternative solutions for positioning and navigating inside buildings. Radio

location fingerprinting is one of the most promising indoor positioning

mechanisms as it allows positioning using signal characteristics of exist-

ing wireless communication networks (e.g., a WiFi installation) and thus

requires no dedicated localization infrastructure to be installed. How-

ever, location fingerprinting typically requires a costly setup phase, in

which signal fingerprints are manually mapped to individual locations.

Moreover, since radio signals change and fluctuate over time, map main-

tenance requires continuous recalibration.

In this thesis, we introduce the concept of user-contributed, collabor-

ative fingerprint labeling to address the problems of radio map setup and

map maintenance in location fingerprinting systems. Instead of manu-

ally creating an initial map prior to deployment, we propose a method to

harness the inputs of all users to collaboratively create and subsequently

maintain an accurate map of indoor radio fingerprints. We offer a novel

user interface approach to simplify the solicitation of user-generated la-

bels that rely on labeling long-term measurements, not just second-long

snapshots, and provide algorithms that are able to accurately position a

device based on such user-generated labels.
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To alleviate accuracy degradation caused by signal variation, we in-

troduce a new concept called “asynchronous interval labeling” that ad-

dresses these problems in the context of user-generated labels. By using

an accelerometer to detect whether a device is moving or stationary, the

system can continuously and unobtrusively learn from all radio meas-

urements during a stationary period, thus greatly increasing the number

of available samples. Movement information also allows the system to

improve the user experience by deferring labeling to a later, more suit-

able moment. Experiments with our system show considerable increases

in data collected and improvements to inferred location likelihood, with

negligible overhead reported by users.



Zusammenfassung

Durch den immer weiter verbreiteten Einsatz von kleinen, energiespa-

renden GPS-Modulen in einer Vielzahl von mobilen Geräten sind orts-

bezogene Anwendungen, die von der aktuellen Position eines Benutzers

Gebrauch machen, immer mehr in den Fokus der wissenschaftlichen For-

schung gerückt und wurden so zu einem der meistbeachteten Themen

im Bereich Ubiquitous Computing. GPS-Module haben allerdings den

inhärenten Nachteil, eine direkte Sichtverbindung zu Satelliten zu benöti-

gen und funktionieren daher nicht, oder nur sehr schlecht, innerhalb von

Gebäuden. Für den Einsatz innerhalb von Gebäuden ist also eine andere

Lokalisierungsmethode nötig. Um dieses Problem zu lösen, gilt vor allem

die Methode der Funkortung mittels “Fingerprinting” als sehr vielver-

sprechend, da diese Methode Funksignale von bereits vorhandenen, draht-

losen Kommunikationsnetzen wie z.B. WiFi nutzen kann. Solche Systeme

haben allerdings den Nachteil, dass sie typischerweise eine manuelle Er-

fassung der “Fingerprints”, also der an einem Standort charakteristischen

Funksignale, benötigen. Diese Arbeit ist zeitaufwendig und teuer. Er-

schwerend kommt hinzu, dass sich Funksignale über die Zeit ändern, was

ein erneutes Erfassen nach sich zieht.

In der vorliegenden Arbeit stellen wir ein neuartiges Konzept des Fin-

gerprinting vor, welches auf dem Prinzip der benutzergestützten, kollabo-

rativen Erfassung von Funksignalen basiert. Anstatt die Abbildung von

Funksignal-Charakteristik zu Ort manuell zu erfassen, schlagen wir vor,

die Eingabe den Benutzern zu überlassen. Ohne zusätzlichen Aufwand

für den Benutzer kann dieser damit während der Benutzung des Sys-
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tems fortlaufend neue Messungen zur Abbildung beitragen. Um diese

Eingabe für die Benutzer so einfach und unaufdringlich wie möglich zu

gestalten, schlagen wir vor, die Funksignalmessungen, statt wie bisher

während wenigen Sekunden, im Hintergrund und über mehrere Minuten

zu machen.

Um das Problem der durch Signalschwankungen verursachten Ab-

nahme der Genauigkeit zu schmälern, stellen wir ein neues Konzept vor,

das wir “asynchronous interval labeling” nennen. Dieses Konzept erlaubt

es, den Benutzer erst dann um die Zuweisung eines Funksignals zu einem

Ort zu bitten, wenn die Wahrscheinlichkeit, ihn nicht bei einer aktiven

Arbeit zu stören, am grössten ist. Hierzu verwenden wir den in vielen

mobilen Geräten vorhandenen Beschleunigungssensor um festzustellen ob

der Benutzer sich fortbewegt oder stationär an einem Ort bleibt. Dadurch

weiss das System, wann der Benutzer an ein und demselben Ort bleibt

und kann so im Hintergrund weitere Funksignalmessungen machen. Das

Resultat ist eine Abbildung, welche eine um Grössenordnungen höhere

Anzahl an Messungen enthält. Dies wiederum führt, in Kombination mit

den von uns entwickelten Algorithmen, zu einer gesteigerten Genauigkeit

und Präzision.
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The most exciting phrase to hear in science, the one that heralds

the most discoveries, is not “Eureka!” but “That’s funny...”

– Isaac Asimov

1
Introduction

Location has undeniably become a hot topic in the consumer market,

with sales of GPS enabled smart phones skyrocketing. Around the simple

service of positioning, an entire industry for location-based services is

gradually taking shape, offering not only navigational services, but also

shopping advice, tourism, and localization of friends and family members.

Developments in both Asia and the US (E-911) have positioned mobile

phones with integrated positioning technology at the forefront of location

based service provisioning in many markets.

Determining the position of a user and her device respectively has

been a hot topic in many different disciplines of computer science for

decades [5, 65, 87, 141]. This was and still is particularly true for the

field of ubiquitous computing (Ubicomp). It was this area of research that

showed to the (enterprise) world how valuable location information can

be. And yet it took many years for commercial software developers and

solution providers to build upon this knowledge and provide practical

solutions. Nevertheless, the plethora of services that provide, collect,
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2 Chapter 1. Introduction

analyze and augment location information can certainly be seen as proof

for the promise made years ago. Google, Yahoo, Microsoft, Facebook —

almost every big player in the Web 2.0 economy introduced a location

or places service. Moreover, small start-up firms such as Foursquare,

Dopplr, Gowalla or Brightkite all launched distributed, mobile solutions

based on a user’s location thus starting what infamously became known

as the “location war”.

However, all these systems, players and solutions work with and are

built using systems that provide only very coarse positioning, which, in

practice, allows for outdoor use only. Hence, the question remains:

• Why are systems that allow for accurate indoor positioning still

used in labs and special purpose setups only?

• Why is it that what started in the area of Ubicomp until today has

not prevailed where it was meant to be?

The answers to the above mentioned questions are of course neither

simple nor obvious and there are many different aspects that need con-

sideration. Yet, we believe and explain throughout this thesis that the

core issue that hindered commercial solutions and hence adoption is high

cost of providing indoor positioning information. We start by elaborat-

ing on the motivation of indoor positioning followed by a short overview

of the problems and challenges in this first chapter. We also shortly

introduce the main concepts and present our hypotheses. Finally, we

will summarize our contributions and give an outlook of the following

chapters.
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1.1 Motivation

To our understanding, it was Mark Weiser who pioneered the idea of

using location information to create a whole new user experience. In

his many papers about Ubicomp [156, 158, 159, 160, 161, 162, 163], he

imagined and sketched a world of what he called Calm Computing, a

world where technology moves from center to background — it’s there,

it supports the user yet he doesn’t notice. All with the one goal to “put

us at home, in a familiar place”, or as he put it: “[Ubicomp] will bring

information technology beyond the big problems like corporate finance and

school homework, to the little annoyances like ‘Where are the car-keys?’,

‘Can I get a parking place?’, and ‘Is that shirt I saw last week at Macy’s

still on the rack?”’ [162].

When Mark Weiser outlined “Some Computer Science Issues in Ubi-

quitous Computing” in his seminal paper of 1993 [160], he insisted that

applications are “the whole point of ubiquitous computing” and notice-

ably stated the ability to locate people as one of the defining examples.

Previous work by Olivetti Research Labs in Cambridge [155] has already

shown the feasibility of building indoor positioning systems and it was

Mark Weiser who saw the potential of this technology and its many

uses [160]: from video annotation to updating dynamic maps, controlling

locks and lights, automatic phone forwarding, locating an individual for

a meeting, and watching general activity in a building to feel in touch

with its cycles of activity — just to name a few.

Consequently, location-aware computing has become one of the pub-

licly most visible results of Ubicomp research and ever since, the location

of a user or a device is a very meaningful and significant information for

many applications in Ubicomp [71, 140]. It certainly is the most promin-

ent contribution when it comes to determining a user’s context or activity.

Starting with the idea of collecting data to determine a user’s context,

another field of research was born: context-aware computing applications

[1, 16, 44, 125]. In their paper “Towards a Better Understanding of Con-

text and Context-Awareness”[45], Dey and Abowd explicitly list location
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information as one of the four primary data categories that contribute to

a user’s context — alongside with time, identity, and activity. Thus, as a

user’s activity and location became fundamental for many Ubicomp ap-

plications, research has been focused more deeply in the fields of activity

recognition [8, 12, 84, 150] and of course location awareness.

One recent driver of this development has been the emergence of

small, low-power Global Positioning System (GPS) modules being incor-

porated in an ever increasing number of consumer devices. But, as we

will see in more detail later on, while GPS systems work well in outdoor

environments, the limited propagation characteristics of GPS satellite

signals require alternative solutions for positioning and navigation inside

buildings. Evidence of this development can also be found in the sudden

rise of web-based positioning services like Navizon1 or Loki2 that allow to

determine your location using GSM and WiFi readings. Even more so,

many big players in the consumer market, from Apple to Google, provide

location-based services for their mobile platforms, developing and run-

ning the required software in-house.

Although Marc Weiser’s vision of Ubicomp is finally starting to be-

come reality, the missing of one key technology still hinders a broad

emergence of such applications, namely an easily available positioning

system. But why? A quick search on Google Scholar3 reveals more than

ten thousand papers on indoor location and positioning respectively. Yet,

only very few of the proposed and prototypically built systems have been

implemented in publicly available systems. Of course, one of the reasons

for this must be that no commercial enterprise or start-up has found a

feasible business model. But why was no one trying to come up with one?

After evaluating the built systems in detail, we came to the conclusion

that the main reason for this is that the proposed solutions, although

being quite accurate, have one thing in common: it is very challenging

to deploy them at reasonable cost.

As we will show in detail, there are basically three factors that drive

1http://www.navizon.com/
2http://www.loki.com
3http://scholar.google.com
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costs: First, every system that is built to be used ubiquitously has to be

compatible with a broad range of different hardware devices, each hav-

ing very different characteristics and running different operating systems.

Second, unlike outdoor use, where in most cases at least basic map data

exists in some or another form, in indoor use it is often very complicated

and time consuming to get map data or floor plans. Third and most

important, in order to get accurate results, almost every indoor posi-

tioning system requires an extensive set of data points to train locator

algorithms. Thus, despite the fact that commercial systems like Ekahau4

or UbiSense5 are very accurate, the costs of installation, maintenance,

and in consequence ownership are very high. Another class of indoor

localization systems that have been demonstrated to be very accurate

are systems that use special hardware (for example, RFID [62], infrared

[155], or ultrasound [65]). Although being very accurate, such systems

usually require the installation of dedicated hardware that is needed for

the localization. The same holds for most commercial systems, as they

require one to purchase and install specific hardware, i.e., they cannot

be used with portable devices already at hand.

In most indoor environments, GPS does not work for one very simple

reason: it is just not possible to receive the signal broadcasted by the

GPS satellites. The receivers used in todays devices are not sensitive

enough while the building structure is quite simply to strong and thus

absorbs the data signal. Consequently, indoor positioning systems have

to use a different signal source. This basically leaves two choices: either

install a new signal source, like for example ultra wide band (UWB) radio

signals tags [145], or design the indoor positioning system such that it

can make use of (radio) signals that can already be found. Obviously, if

low-cost is a concern, only the latter of these two approaches is an option.

As WiFi became a quasi standard for wireless local area networks

over the last decade, with ever more handheld devices such as netbooks,

smartphones or tablet computers having WiFi network access by de-

4http://www.ekahau.com
5http://www.ubisense.net
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fault, most modern indoor positioning systems proposed over the last

years make use of 802.11, i.e., WiFi signals to localize devices. This

seems feasible as radio signals from at least a few WiFi access points can

almost always be measured where people work and live (e.g., [143] and

[32]). In addition, WiFi signals can be used to estimate a users position

indoors with an accuracy that is generally sufficient for most location-

based systems [88]. In this respect, WiFi localization has shown great

promise for indoor positioning, yet has not achieved ubiquitous com-

mercial success. One difficulty has been the construction of an accurate

mapping between signal strength patterns and physical locations. As we

will show in more detail later on, the signal strength patterns depend

not only on the distances between WiFi radios, but also on other factors

such as the positions of physical objects that reflect, partially absorb,

or even block signals. This complication may be overcome, at least to

some extent, by either performing calculations with detailed models of

the environment, or by collecting a dense dataset of fingerprints and their

associated true locations [5].

As we will explain in the next section, research in the past few years

has shown that radio location fingerprinting, a mechanism where location

is determined by comparing received signal strength to a set of known

patterns, i.e., the fingerprint, is the most promising approach to determ-

ine the location of a mobile device in various indoor settings with very

different signal propagation characteristics. Hence, a lot of research fo-

cused on solving the problems that arise when using the received signal

strength (RSS) to fingerprint a location, such as detecting and modeling

line-of-sight obstructions [118], absorption by humans, or reflection on

walls. In addition, a lot of effort was spent on finding accurate and robust

algorithms to select a known fingerprint given a current RSS measure-

ment, for example [61, 87, 95, 108, 112]. We elaborate on these challenges

later in this chapter and cover related work more extensively in the next

chapter.

Although having many advantages, location fingerprinting has one

big drawback. In order to get accurate results, it is necessary to train
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the system with as many radio signal readings as possible. This training

phase is often described as offline phase, as most systems only allow

to perform this task before actual use or within designated maintenance

phases. Naturally, these systems are only as accurate as this offline phase

has been detailed. Moreover, collecting labeled fingerprint samples can

be tedious. Signal readings must be collected every few meters or so, with

pauses of tens of seconds at each position to get an accurate reading. This

process must be repeated if the infrastructure or environment changes

substantially. Commercial deployments usually conduct such surveys as

part of deployment, however in some installations, such as private homes,

consumers may not have the patience for this process.

Academic systems that have been made publicly available like Place

Lab [36, 143] on the other hand are not easy to setup6 and require one to

train the system afterwards. In addition, as these systems try to optimize

the accuracy of the localization, which increases with the quality of the

trained fingerprints, the offline phase is typically very time consuming.

The COMPASS system for example is able to determine the position with

an average error distance of less than 2.05 meters [87] using WiFi RSS.

Yet, in order to achieve this accuracy, it was necessary to measure at grid-

aligned points with a spacing of only 1 meter and take measurements in

8 different directions at each point. Even in a very small building with

a floor area of, for example, 125 m2, the training phase would take more

than 4 hours7.

The biggest issue with having a designated training phase is that

is has to be repeated whenever the environment changes, for example

due to a replaced access point. However, such accuracy is only feasible

when the measured signal strengths fluctuate only very slightly. Our

own measurements (see chapter 3 for details) showed that the RSS of

GSM signals can change up to 30% in only a few dozen seconds and

the RSS of WiFi access points can even slip more than 50% within only

one hour. Furthermore, the RSS of WiFi access points depends heavily

6It took one of our students almost two days to get the system running on just one mobile phone.
7This is, if we account 20 seconds per measurement, which is about the amount of time we experi-

enced in our own experiments.
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on whether humans are in the line of sight as the human body absorbs

electromagnetic radiation quite well [101]. Hence, in rooms where the

number of people is high and changes frequently, it seems unlikely that

an accuracy of under 2 meters can be achieved. Lastly, second-by-second

signal fluctuations mean that the fingerprint stored with a label may not

match future measurements. Subsequently, a labeled fingerprint would

need to be collected over an interval of several tens of seconds, much as

it is done during formal calibration stages.

Before discussing these issues and challenges in detail, we first identify

and explain the basic building blocks of any location fingerprinting sys-

tem.

1.2 Location Fingerprinting

Radio location fingerprinting is one of the most promising indoor posi-

tioning mechanisms, as it allows positioning using signal characteristics

of existing wireless communication networks (e.g., a WiFi installation)

and thus requires no dedicated infrastructure to be installed. In recent

research, it was Mikkel Baun Kjærgaard who studied the many issues

and advantages of this approach in his thesis “Indoor Positioning with

Radio Location Fingerprinting” [92]. In particular his work on a tax-

onomy for radio location fingerprinting [91] helped to understand and

define the methods and components involved.

Figure 1.1 illustrates that every location fingerprinting system basic-

ally consists of two main components: the radio map and the estimation

method. The radio map consists of a database of known fingerprints.

In its most basic form, this can be a list of measurement tuples associ-

ated with a location. The measurement tuple contains the identifier of

the signal source, for example the MAC address of a WiFi access point,

along with the received signal strength (RSS) observed when recording

the measurement. The estimation method is any algorithm that allows

to map an observed measurement to the corresponding location in the

radio map. As most estimation methods use mechanisms and algorithms
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known from machine learning, it can be said that the more measurements

a radio map contains, the more accurate the estimation method is going

to work.

Radio 
Map

Estimation 
Method

location fingerprinting

Figure 1.1: Basic elements and principle of location fingerprinting.

Hence, the method of location fingerprinting using radio signals as-

sumes that the pattern of mean signal strengths received in one loc-

ation differs from the pattern observed in another location. Unfortu-

nately, various effects, including interference from interposing static ob-

jects as well as reflections off neighboring objects, make the relation-

ship between the signal means and location difficult to predict in prac-

tice [74, 96, 109, 128]. Less well-documented are sources of variance in

the signal, although there has been some work studying these effects over

a one day period [83]. We cover these issues in more detail in Chapter 3.

Usually, the radio map is setup and organized on a central server.

However, it may as well be distributed, as we will explain in the next

chapter. In every case however, measurements are taken using mobile

devices, may this be a laptop, a smartphone, or even a tiny little sensor
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node. As all these devices have very different antennas and (WiFi) chip-

sets, the RSS values observed (usually reported as power ratio in decibels

of the measured power referenced to one milliwatt, or dBm in short) dif-

fers vastly between the different devices (see Section 1.3.5 for details).

Although this issue has been addressed [89], most proposed systems use

only one specific device.

In comparison to other (indoor) positioning mechanisms, like using

the time or angel of arrival of a received signal, location fingerprinting

requires a training phase, i.e., the radio map must be established. This

inevitable learning process requires that measurements are taken in every

place or room. And as more measurements yield better results, it is usu-

ally not sufficient to only measure once. Ideally multiple measurements

per location are taken at different times of the day over many days.

Which brings us to the challenges of indoor positioning.

1.3 Challenges of Indoor Positioning

When discussing location systems for indoor positioning, a broad set of

issues and challenges arise. Consequently, many survey papers have been

written over the last few years that deal with the different characterist-

ics and issues of indoor positing systems. Most of these papers, as for

example [60, 70, 71, 91], propose a classification or taxonomy of location

systems. In the following, we summarize the most prominent and pre-

vailing challenges of indoor positioning systems. We will focus on issues

that are typical for systems that make use of location fingerprinting. The

following analysis shall offer a coarse overview of current challenges and

issues. We cover related work in more detail in Chapter 2. To clarify the

many different aspects, we classify the issues by those attributes mostly

used to assess and evaluate indoor positioning systems.

1.3.1 Performance

Depending on the type of system and its main purpose, there are dif-

ferent attributes to be considered when evaluating the performance of
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an indoor positioning system. For example, a system that was built to

track fast moving objects has to be, first an foremost, responsive, i.e.

the delay of measuring and calculating positions of the estimated tar-

get must be short. Yet, in order for an indoor positioning system to be

considered good, we expect it to report locations accurately and consist-

ently from measurement to measurement [71]. In this respect, accuracy

and precision are the two main performance parameters used to evaluate

an indoor positioning system, where accuracy usually means the average

error distance, and precision means the success probability of position es-

timations with respect to predefined accuracy. For example, inexpensive

GPS receivers are capable of locating positions within 5 meters for ap-

proximately 90 percent of measurements. Thus, the distance, 5 meters,

denotes the accuracy of the position while the percentage, 90 percent,

denotes precision. We elaborate on these issues in Section 2.1.2.

Usually, there is a trade-off between the performance of a positioning

system and its cost: the higher the performance requirements, the higher

the costs. For instance, one can improve the accuracy of infrared-based

positioning systems by adding special filters to lower the influence from

florescent light [60]. But adding these filters increase the price of the

whole system. Or consider motion-capture systems that support high

resolution, real-time target acquisition, as for example trakSTAR by As-

cension8. Such systems allow for centimeter-level spatial positioning and

precise temporal resolution. On the other hand, a system that provides

personalized weather forecasts can do with an accuracy of a few kilomet-

ers. Consequently, we must evaluate the performance of location-sensing

systems by determining whether they are suitable for a particular applic-

ation [70, 71]. Therefore, the challenge is to get sufficient accuracy at

reasonable cost. Regarding applications for Ubicomp, we are interested

in queries such as “Where is that meeting that I am supposed to attend

at 4 o’clok?” or “How do I get to Walter’s office?”. Thus, although it is

possible to achieve accuracy of about 2 meters [87], it turns out that for

almost all applications in Ubicomp that involve persons it is sufficient

8http://www.ascension-tech.com/
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to provide room-level precision. Moreover, as Hightower found in 2004

[69], it is beneficial for most Ubicomp applications to use what he called

place, i.e., a human-readable label of a position.

Although this finding favors location fingerprinting systems, it also

reveals one of the biggest issues of fingerprinting. In order to associate

a position with a place, the exact location of a place has to be known.

Moreover, all users must have the same perception of a specific place.

This holds particularly for fingerprinting systems that require or allow

for manual collection of fingerprints. If the collector and the user of the

system do not share their perception of a place, the user will almost

always be disappointed by the performance of the system. Hence, a loc-

ation fingerprinting system that employs manual collection of location

labels is per-se error prone and its performance will vary. Usually, this

problem is overcome by taking multiple measurements for the same place

at slightly different positions or with slightly different orientation. But

although taking more and more measurements might improve the per-

formance of a location fingerprinting system, the cost of training and

maintaining the radio map will increase.

1.3.2 Cost

One of the factors that make up the cost of an indoor positioning system,

in particular a system that uses location fingerprinting, is the time needed

to build and maintain the radio map. Other time factors are the effort

required to install and administer a system or the battery lifetime of the

used devices. Space costs involve the extent and complexity of installed

infrastructure and the used hardware’s size and form factor. Capital costs

on the other hand include factors such as the price of the devices used

and the required infrastructure. In addition, capital costs also include

the salaries of support and maintenance personnel [70, 71]. The best-

known positioning system GPS for example relies on a very large and

pricy infrastructure, which is expensive and complicated to install and

to maintain.

When assessing the cost of indoor positioning systems, it is crucial to
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consider the above listed factors over the lifetime of the system. For a

detailed analysis, we suggest to break-down the cost into three phases:

total cost of installation, total cost of use, and total cost of maintenance.

As explained, one of the primary factors that make up the total cost

of installation is given by the choice of hardware. If a system requires

special hardware, for example special tags [155], antennas [145] or even

WiFi access points with special capabilities [34], the acquisition costs are

very high. Another factor that is often disregarded is the provisioning

of maps. Unlike systems build for outdoor use, where maps have been

created for many purposes already hundreds of years ago, appropriate

indoor maps and floor plans are often not available.

The total cost of use comprises the cost of all resources required during

use. Hence, it mainly depends on the technology chosen. For example,

the cost of using GPS is relatively high as getting positioning information

consumes a lot of energy and usually takes more than 10 seconds. In

consequence, the user will have to wait for the GPS system to deliver

the result and, on top of that, has heavily reduced battery lifetime. Or

consider a location fingerprinting system that uses WiFi radio signals. In

order to get a measurement that can then be compared to the radio map,

the system has to scan the signal environment. Although being more

resource-saving than GPS, this scan also requires both time and energy.

In addition, if the scan is executed actively, the network interface may

not be used to transfer data while scanning the network, i.e., the user

faces additional opportunity cost and is forced to choose between either

having a fast and accurate positioning system or transferring data. In

fact, the concurrent use of the network subsystem is one of the biggest

challenges of using WiFi for location fingerprinting. Consequently, most

proposed systems do not deal with this problem, with the exception of

[86].

To assess the total cost of maintenance is difficult as many systems,

which have been proposed for indoor positioning, have not been used long

enough to put a number on this cost factor. Still, the different mechan-

isms allow some general observations. Systems that rely on special tags
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and antennas like Ubisense for example, require recalibration about every

six months. As this calibration process can only be executed by trained

personnel, the cost of maintenance is very high. When it comes to sys-

tems that make use of fingerprinting, the by far biggest cost factor is

the time and resources required to keep the radio map up-to-date. As

we will show, the signal environment is subject to long- and short-term

fluctuations. Thus, the radio map has to be update continuously. If the

training of the radio map is to be done manually or worse, by special

personnel, the costs for updating the radio map will be very high.

Another cost factor when using WiFi for location fingerprinting that

adds to both the total cost of installation and the total cost of main-

tenance is the device-inherent difference of reported signal strength. Al-

though most devices report the RSS in dBm, the reported value is not

standardized and depends on the combination of antenna, network ad-

apter, and operating system. For example, while a smartphone reports

−47dBm at a certain position, a laptop may report −65dBm. We elab-

orate on this factor and possible solutions in Section 1.3.5. In short, the

solution to this problem that yields the best accuracy is to manually take

measurements at reference positions and create profiles for every device.

As said before, there is always a trade-off between the performance of a

positioning system and its cost.

1.3.3 Scalability

As only very few indoor positioning systems have been deployed on a

large-scale, the issue of scale and scalability is been discussed scarcely.

Gu and Lo for example define scalability as “the number of objects that

an IPS [indoor positioning system] can locate with a certain amount of

infrastructure devices and within a given time period” [60]. Hightower et

al. [71] on the other hand use the term scale to describe the coverage area

per unit of infrastructure and the number of objects a system is able to

locate per unit of infrastructure. Although being different, both notions

capture the limiting factors of time, required or available infrastructure

and number of devices. In this respect, time is, once more, of crucial
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importance. As we have seen before (see Section 1.3.2), the bandwidth

available for sensing objects or devices is limited. Any radio-frequency-

based system is only able to tolerate a maximum number of connections

before the channel becomes congested [70]. Beyond that threshold limit

either a loss of accuracy will occur or the latency in determining the

position will increase as the system is forced to scan and calculate the

device’s position less frequently.

An indoor positioning system may be built to work all over the world,

within city limits, throughout a campus, just in a particular building, or

even just in one room and systems can often expand to a larger scale

by increasing the infrastructure. For instance, a simple tag system like

the Active Badge location system [141, 155], which locates tags in a

single room, can be used on a campus by equipping all buildings with

the required infrastructure. But barriers to scaling a positioning system

do not only include infrastructure but also middleware complexity and

finally computing power requirements demanded of the necessary servers.

In respect of systems that employ location fingerprinting, the issue

of scaling is predominantly a problem of server performance. This is for

systems that are designed to use a predefined server for storing the radio

map and to execute the estimation method. This said, it is possible to

distribute the radio map to the client devices. The consequence of this is

that either every device has to learn the mappings and thus every place it-

self, or the system has to provide a mechanism that enables the terminal

devices to exchange and propagate the mappings. Although both ap-

proaches have been applied [2, 100, 127, 143] with valuable results, using

the device to store the radio map and to execute the estimation method

entails two problems: First, as a device used for indoor positioning is mo-

bile, it is not as powerful, i.e., it only has limited resources. Consequently,

the radio map can only grow to a certain size and the execution of locally

run localization algorithms may take a long time. Second, the exchange

of radio mappings between these devices has to be taken care of by the

wireless network adapter and is thus slow. Moreover, using the wireless

network adapter for data communication implicates that it can not be
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used to scan the network. Hence, the device can either use the adapter

for positioning or for data communication. Consequently, most systems

rely on a (central) server infrastructure to store the radio map and to per-

form the positioning. Storing the former does usually not pose too much

of a problem, as today’s high-performance, distributed database systems

are capable enough to handle even very big radio maps and thousands

of concurrent users. Providing location lookup (i.e., actual position cal-

culations) that operate on very large radio maps within fractions of a

second is a big challenge, however.

As we will explain in this thesis, many different algorithms have been

proposed for position estimation. These methods have very different

characteristics. For example, the well-known and often used k-nearest-

neighbor method allows to add new mappings, i.e., adding new measure-

ments to a fingerprint, without significant delay. The position estima-

tion on the other hand may take long, as the algorithm must access all

entries in the radio map. Hence, the bigger the radio map, the bigger

the delay. Another often-used estimation method, the support vector

machine (SVM), shows opposite characteristics. While calculating the

position estimate is dealt with in very short time, adding mappings to the

radio map potentially takes very long. This is because SVM is a machine-

learning algorithm, which supports multi-class classification. Thus, it is

necessary to retrain the classification model every time a new mapping

is added to the radio map. Ideally, an estimation method features the

favorable characteristics of both of these algorithms, no matter how big

the radio map is. Consequently, one of the biggest challenges, which, to

the best of our knowledge, has not been tackled until today, is to integ-

rate or combine known and proven algorithms in a server infrastructure

able to scale for world-wide use.

1.3.4 Signal Variation

Positioning systems designed and built for specific purposes or applica-

tions, such as tracking of fast moving objects or augmented reality often

have high demands on accuracy. Such systems require the installation of
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specific and expensive hardware that, for example make use of ultra wide-

band radio signals (UWB). However, for most applications a lower ac-

curacy suffices. Consequently, these systems make use of standard WiFi

radio signals instead of UWB. However, WiFi radio signals are subject to

absorption, reflection, refraction, multi-path, humidity, temperature, and

many other factors. As a result, the signal strength measured fluctuates

over time and attenuation correlates poorly with distance, which results

in inaccurate and imprecise distance estimates [71]. In addition, when

the device measuring RSS is moved, we can observe spatial variations

in both large and small scale. Moreover, the signal strength depends

on how the signals propagate, i.e., the further away from the source the

smaller the measured signal strength. Thus, good systems rely on large-

scale spatial variations for accurate indoor positioning [89]. Moreover,

for systems that use location fingerprinting, the fact that walls absorb

and reflect radio signals yields greater difference in RSS which allow for

better separation. And there are many more factors that cause radio

signal variations such as, for example, changing weather. To better un-

derstand the cause of fluctuations, we thus conducted different long-term

studies. We elaborate on setup, procedure and results in Chapter 3.

Small-scale spatial variations, which can be observed when moving

the measuring device by as little as one centimeter and in particular

temporal variations cause many problems as well. Such small-scale fluc-

tuations are mainly caused by people. The human body is an excellent

sink for radio signals. Thus, the presence or even worse movement of

only a few people cause heavy signal strength fluctuations. This is best

illustrated with a little example: Imagine a location fingerprinting sys-

tem where the radio map is trained by professional personnel. One of

these specialist is assigned to map the RSS in a meeting room. In order

not to disturb the working force, the specialist takes the measurements

after office hours, when the meeting room is not in-use. The next day,

people are informed about the installation of the new positioning system

and are eager to try it out during a meeting in the very same room.

Despite trying several times, users will never get an accurate position



18 Chapter 1. Introduction

estimate. Unlike last night, when the meeting room was empty, there

are now six people sitting at the table, which causes the RSS to fluc-

tuate. Consequently, the measurements taken during the meeting will

rarely match the fingerprint recorded by the specialist.

In addition to the causes of signal variations discussed above, we can

also observe changes in the radio signal environment over long periods.

For example, considering several months, it is very likely that new WiFi

access points will appear while others are not in operation anymore. An-

other example of long-term changes is the fluctuations caused by weather.

Depending on the climate zone, seasonal changes will naturally lead to

significant changes in measured RSS.

The challenge of coping with all these causes and effects of signal

variations are therefore manifold and have hence been a subject matter

of research for many years. Summarizing, it can be said that for any

location fingerprinting system making use of radio signals, it does not

suffice to train the system once. In order to guarantee a certain level

of accuracy and precision over time, it is necessary to train the system

over and over again, i.e., measurements for the same place must be taken

at different times of day, over many days and ideally in every situation.

Moreover, to alleviate the effects of short-term fluctuations, it seems

necessary to measure longer periods of time. This raises the question:

How can the radio map be trained and updated at such high frequency

while avoiding escalating costs?

1.3.5 Sensor Variation

For terminal-based indoor positioning system, i.e., systems where the

mobile device is given the task of measuring the radio signal, the differ-

ent characteristics of these devices cause different same-place, same-time

measurements [90]. Moreover, different standards of wireless communic-

ation also affect the RSS measurements. According to Kjærgaard [89],

large scale variations are variations between different radios, antennas, as

well as firmware and software drivers. Small scale variations on the other

hand are the variations between instances of the device model from the
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same manufacture. With the exception of [61] and [165], most systems

do not explicitly address these variations.

In particular the handling of large scale sensor variation has not been

addressed. Hence, today’s indoor positioning systems require the pro-

vider to manually profile and configure each new device type. Given

the potentially huge number of radio, antenna, firmware, and software

combinations, this is less than ideal. And yet, the manual collection

of measurements at certain calibration positions and the attempt to find

mappings between signal strengths reported by different clients is still the

most common solution for handling signal strength difference caused by

sensor variations. Obviously, such manual solutions are both time con-

suming and error prone. More sophisticated solutions that avoid manual

measurement collection by learning from online-collected measurements

have been proposed by Haeberlen et al. [61] or Kjærgaard [89]. However,

both of these solutions require a training phase and perform considerably

worse in terms of accuracy than the manual approach. Kjærgaard also

suggested to record fingerprints as signal strength ratios between pairs of

base stations instead of absolute RSS values [94]. This approach solved

the problem of signal strength differences to some extent. However, as

Kjærgaard concludes, it is unclear how sensitivity affects the RSS meas-

urements recorded at the same position from different access points across

different clients.

1.3.6 Security and Privacy

As with most systems and application in the Ubicomp domain, security

and privacy are also a core issue in indoor positioning systems [27, 42,

119, 142, 167]. As Langheinrich explained, “knowing a persons location

at a specific point in time often allows a substantial number of inferences

to be drawn, e.g., regarding his or her hobbies, friends, political inclina-

tions, or even sexual preferences” [106]. Regarding privacy, the challenge

in designing an indoor positioning system lies in providing anonymous

position estimates. This is necessary, as the potential of data mining is

very high [106]. A user’s location is not only valuable for context-aware
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applications, but can also be exploited with relatively low effort. Using

suitable heuristics, as for example correlating a person’s often visited

locations, even anonymized position data can be correlated [106]. In ad-

dition, people have a natural understanding of location-related privacy,

they care if someone tracks them or records a history of all past where-

abouts. Basically, controlling access to one’s location information [13] or

its distribution [70] can improve location privacy to some point. This can

either be realized from the software side or by design of the architecture

[30].

But as Langheinrich pointed out, the principle of data minimization

becomes predominant in providing location security and privacy [106].

With location fingerprinting systems, this is most easily implemented at

the RSS collection level. Beresford and Stajano for example propose a

concept called mix zones, where a user’s identity is anonymized by re-

stricting the positions where users can be located [14]. Another approach

is Gruteser et al.’s k-anonymity that allows to adjust the resolution of

location information to meet specified anonymity constraints [59]. Both

solutions try to reduce the amount of location information disclosed to

applications. Other systems like those proposed by Rodden et al. [137] or

Hauser and Kabatnik [66] provide some level of anonymity by the means

of a proxy. While such systems manage to hide the true identity of a

user, they fail to address the vulnerability of pseudonyms to correlation

attacks [13, 106].

A third and very promising approach is self-localization [70, 130].

Here, the position estimation is being carried out by the target device

itself. In consequence, no one can access the location information unless

the target device discloses its location [60]. However, more and more

mobile applications rely on data from remote providers or make use of

web-services, i.e., it is almost impossible not to disclose one’s location

without degrading the use of the application. Thus, it often does not

matter whether location information is obtained through a positioning

service or self-positioning, location privacy must, first and foremost, be

addressed at the application level.
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1.3.7 User Interface

Mostly, location information is used and processed by higher level ap-

plications. As such, it doesn’t have to be the concern of the indoor po-

sitioning system provider to offer a graphical user interface or any other

human computer interface that is appealing or useable. However, as we

maintained when discussing the issue of location privacy, it is sometimes

necessary for the user to interact with the positioning system, for ex-

ample to set the resolution level of location information that is disclosed.

As we will show in the next section, one of the key concepts of our work

is to include the user in the process of training the radio map and allow

for user-contributed location labels. This concept has been used in dif-

ferent form in previous work [4, 15, 51, 69]. Studying these works, we

learned that the positioning system must provide a way of user input

that is appealing, easy-to-use and, most importantly, unobtrusive. Users

will only contribute if the system is adding value to their work and not if

the system turns out to be work itself. Thus, the challenge in designing

such a user interface is to identify the incentives for contributing to the

common radio map and to make this process as simple and transparent

as possible. Regarding the issue of signal variations (see Section 1.3.4),

we found that the radio map must be updated continuously. Hence, an-

other challenge in designing the user interface is the question of how to

motivate people to contribute location labels over a long period of time.

1.4 Goals and Hypotheses

Having analyzed many of the proposed, designed or built indoor position-

ing systems and having investigated the stated open research questions

and suggestions for future work, we came to the conclusion that the two

main problems of RSS-based location fingerprinting systems are:

• Signal Variation The received signal strength fluctuates due to

many different factors. These signal variations occur both short

and long-term (see Section 1.3.4).
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• Radio Map Training An indoor positioning system that uses loca-

tion fingerprinting is dependent on a large radio map. In general

we can say that the more measurements a fingerprint comprises,

the better the accuracy and precision. These measurements must

be taken in place and ideally several times. In consequence, this

(off-line) training process is very time consuming and thus costly.

Our goal was to improve location fingerprinting by tackling these two

problems first an foremost. Our first objective was to understand the

causes and effects of signal variations. Building on the findings of this

analysis, our goal was to build a location fingerprinting indoor positioning

system that is cost saving, easy to setup and install, and which would

work over a long time period. For that, we built upon best practices and

used algorithms, collection methods and other building blocks that have

proven to work well. In addition, we created new concepts of use, training

and location estimation that would alleviate the problems caused by

signal variation and training costs. In an effort to encourage involvement

and speed-up development, we decided to bundle the resulting source

code and release the product under an open-source license9.

The main concept of our work is collaborative fingerprinting. Instead

of employing specialized personnel to train the radio map, our system

enables users to add measurements and correct fingerprints themselves,

thus avoiding a potentially time consuming and costly off-line training

phase. As users are encouraged to correct fingerprints, this approach

can also help to cope with long-term signal variations and changes in the

radio signal environment. Moreover, instead of recording RSS only once,

we created a mechanism that we call adaptive collaborative fingerprinting.

This mechanism allows to record measurements over long time periods.

Leveraging the accelerometer, a sensor that can be found in most mobile

phones today, we determine the device’s movement. This way we are

able to deduce a user’s activity and stationary status. As long as a

device is not being moved, the system may continue to record and add

measurements to the current place’s fingerprint. Thus, our work is based

9The resulting project can be found at http://www.redpin.org
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on the following hypotheses:

• Relying on user-contributed location labels is a feasible approach

to location fingerprinting.

• Extending user-provided labels from an instant to an interval, i.e.,

a period of time over which the device is stationary, can greatly

improve positioning accuracy.

We present our realization of these hypotheses in Chapter 4 and 5

respectively. In Chapter 6, we discuss our results and evaluate our hy-

potheses.

1.5 Summary of Contributions

In this thesis, we introduce the concept of user-contributed, collaborative

fingerprint labeling to address the problems of map setup and map main-

tenance in location fingerprinting systems. Instead of manually creating

an initial map prior to deployment, we harness the collaborative inputs of

all system users to collaboratively create and subsequently maintain an

accurate map of indoor fingerprints. In addition, end-user labeling allows

labels to be added as needed for the places users visit most frequently.

We offer a novel user interface approach to simplify the solicitation of

user-generated labels that relies on labeling intervals instead of instants,

and provide algorithms that are able to accurately position a device based

on such user-generated labels. The contributions of our work are:

• A long-term study of WiFi signal characteristics To better under-

stand the cause and effects of signal variations that can be observed

when using 802.11 (WiFi) radios, we conducted two long-term stud-

ies. While we used stationary laptops to record measurements in

the first study, we explicitly focused on end-user’s activity and us-

age patterns in the second study. In summary, we found that WiFi

signals vary substantially in both long- and short-term. We also

found that the causes for these variations are manifold and can thus

not be predicted or modeled in order to improve accuracy.
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• A novel method of collaborative fingerprinting Our approach to end-

user labeling allows the collection and correction of location finger-

prints in the places that users most frequently visit. This way, we

are able to train and update the radio map according to the user’s

needs while avoiding the high cost of offline training. By incor-

porating the training of the system into its usage, we are able to

make the training an ongoing process that allows to quickly ad-

apt to changes in the environment. Moreover, our approach allows

to collect dense datasets of measurements for each fingerprint and

their associated true locations, which alleviates the problem of sig-

nal variation. This yields more accurate results than other methods

used, such as performing calculations with detailed models of the

environment.

• A mechanism to adapt fingerprinting based on device movement In

our thesis, we explore a technique that extends the applicability of

a user-provided label from an instant to an interval over which the

device is stationary. The stationary state is detected using an ac-

celerometer, which allows to detect location changes autonomously,

and consequently collect stationary interval measurements without

explicit user intervention. Using intervals enables a different kind

of labeling. By detecting intervals of device immobility, the system

can also defer location labeling to a more appropriate time, and

refer to longer time periods that are easy for users to remember

(e.g., “Where were you between 9:15 am and 10:05 am today?”).

This greatly improves the user experience as users do not need to

provide labels while being at the location to which the label applies.

Thus, they are more likely to provide meaningful labels.

• An adaption of estimation methods to improve accuracy and latency

As our technique of adaptive collaborative fingerprinting yields very

large radio map datasets, using common methods for position es-

timation would result in degraded performance in terms of look-up

latency. To cope with that issue, we propose a new estimation
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mechanism that allows to combine different estimation methods

and classifiers during runtime.

1.6 Thesis Overview

After having presented our case in Chapter 1, we explain the main con-

cepts of indoor positioning in more detail. We first establish the main

terms used as well as a common terminology that servers as a basis for

presenting and evaluating positioning systems. Throughout Chapter 2

we analyze related work in more detail. In this chapter we also identify

the main attributes of location and discuss their role and importance

in evaluating positioning performance. An overview of location models

and positioning technologies concludes this background analysis. The

last section of this chapter is devoted to an in-depth analysis of different

methodologies and concepts used for location fingerprinting.

Before discussing our approach of adaptive collaborative fingerprint-

ing, we present our results on two long-term WiFi signal characteristics

studies in Chapter 3. These studies have been conducted to better un-

derstand the causes and effects of signal and sensor variations. The focus

of our work is to build an indoor positioning system that works well in

real-world situations and over a long time period. Thus, the WiFi stud-

ies have been designed to capture signal variations for both stationary

and mobile terminal devices. Particularly the second study presented in

Chapter 3 has been designed with the use case of end-user labeling in

mind. We conclude this chapter with a summary of findings and recom-

mendations that need to be taken into account when building an indoor

positioning system based on WiFi radio signals.

Chapter 4 illustrates the concepts and terminology of user collabora-

tion. The usefulness, advantages and disadvantages of user collaboration

is explained by means of different systems that have successfully em-

ployed end-users to contribute content. We then discuss the building

principles of user labeling in location fingerprinting systems in detail and

present the design and implementation of a reference system. Lastly, we
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present and discuss an evaluation that provides a detailed look at our

prototype implementation while discussing its benefits.

Building on the principles of collaborative location fingerprinting,

Chapter 5 illustrates the importance and advantages of interval labeling.

Since end-users might not be willing to train the system as expected, it

is crucial to have the ability to defer the labeling process to a time that

is convenient for the user. In addition, we show how interval labeling can

be used to further alleviate the problem of short-term signal variations

and in consequence improve accuracy. In addition, we present an extens-

ive evaluation of the different estimation and fingerprinting methods. In

particular, we compare the estimation methods used in our systems to

other well-known estimation methods. In addition, we take a closer look

at the benefits of interval labeling regarding the resulting accuracy. Fi-

nally, our achievements are summarized in Chapter 6 where we review

the contributions made in this work.



The important thing in science is not so much to obtain new facts

as to discover new ways of thinking about them.

– Sir William Bragg

2
Background

Indoor positioning is being developed and used in many different domains

from asset tracking in logistics to navigation systems in robotics. In this

chapter we present an overview of different techniques and mechanisms

used for indoor positioning. As such systems have their origin in different

areas of research, there is little common ground regarding nomenclature.

We establish and define the main terms and concepts as used throughout

this thesis at the beginning of this chapter, followed by an overview

of location models and positioning technologies. While discussing the

latter, we will focus on location fingerprinting as the goal of our work is

to improve this promising technique. Over the course of this chapter, we

will also investigate and examine related work where it is appropriate.

The first section of this chapter presents and clarifies the notion of

location information, discussing different forms for representation as well

as its attributes. The next section deals with the many different location

models that have been proposed for indoor positioning systems. Using

the different forms of location representation established in the first sec-

27
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tion, the location models section is structured according to the type of

location information it is based on. We will focus on symbolic location

models as this is the type of model we use in our work. Lastly, we

present the different positioning technologies used in indoor positioning

along with their beneficial advantages and drawbacks.

2.1 Location Information

2.1.1 Representation

Given the very different use of indoor positioning, the adequate defini-

tion of location information is nontrivial. At its core however, location

information always describes a specific place. For example, regarding

maps or floor plans, a location can be described as a reference point in

a two dimensional space. Some indoor positioning systems even allow

for and provide location information in three-dimensional space. Such

geometric location representation has many advantages, as we will se in

Section 2.2.1. However, it also brings serious drawbacks and often comes

at very high cost. Consequently, many indoor positioning systems only

use descriptive labels to specify location information. Therefore, we dis-

tinguish two classes of location representation: geometric and symbolic

[10, 47]. Accordingly, we can classify indoor positioning systems based

on the kind of location representation used.

Geometric positioning systems determine a device’s position as a geo-

metric figure using coordinates relative to a global or local reference sys-

tem. GPS for example returns the position of a client in reference to

the World Geodetic System (WSG84) [113] as a tuple of latitude, longit-

ude and altitude. Local reference systems are inherently used by indoor

positioning systems like Active Bat [157].

Symbolic positioning systems on the other hand return a symbolic

identifier. This may be an ID, for example the cell ID in GSM systems,

a simple label, or in semantic positioning systems even a concrete name.

The Active Badge [155] system, for example, determines the position of

a client by identifying the sensors which are within sight of the badge.
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Although readable names are often more meaningful to users, geomet-

ric attributes are needed in order to calculate distances or for example

areas. Thus, most of the common known and successful indoor local-

ization system such as ActiveBat [65], COMPASS [87], or SpotOn [72]

provide location information in terms of geometric coordinates. How-

ever, two of the most prominent localization systems, namely RADAR

[5] and Place Lab [143], provide mechanisms to output both, geomet-

ric coordinates as well as symbolic location identifiers. However, given

application specific requirements other systems such as [33] or [61] only

provide symbolic location identifiers.

On top of the very basic information required to describe a location,

many systems provide and use ancillary attributes like containment or

hierarchy, temporal attributes such as freshness, the extent of a place, or

even the exact geometric description of a room or building. The inclusion

of ancillary attributes requires a sound description and mapping consid-

ering the amount of data needed as well as the information system or

database to be used. This again is a nontrivial task as the requirements

are application specific. Including more attributes allows for more power-

ful operations. In turn, having more attributes means higher costs for

actually providing the location information. For example, while having

an exact three-dimensional geometrical representation of a whole build-

ing with all its rooms, stairways, elevators and inspection chambers is

beneficial, the effort required to provide this data is enormous. Location

models are created to provide the right level of abstraction. A location

model defines the representation of location information along with an-

cillary attributes. We will be discussing the different types of location

models in Section 2.2.

2.1.2 Attributes

Besides the primary position data, location information naturally com-

prises qualitative attributes like freshness, i.e. how old the data is, ac-

curacy, i.e., how accurate the information is with regards to the world

truth [52], or reliability, i.e. how certain can we get location information
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and how good it can be reproduced. In the following, we will explore

these attributes in more detail and analyze their implications on model-

ing location information.

Freshness

It may seem that the age of location data, i.e., the time that has elapsed

since the acquisition of the reading, is not per-se crucial to the function-

ality of location-based applications. However, it might be beneficial if the

time when a positioning system measured a particular location is part

of the location data. This is particularly relevant for systems using sym-

bolic labels, which may change over time. Here, all sensor readings come

with an expiration time, beyond which a reading is no longer valid. A

location model may also employ a temporal degradation function that re-

duces the confidence of the location information from a particular sensor

with time, as described in [132]. From this perspective, knowledge about

the freshness of location information can be used to increase or decrease

the level of reliability associated with it.

Accuracy and Precision

Naturally, the location information should be as precise as possible. How-

ever, since every positioning method inherently determines the location

with a certain error, the user of this information wants to know how big

this error actually is. Speaking of location information, we must distin-

guish between accuracy, error, resolution, and precision [97, 157, 166].

As illustrated in Figure 2.1, the error denotes the difference between the

position estimated by the positioning system and the actual position.

Accuracy usually denotes the same measure. With resolution, we de-

note the minimal difference between two measurements, while precision

denotes the distribution of all measurements.

With GPS for example, it is possible to get a report that describes un-

certainty. Thus, GPS vendors provide location uncertainty values that

are more indicative of the errors experienced by the end-user [56, 73],
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Figure 2.1: Location Error, Accuracy and Precision (based on [23]).

which again makes a common abstraction necessary. Moreover, for (in-

door) positioning systems using symbolic labels, it is unclear how ac-

curacy or error can be expressed, as no exact notion of distance exists.

Nevertheless it is possible to trade less precision for increased accuracy

[73]. Consequently, these two attributes must be processed in a common

framework in order to compare and rate them. For example, Hightower

[73] suggests that the fusion of different positioning sensors can improve

both accuracy and precision by integrating many readings and forming

hierarchical levels of resolution.
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Reliability

Another attribute associated with location information is reliability. Even

more than freshness and accuracy, reliability is a qualitative attribute.

The idea to qualify the reliability of a positioning system by how reprodu-

cibly it returns values was formulated by Anderson in [3]. Anderson uses

zones, i.e., a portion of space distinguished by others by signal strength,

to represent the finest granularity where reliable positioning is possible.

By appropriately choosing the size of such zones, it is possible to pro-

duce a similarity of up to 87% between the actual path of a user and the

measurements of the positioning system.

Again, by using several different positioning systems and fusing the

measured data, both the accuracy and the coverage can be increased

[144]. Moreover, sensor fusion can be used to calculate and compare dif-

ferent readings and thus to quantify location data [56, 73, 143]. However,

being able to qualify the error and the coverage of a positioning system

is not necessarily sufficient to qualify the reproducibility of a system, i.e.

with which certainty does a positioning system return the same readings

when a user follows exactly the same path.

2.2 Location Models

As we have shown in Section 2.1.1, location information needs to be

represented accordingly in order to process and store it. For this purpose,

several location models have been proposed with different attributes and

objectives. In the following, we will give an overview along with the

classification that is commonly used to describe location models. Derived

from the different types of results of geometric and symbolic positioning

systems, we distinguish between geometric, symbolic, and hybrid location

models according to [9, 10, 46].
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(48, 18)

(24, 29)

Figure 2.2: Example of a simple geometric location model using a local
coordinate reference system.

2.2.1 Geometric Location Models

Geometric location models use global or local coordinate reference sys-

tems (CRS) to describe a location. Such systems typically output Carte-

sian coordinates, which, for indoor settings, are often mapped to rooms

based on available map data [87]. Most geometric models provide support

for multiple CRS and hence include mechanisms to translate locations

between different systems. Geometric systems are particularly well suited

to calculate exact distances or other spatial properties, like the size of an

area (e.g. a country). Figure 2.2 illustrates the use of a simple geometric

location model with local coordinate reference. Based on the floor plan

of the building, the lower left corner has been chosen as point of origin.

Accordingly, the coordinates of the green location are (24, 29) in re-

spect to the axis while (48, 18) denotes the blue location. In order to

calculate the exact distance between these two locations, simple vector

algebra suffices. By the same means, we can easily calculate the area of

the yellow or blue area in Figure 2.2.
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2.2.2 Symbolic Location Models

Symbolic models, in contrast, use identifiers such as labels instead of

geometric coordinates to describe locations. Based on the grouping by

Becker and Dürr [10], we classify symbolic models into the following cat-

egories: unstructured, set-based, hierarchical, graph-based and combined

symbolic location models .

C33

C35.2

LAB

Meeting
Room

B = {C45.2, C45.1, 4C3.2, C43.1}

Hall

A = {C47.2, C47.1, C45.2, C45.1}

1 3 5 6

2 4

Figure 2.3: Different variations of symbolic location models (based on
[10]).

Unstructured Location Models

In its most basic form, symbolic location models comprise simple location

identifiers. Using labels as identifiers in particular has great advantages,

as human readable labels are already used to denote locations. Moreover,

in publicly accessible buildings like office buildings or schools, rooms

are almost always labeled using a scheme. In Figure 2.3 we find five
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blue labels. One of these rooms for example is labeled C33. If we used

the very same label as identifier in an unstructured model, everybody

familiar with the labeling scheme used in a building knows where to

find this room. Such schemes are often designed to reflect the building’s

layout. Using this knowledge, we can deduce more information from a

label. In the case of our example label from above, which in its totality

is IFW C33, IFW is the code for the building, C is the level or our floor

whereas the number 33 denotes the exact room on this floor. As such

numbers are mostly assigned in sequential manner, we can deduce the

neighborship relation of two locations. For example, given the scheme

used in our building, we known that the rooms IFW A32 and IFW A33

are adjacent just by looking at the label. However, as there are often

discontinuities in the labeling of rooms, this deduction is not always

correct.

Although being very simple, unstructured location models thus allow

to deduce more information such as connected-to or contained relations,

provided that the labels are assigned using a scheme. In practice, it

is often not necessary to explicitly model additional information at all.

Regarding modeling effort, additional information can be added quite

easily to elevate the unstructured models to graph-based, set-based or

hierarchical location models.

Set-based Location Models

Set-based location models consist of a set of symbolic identifiers, e.g.

all the room numbers of a building (note the yellow and green labels

in Figure 2.3). Thus, a location is defined as a subset of identifiers.

Location A in Figure 2.3, for example, comprises the identifiers C45.1

and C47.1. As it is straightforward to determine overlapping locations,

set-based location models are very well suited to answer range queries

such as “return the locations of all printers located on the second floor”.
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Graph-based Location Models

Graph-based location models represent symbolic location identifiers as a

set of vertices. Direct connections, e.g., doors between rooms or elevators

between floors, are consequently represented as edges in the graph, as

shown in the upper left corner of Figure 2.3. Vertices in such a graph can

be given a weight, which can be used as a notion of distance. As graph-

based models naturally support the definition of the relation “connected

to”, they are very well suited for nearest neighbor queries and navigation

purposes.
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Figure 2.4: Example of a hierarchical lattice-based location model (based
on [47]).
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Hierarchical Location Models

Hierarchical location models consist of a set of locations ordered accord-

ing to given criteria. Mostly, the spatial containment is used as criteria

to order the locations. If the locations do not overlap each other, this

leads to a tree. For example, the root of a hierarchical location model is

a building whereas the different floors are modeled as child nodes to the

root node and rooms are leave nodes. However, as locations may overlap,

the resulting data structure must be modeled as a lattice, as illustrated in

Figure 2.4. Because hierarchical location models are mostly based on the

containment relation, they are very well suited to answer range queries

such as “return all rooms of building A”.

2.2.3 Hybrid Location Models

To benefit from the advantages of geometric models, namely the ability to

calculate exact distances, while keeping the advantages of symbolic mod-

els, namely the support of range and nearest neighbor queries, hybrid

location models are created that comprise both symbolic and geometric

information. Figure 2.6 shows a simple example of a hybrid location

model. The symbolic part is represented using a graph that intercon-

nects the rooms on two floors. The spatial expanse of these rooms is

geometrically modeled using polygons.

As it combines the advantages of both geometric and symbolic loca-

Unstructured Graph-Based Hierarchical Combined Set-Based

Modeling EffortModeling Effort

Supported 
Queries

Position

Supported 
Queries

Nearest NeighborSupported 
Queries

Range

Distance SupportDistance Support

“Connected to” Relation Support“Connected to” Relation Support

“Containment” Relation Support“Containment” Relation Support

Very Low Medium Medium Medium High

Good Good Good Good Good

Limited Good Basic Good Basic

Limited Basic Good Good Good

Very Limited Very Limited Good to Very Good Good to Very Good Limited

No No Yes Yes Yes

Limited Good Limited Good Good

Figure 2.5: Properties of symbolic location models (based on [10]).
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LAB 31 # (0,8.2)

IFW # (0,0)

IFW 

C4X LABS 

C45.1 LAB 31 

Figure 2.6: Example of a hybrid location model, combining symbolic
location identifiers with spatial properties. The simple tree in the top
left corner represents the symbolic subset hierarchy.

tion models, hybrid location models are used in many Ubicomp applic-

ations [28, 47]. One simple representative of a hybrid location model

is the RAUM model proposed by Beigl et. al [11]. The RAUM loca-

tion model describes locations of artifacts relative to the environment

and in relation to each other. A main design goal of RAUM was to

capture significant features of human perception in order to make the

model relatively easy to read for humans. Locations are represented by

symbolic identifiers and structured in a tree to reflect organizations and

rooms, for example. A little more complex and powerful is the hybrid

location model introduced by Jiang and Steenkiste for Carnegie Mellon’s

AURA project [53, 81]. This model combines the advantages of sym-

bolic and geometric location models while clearly separating the model

and its representation. Jian and Steenkiste proposed to use a formatted

Universal Resource Identifiers (URI) compliant string to represent all the

above concepts. The proposed syntax allows to combine symbolic (e.g.

the name of a room) and geometric (e.g. the base area and height of a
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building) within a single URI. Thus, geometric attributes like the exact

expanse are contained within the symbolic representation.

2.3 Positioning Technologies

To determine the position, i.e. to detect the current location, many po-

sitioning systems exist for both outdoor and indoor applications. While

the application of outdoor positioning systems like GPS or GLONASS1

is very common these days (e.g., GPS-enabled mobile phones, car navig-

ation systems), there is no equivalent standard for indoor location sys-

tems. Moreover, many applications, especially in the area of Ubicomp,

require more accurate positioning in both dimensions, space and time

[70]. Such applications mostly imply distributed services, like messaging

based on the current location of the user [48], or adapting the settings

of a device [28]. As discussed in Chapter 1, indoor positioning systems

are thus built to match specific application requirements and used where

the high costs of an installation can be justified, for example in hospitals

where such systems are used to track doctors and patients. In result, the

many specific and different requirements and demands made on indoor

positioning systems in regard to accuracy, freshness, and reliability lead

to the development of very different mechanisms and techniques. In the

following, we will introduce the main concepts and clarify the terms used

to describe the process of location acquisition and its result.

2.3.1 Methods

For special purpose positioning systems such as high-speed tracking or

high-resolution positioning, special sensing technologies have been de-

veloped using ultrasound, light, or electro-magnetic field strength [143].

However, most indoor positioning systems utilize the physical proper-

ties of radio signals to determine the location of a device. Illustrated in

Figure 2.7 is a classification of positioning methods used in indoor posi-

1GLONASS, like GPS, is a radio-based satellite navigation system. Constructed with the same
goals as GPS (and for the same reasons), it is operated by the Russian Space Forces.
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Figure 2.7: Overview of different positioning methods (based on [91]).

tioning. With the exception of Dead Reckoning, all of these methods can

make use of radio signals. In the following, we will discuss the different

methods in detail.

Proximity

Proximity, or cell of origin as it is sometimes referred to, is a very basic

and very simple method of positioning. It acts on the assumption that

tags or signal sources of a certain kind are distributed throughout the en-

vironment. In addition, these sources or tags are assumed not to change

their location. The mobile device to be located can sense these sources

only when within close range however. As the location of the source is

known to the system, devices can determine position simply from the

fact that they can sense the source. Bohn for example used an RFID tag

infrastructure as source for a proximity-based positioning system [17].

Other proposed systems [67, 120] used Bluetooth devices to achieve the

same goal.

While being very simple in design, proximity-based systems only al-
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low for very coarse accuracy. In addition, without combining this method

with more sophisticated techniques, it is only capable of providing sym-

bolic identifiers. The greatest advantage of this method on the other hand

is its unmatched precision when used with short range signals. Once we

can sense the source signal, we can be almost absolutely sure about our

location.

Dead Reckoning

Dead reckoning is a method that allows to estimate one’s current location

based on a previously known position. Dead reckoning is mostly used in

robotics [21]. Given a fix starting point, dead reckoning can determine the

current position by advancing based on speed and heading over elapsed

time. This method is heavily used in automotive navigation systems to

guarantee accurate positioning where GPS fails, for example in tunnels.

Unlike cars, where measuring speed and heading is relatively simple, it

is technically very challenging to measure these parameters with wearable

or portable devices. Still, Ojeda and Borenstein for example built a

measurement unit that can be attached to a shoe and still manages to

measure six degrees-of-freedom [123] with good results. However, the cost

for such a device is very high as it makes use of sophisticated hardware.

The application is thus limited to use-cases that justify the high cost.

Randell et al. [131] use inexpensive pedometers and accelerometers to

perform simple step sensing and step length estimation with satisfactory

result. Even heading information could be determined using only a two-

axis compass. However, it was necessary to maintain close coupling to

the body.

The big advantage of dead reckoning is its independency of beacons

or landmarks. In order to obtain accurate results however, it requires

complex and costly sensing hardware. Consequently, dead reckoning is

often used to improve the reliability of indoor positioning systems where

requirements justify costs, as Borenstein et al. explain [22].



42 Chapter 2. Background

Absolute Distance

A more complex positioning method is trilateration by means of absolute

distance. Conceptually based on the idea of triangulation, positioning

with absolute distance measures is a method for calculating the intersec-

tions of (at least) three spheres given the position of the centers and the

respective radii of the spheres, as illustrated in Figure 2.7. For indoor

positioning purposes, radio signals from known sources are often used as

transmitters. Hence, the measure of distance is defined by the relation

between the speed of light and the absolute time of arrival at a certain

base station, i.e. the time it takes for the signal to travel from transmitter

to receiver.

The most prominent positioning system making use of absolute dis-

tance is certainly GPS. However, this method has also been used for

indoor positioning with great success, for example by Bahl and Padman-

abhan in their RADAR system [5]. Using laptop computers as mobile

devices, Bahl and Padmanabhan achieved a median resolution in the

range of two to three meters. Given the characteristics of radio channels

indoors, this certainly is a satisfactory result. Nevertheless, using abso-

lute distance, or TOA, works best in open spaces. This method assumes

the radio signal to travel at constant speed, which is very rarely the case

in indoor environments. Moreover, to accurately perform trilateration,

the clocks of all senders and receivers must be synchronized precisely,

something that is complex, erroneous, and thus difficult to achieve.

Relative Distance

Like the method of Absolute Distance, Relative Distance makes use of lat-

eration. This method, also known as Time Difference of Arrival (TDOA),

uses the relation between the distances from fixed sources to a mobile

sensor as measurement. The respective relative distance from a mobile

sensor to two fixed sources form a hyperbola of possible positions. In

figure 2.7 for example, the relative distance of the mobile sensor to the

blue cell towers in the lower left and the cell tower in the upper left form
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the blue hyperbola with a given uncertainty due to clock synchroniza-

tion errors. The relative distance between the blue cell tower and the

cell tower on the right form a second, green hyperbola. The intersection

of these hyperbolas indicate the position of the mobile sensor.

An indoor position system that uses the relative distance of 802.11

radio signals has been proposed by Yamasaki et al. [164]. The proposed

system measures relative distance as the difference in propagation time

for pairs of 802.11 access points. As these access points are time syn-

chronized by default, the difference can be computed in their respective

clock time. This however requires special software to be run on the access

points.

Similar to the above presented method of absolute distance, this

method can be used for systems with high precision requirements. How-

ever, it also shares the same drawbacks, namely the need for special

sensors and the prerequisite of knowing the exact position of the fixed

sources. Moreover, the precision can be severely degraded by signal re-

flection, absorption, or effects caused by multipath signals.

Angulation

The method of Angulation determines position from angle measurements

in respect to fixed sources at known locations. In the example in Figure

2.7, each of the angles Φ1, Φ2, and Φ3 describes a line of possible posi-

tions. The position can then be estimated by selecting the most probable

intersection of all three lines.

A good example of an indoor position system using angulation is the

VHF Omnidirectional Ranging (VOR) system proposed by Niculescu et

al. [40, 41]. Based on extended 802.11 access points, VOR allows to

make angle measurements and by doing so is capable of positioning with

an average error of about one meter.

Angulation basically shares the advantages and disadvantages with

the lateration methods using absolute or relative distance. It is however

even more sensitive to the effect of multipathed signals. This method

is thus often used in combination with TOA or TDOA, for example to
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solve problems with ambiguity [39].

Pattern Recognition

The term Pattern Recognition is used to describe different mechanisms for

indoor positioning [93]. In general, pattern recognition describes meth-

ods that estimate positions by looking for patterns in measurements.

This may be a 802.11 radio signal but may also be a video stream. An

example of a system using the latter is Cantag [135]. Cantag uses video

streams from distributed cameras to estimate the position of visual mark-

ers. The most prominent, and for the purpose of this thesis most relevant,

method of pattern recognition however is location fingerprinting. We in-

troduced this method in Section 1.2. A detailed analysis and description

will be given in Section 2.4. Using location fingerprinting, systems have

been proposed that use GSM signals (for example [124]), WiFi signals

(for example [5, 87]), and also Bluetooth signals [7]. Extending this

idea, LaMarca et al. [143] are using multiple wireless technologies sim-

ultaneously to increase both the robustness as well as the accuracy of

localization.

Compared to other methods of positioning, location fingerprinting

falls short when it comes to delivering centimeter precision. In addi-

tion, the fact that the radio map must be trained makes this method

costly in terms of maintenance. However, of all methods discussed, loc-

ation fingerprinting is the only positioning method that does not require

special hardware to be installed or custom software to be deployed to

access points. Because cost is a key factor when it comes to the de-

cision which method to use, this is a clear advantage for location fin-

gerprinting. Moreover, surveys of the most prominent challenges and

issues in Ubicomp have shown that for almost all existing applications

in this domain it is sufficient to localize a user with room-level precision

[6, 35, 57, 70, 82, 160]. Consequently, we used WiFi fingerprinting in our

own work. As this is our method of choice, we examine this method in

more detail.
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2.4 Location Fingerprinting

Location fingerprinting can theoretically use any physical phenomenon

that differs between locations, even light or temperature. It is of course

beneficial to use sources that are temporally more or less stable. Hence,

most indoor positioning systems use radio signals such as GSM, Bluetooth

or 802.11, i.e., WiFi. In particular WiFi fingerprinting [5] has been very

popular for indoor positioning, because it requires no new hardware in-

frastructure for sites that already have WiFi. We introduced the main

concepts of WiFi fingerprinting, namely the radio map and the estim-

ation method in Section 1.2. In the following, we will elaborate on the

roles and responsibilities of all devices required for location fingerprinting.

Following Kjærgaard [93], we present the terminology used throughout

this thesis. As in particular the training of the radio map hinders broad

deployments of location fingerprinting systems, we analyze the problem

of training in more detail in the last part of this section. In doing so, we

identify possible solutions to this problem.

2.4.1 Roles and Responsibilities

Infrastructure-based location fingerprinting is per-se a distributed sys-

tem with many entities involved, from wireless clients to base stations

and servers. In this respect, roles denote the assignment and division of

responsibilities between these entities. The manner of how these roles are

assigned inherently affects the implementation of the system as well as

the complexity required to provide security and privacy properties. Ac-

cording to Küpper [99] and Kjaergaard [91], infrastructure-based system

can be divided into three categories: terminal-based, terminal-assisted,

and network-based systems. The difference between these categories is

the assignment of roles, i.e., who initiates the measurement process, who

is responsible to observe radio signals, and who takes care of storing the

measurements in the end. Moreover, the different categories assign the

task of storing the radio map and executing the estimation method to

different roles, as illustrated in Figure 2.8.
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integrated Storage
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Figure 2.8: Classification of different assignments of responsibilities
(based on [91]).

Terminal-Based

With terminal-based positioning systems, the measurement of the re-

ceived signal strength (RSS) and the location estimation are executed

by the mobile terminal, i.e., the user-operated device. Thus, the radio

map has to be stored on the mobile device. Because the terminal is not

required to transmit or share any measurement, it is almost impossible to

detect its location. As it is quite simple to guarantee a high degree of pri-

vacy with this approach, many systems have been built as infrastructure-

and terminal-based systems [126, 143]. In addition, terminal-based posi-

tioning allows to include WiFi access points, Bluetooth devices, or GSM

towers that are not controlled by the location server [143]. However,

storing the radio map on the mobile device naturally prevents a simple

sharing of radio map entries between devices. If the devices should use

the same radio map, the terminal is required to synchronize with all

other devices every time it updates its radio map. Obviously, this can

cause serious problems when it comes to scalability. Thus, the biggest

advantage of terminal-based positioning, namely that the radio map is

stored at the device, is also its biggest drawback. Although being favor-

able from a privacy point of view, terminal-based positioning does not

really work with resource-constrained devices such as feature phones or
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smart cards. This also means that the algorithms used for the estima-

tion method must be relatively simple as sophisticated algorithms might

overstrain the terminal.

Network-Based

As the name already implies, in network-based positioning systems the

complete procedure of locating a device takes place in the network. As

illustrated in Figure 2.8, the RSS values are measured by the access points

or base stations, which is then forward the readings to a central server.

The main advantage of this approach is that all the heavy lifting is done

by powerful devices having power supplies. This is very resource-saving

and allows thus to use simple terminals such as smart cards or active

badges. The downside of network-based positioning however is that the

positioning software needs to be installed and maintained on the base

stations and intermediaries, which usually comes at a high cost and does

not allow easy operation in different organizations. Moreover, privacy is

a huge issue with this approach, as the position of any terminal can be

observed all times, giving almost no control to the mobile device’s user.

Terminal-Assisted

Between terminal-based and network-based positioning lies the so called

terminal-assisted positioning, where the workload is divided between the

terminal and the server. While the terminal is used to observe and meas-

ure RSS, the server’s job is to store the radio map and to execute the

location estimation. The main reason to choose this approach is the

ability to store the radio map on a central server, as this allows to eas-

ily share fingerprints. In addition, as the estimation method is executed

on the server as well, this assignment of responsibilities allows to use

resource-weak terminal devices, such as sensor nodes. Moreover, the ra-

dio map can be very large and the algorithms used for the estimation

method can be very complex. Terminal-assisted positioning has many

advantages and has thus been the method of choice for many indoor po-
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sitioning systems that have been proposed, for example [15, 33, 87, 165],

just to name a few. As we use a terminal-assisted approach in our work,

we explain this type of role and responsibility assignment in more detail,

thereby clarifying the terminology used throughout this thesis.

MAC: 0:26:f2:98
ESSID: eth
RSSI: -48 

Beacon

Time: 1291240420

Measurement

Beacon 1

Beacon 2

Beacon 3

Beacon 4

Access Points Terminal Server

Label: ‘IFW D47.2’

Fingerprint

Measurement 2

Measurement 3

Measurement 1

Label: ‘IFW A10.1’

Label: ‘RZ H100’

Figure 2.9: Basic concept of measuring as used in terminal-assisted loc-
ation fingerprinting.

Illustrated in Figure 2.9 is the process of recording a measurement,

which is subsequently stored in the radio map or used to estimate the

position. This process is initiated by the terminal that scans the network

for base stations in its vicinity. When using WiFi, this can either be done

actively or passively [86, 93]. While active scanning is usually faster,

passive scanning generally yields more results. We explain the differences

in more detail in Chapter 3. While scanning, the terminal collects a

beacon for every access point. The beacon contains at the least the

following information:

• MAC : The access point’s unique identifier for media access control.

In infrastructured WiFi networks, this is also referred to as the basic

service set identifier (BSSID).

• (E)SSID : The (extended) service set identifier of the network the

access point is part of. This string is supposed to be human read-
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able, for example “public” and is the same for all access points of

this network.

• RSSI : The received signal strength indicator. It is a measurement

of the power in the received radio signal.

Once a scan is complete, the terminal has a list of beacons, one beacon

from each access point it could observe. This list is what we refer to as a

measurement, as it contains all beacons that were observed at a certain

point in time. Hence, a measurement always contains a timestamp. Once

forwarded to the server, the measurement is then either added or com-

pared to a fingerprint in the radio map. A fingerprint is the collection

of all measurements taken at the same location. Hence, it representers

a unique, impression of a location. Assuming simple symbolic location

identifiers, a fingerprint must at least have a string label to indicate the

location, as illustrated in Figure 2.9. As a fingerprint may contain mul-

tiple measurements, taken at different times and over a long period of

time, it is crucial to choose an appropriate data structure. The entirety

of all fingerprints makes up the radio map.

2.4.2 Estimation Methods

The estimation method denotes the algorithm used to find the “right”

fingerprint given a measurement. In this section we present a very brief

overview of the most popular estimation methods. We elaborate on the

used and proposed estimation methods in more detail in Chapters 4 and

5. To estimate the location, location fingerprinting systems either employ

a deterministic method like Nearest Neighbor or Support Vector Machine,

or, on the other hand, a probabilistic method like a Hidden Markov Model

[91]. One of the advantages of using a probabilistic method is that the

probability of the result is a good indication of confidence. Moreover,

this likelihood can be reused or fused with other methods and models.

In this respect, a method that proved to work very well is Bayesian

Inference, used for example by Castro et al. in their “Nibble” system

[33], which can easily incorporate other contextual information such as
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the likelihood of a user going to a particular location. Much like Nibble,

Ferris et al. [49] use gaussian processes to generate a likelihood model for

signal strength measurements. Augmenting this idea, Madigan et al. use

a hierarchical bayesian approach that can even provide location estimates

without any location information in the training data [114]. Nonetheless,

when using probabilistic positioning methods the performance and thus

the accuracy can primarily be improved by adding more measurements to

the fingerprint database [29, 34]. In our work we used both probabilistic

as well as deterministic estimation methods. As the choice of method

is decisive when it comes to achieving high accuracy and performance

respectively.

2.4.3 Training the Radio Map

In theory, WiFi fingerprinting is capable of providing a resolution of only

a few meters and can thus support room-level localization. And yet, as

we discussed in the introduction, the biggest drawback of WiFi finger-

printing is the high cost that comes in the form of having to establish

the radio map. As to achieve high accuracy from the noisy WiFi signal,

WiFi fingerprinting systems require extensive calibration, mostly carried

out manually and prior to use. For example, King et al. [87] were able to

achieve an average error distance of less than 1.65 meters, but required

prior calibration with 80 measurements every square meter (20 measure-

ments each at 0◦, 90◦, 180◦, and 270◦ orientations). Even though a single

active WiFi scan takes only about 250 ms, the time needed to measure

all four orientations and to move between locations quickly adds up to

tens of seconds per reference point. In total, the training phase for an av-

erage 100 m2 flat could take well over one hour. In addition, the training

may miss longer-term variations. Systems have been proposed that omit

the offline-training phase, for example the work of Lim et al. [109], that

requires no training by automating the calibration of the effect of wire-

less physical characteristics on RSS measurements. But such automation

requires very accurate RSS readings and thus the usage of sensitive WiFi

network adapters. And while training time can be reduced by modeling
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the environment [80], this approach is less accurate and requires addi-

tional information (such as floor plans) that are not always available or

easy to input.

An additional challenge is to keep the radio map up-to-date. In this

respect, the biggest problems are long-term signal variations and changes

in the radio signal environment, for example caused by newly installed

or replaced access points. As we will show in Chapter 3, WiFi signal

fluctuate substantially over the course of only a few days, let alone weeks.

Consequently, it is necessary to continuously train the radio map in order

to maintain good accuracy and precision.

2.5 Conclusion

Regarding existing location models, we can see that hybrid location mod-

els are best suited to realize the rather complex scenarios in the field of

ubiquitous computing. However, most location models that have been

proposed are still tightly coupled to the other components and integrated

into a framework. However, to easily exchange and process location in-

formation, a common abstraction is a must. In addition, in order to

natively use location information within a programming language, the

corresponding model must be formally described. However, as room-level

precision is generally sufficient for existing applications in the Ubicomp

domain, we use an unstructured symbolic location model. In our sys-

tems we represent a room by a string like for example its name or num-

ber. This model can easily be extended should it become necessary to

add additional information such as graph-based navigational information.

However, this consequently requires work from the contributing users or

administrator. From our experience, we recommend not doing this un-

til a specific need arises, e.g. when an indoor navigation app should be

built.

As one of our goals was to reduce the cost incurred by installing,

maintaining, and using an indoor positioning system in order to boost

proliferation, we choose a terminal-assisted approach. Only this method
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allows to install an indoor positioning system without having to change

the installed network infrastructure and to share radio maps between

terminals fast and easily. To achieve our goal of reducing the effort and

thus cost of training the radio map, we believe that sharing fingerprints

between users is crucial, as we will explain in the next chapters.



There’s a way to do it better - find it.

– Thomas A. Edison

3
WiFi Signal

Characteristics

Using WiFi radio signals for location fingerprinting is beneficial for many

reasons, as we have shown in the previous chapters. The biggest prob-

lem, however, is that the received signal strength (RSS) changes over

time. These fluctuations are caused by many different factors such as

changing weather or nearby devices using the same frequency band, ori-

entation of user and used device, or the presence of humans. To better

understand the effects and significance of those long-term variations in

signal strength, we performed two experiments. In doing so, we were par-

ticularly interested in patterns of signal separation, correlation between

changes in RSS, access point visibility, as well as the effect of human

presence. Understanding these properties is, as we will see in the next

chapters, most important to guarantee an evenly high accuracy.

In our first study, we observed the RSS using 5 laptops, measuring

at the same location for a duration of 20 days. These laptop computers

53
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had been placed in selected locations and were only used for the purpose

of recording RSS, i.e., no human was using it during the study. How-

ever, some of them were placed in offices right next to or on top of an

employee’s desk. Each laptop collected a measurement every minute. As

we didn’t change the location of these laptops, we refer to this study as

“controlled”. For our second study, we developed an iPhone App that

could be used to record RSS measurements. This App was given to

volunteers, with limited instructions how to use it. Unlike on the first

study, where measurements were taken automatically, we relied on the

participants to start the App and record RSS measurements. Therefore,

we refer to this study as “user-driven”. During this study, 14 participants

recorded measurements over a period of 6 weeks.

In the following, we will explain the setup, present the experimental

procedure, and discuss the results for each study individually, starting

with the controlled study. The second study, were we recorded RSS

measurements over a much longer time, allows for interesting conclusions,

because the pattern of how the participants recorded measurements re-

sembles the use of an indoor positioning system to a high degree. We will

therefore spend more time on analyzing the measurements of the user-

driven study and present more detailed results. Finally, we conclude this

chapter by summarizing our findings and listing guidelines for designing

indoor positioning systems that must cope with long-term signal vari-

ations.

3.1 Controlled Study

3.1.1 Setup

This Section 3.1 is based on joint work with Kurt Partridge, Maurice

Chu, Marc Langheinrich. While I was the main researcher on this topic,

Kurt, Maurice and Marc supported my analysis and initial investigation

into interval labeling. Together we published the results in our paper

entitled “Improving Location Fingerprinting through Motion Detection

and Asynchronous Interval Labeling”, which was published in proceed-
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2214

2212

2210

2230

2152

Figure 3.1: Setup of our controlled WiFi signal study at PARC. The red
circles indicate the APs of the public WiFi network. The green circles
indicate additionally APs we added for the purpose of the study.

ings of the Fourth International Symposium on Location- and Context-

Awareness (LoCA) held in Tokyo, Japan, in May 2009 [19]. I was the

main author of this paper and wrote the main parts, this chapter is

based on, myself. I worked on this paper while I was visiting researcher

at PARC. Maurice and Kurt advised me in my research and, together

with Marc, helped me to improve the quality of the paper by giving it

more structure and polishing my english.

The controlled study was conducted at the offices of Palo Alto Re-

search Center (PARC) in California. As illustrated in Figure 3.1, we

placed 5 MacBook Pro laptops in different rooms. We used different re-

visions of MacBook Pro with different network cards from either Atheros

or Broadcom. For 20 days, each laptop did an active WiFi scan every

minute and recorded the access points’ unique identifiers (BSSID) and
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received signal strengths (RSS). In placing the laptops, we intentionally

choose three adjacent offices. As one can see in the lower left of Figure

3.1, we placed a laptop in offices 2210, 2212, and 2214. The laptops

in offices 2212 and 2214 were placed close to the wall having the same

orientation.

The laptops used for observing the RSS were not used for other pur-

poses than recording measurements, i.e., they were not used for work.

With the exception of the laptop placed in room 2230, all devices were

placed on the desk of an employee working in the respective office. Room

2230 on the upper left in Figure 3.1 is a meeting room that was either

empty or, in case of a meeting, filled with as many as forty people. In

this respect, we expected to get interesting comparisons, given that we

expect the RSS to change substantially depending on how many people

are in a room.

Active Passive

Probe Request
(Broadcast)

Probe Response

Probe Response

Beacon

Beacon

Beacon

(a)

Active Passive

Probe Request
(Broadcast)

Probe Response

Probe Response

Beacon

Beacon

Beacon

(b)

Figure 3.2: The two existing modes for IEEE 802.11 network discovery
(based on [93]).

For scanning the WiFi network and recording the RSS we wrote our

own software. As mentioned in Section 1.3.2, the concurrent use of the

network interface card (NIC) for both scanning and data transmission can

considerably degrade throughput as scanning almost always interrupts
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the data flow [86]. One easy way to alleviate this problem is to reduce

the time required for scanning. While the NIC has to listen and wait for

access points to send beacons in IEEE 802.11’s passive scanning mode

[79], active scanning forces access points to immediately send a beacon

by actively broadcasting a probe frame. Although passive scanning gen-

erally allows to observe access points with very low signal strength and

subsequently yields more access points than active scanning, it can take

up to 80 seconds for a passive scan to finish. In contrast, an active scan

does only very rarely take longer than 2 seconds. In our study, we used

active scanning.

One problem we encountered with the WiFi setup at PARC was the

visibility to the network used for internal purposes. For security reas-

ons, this network was setup so that the SSID would not be visible to

unconnected devices. As a consequence of this policy, we were only able

to scan the public WiFi network setup for guests. The respective access

points and their locations are depicted as red dots in Figure 3.1. To get

a realistic picture nevertheless, we installed additional access points just

for the purpose of the study. These access points are depicted as green

dots in Figure 3.1.

3.1.2 Experiment

The controlled WiFi study at PARC lasted for 20 days. During this

time, we had to exchange two laptops because of technical difficulties.

The two laptops in question were at the end of their lifetime and crashed

pretty often. They were replaced with MacBook Pro models from the

same generation, having the same aluminum case, antenna and NIC. To

better understand the effect of human presence, we relocated the laptop

in the meeting room (2230) after 10 days. For the first 10 days, it was

in the back of the room as illustrated in Figure 3.1. For the second 10

days of the study, we placed it to the opposite side of the room, right

next to the speaker’s desk. The only other change we made was to alter

the orientation of some chosen laptops by 90 degrees. We expected to

observe potential signal variations caused by interference.
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3.1.3 Results

Figure 3.3 shows the signal separation for three selected access points

measured over the course of one day. The red markers represent the

readings as observed in room 2210, the blue markers these from room

2212 and the green markers those recorded in room 2214. The graphs

in Figure 3.3 represent the RSS measured from two access points, each

drawn on either the x or y axis and is thus a good depiction of signal

separation. Of course, the clearer this separation is, i.e., the further apart

the marker clouds in this figure are, the easier it is for any estimation

method to make a decision. From Figure 3.3 we can see that access

point AP1 does not really help to tell readings from room 2212 and 2214

apart. Readings from AP2 on the other hand are very beneficial when

it comes to tell the difference between 2210 and the other two rooms.

Finally, readings from AP3 are most convenient to tell these three rooms

apart. We can see that readings from different access points have different

significance for different fingerprints.
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Figure 3.3: Signal separation for 3 different access points as measured in
3 adjacent rooms.

Figure 3.4(a) shows the signal strength variation for three laptops

over the course of a day. Different lines correspond to the signal strengths

from different access points. While rooms 2212 and 2214 are adjacent to

each other, room 2152 is further away. Room 2212 and 2214’s patterns

resemble each other much more than either of them do 2152, illustrat-



3.1. Controlled Study 59

ing how these readings can be used to determine position. However, the

graph also shows that there is much short-term variation from minute-to-

minute as well as longer-term fluctuations. The short-term fluctuations

arise not only from the motion of people, average per-access point vari-

ance on low-traffic weekends was still 68% of the variance during the

week.
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Figure 3.4: Signal strength variations from three laptops. Rooms 2212
and 2214 are adjacent to each other, and Room 2152 is further away. Sig-
nal variations happen on different timescales, ranging from a few minutes
to several hours.

Additionally, different access points have different variances. Fig-

ure 3.4(b) shows the detail of the first hour, with individual scans now
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indicated by circles. This shows how readings can appear in scans at

different rates independent of the mean received signal strengths. Ana-

lyzing these measurements, we found substantial differences in the vari-

ance across different access points. We also found these variances to be

independent of receivers. However, we generally found little variation in

the short-term variance, i.e., mean signal strength was more or less stable

over several hours, yet fluctuated slowly day by day.

In addition to the short-term variance, we observed several sources of

long-term variance between stationary senders and receivers. First, we

noticed a temperature effect from a receiver that was exposed to sunlight.

This change affected the received signals from all access points. However,

this effect might not be a concern for a fingerprint-based location system

as the relative ratios of all signal strengths did change only marginally.

A second source of long-term variation was that of other receivers. As

mentioned, we placed two laptops back-to-back with an office wall separ-

ating them (see rooms 2212 and 2214 in Figure 3.1). We believe that the

antenna of the second receiver, which was tuned to the same radio fre-

quencies, provided an exceptionally effective source of signal reflections.

The long-term variance, which is especially noticeable during the day in

Room 2212 (see Figure 3.4), shows that for nearby locations it may not

suffice to build the radio map only once.

To our surprise we could not not find effects of significant level-off, i.e.

the network adapter reported the same RSSI from the beginning and did

not change significantly over the first measurements. When measured

as fast as possible, the values from the first readings were the same as

those about 1-2 seconds later, when the signal might change by 1dBm.

Another finding we could establish is that the signal changes about every

15 seconds on average. It is thus sufficient to scan the network about

every 20 seconds, even when collecting measurements over a long period

of time.

Analyzing the whole dataset, we could also observe that signal fluc-

tuation over time is substantial. Thus we conclude that the more meas-

urements a fingerprint comprises, the better. Ideally these measurements
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are taken in different situations and at different times of the day. For

preliminary testing, we used libSVM1, a support vector machine library

to simulate an actual position estimation method. Using these results, we

found that at least 5 access points are needed to guarantee an accuracy

of over 95%.

3.2 User-Driven Study

In the controlled study we took samples in a systematic way, as it was

done in many past studies on WiFi signal characteristics before. Al-

though giving first insights, results of these studies do not reveal all

phenomena of signal degradation and variation as they occur when us-

ing WiFi for indoor positioning. For example, Kaemarungsi found in his

study that RSSI is normally distributed [83]. As we will see in this sec-

tion, this does not hold if measurements are taken collaboratively by the

users of the indoor positioning system. As user-contributed, collaborat-

ive fingerprint labeling is a key concept of our work, we needed to get a

clearer picture of signal variations as they occur when RSS measurements

are taken by the users and thus in a non-systematic manner.

We believe that the approach of collecting measurements from users

as opposed to experts is more realistic. Users collect data from locations

they visit, for the time they spend in those locations, while they place

their mobile device at arbitrary spots in these locations. Algorithms

using fingerprints contributed by end-users would most likely have to

deal with data collected in a similar fashion, as opposed to data collec-

ted in a systematic way such as an identical number of measurements

taken in every room. Thus, we developed an iPhone application that

allows to measure RSS values. To get as many fingerprints as possible

we asked users to help and participate in collecting the data. The iPhone

application was given to 14 users in two different groups who recorded

measurements over a period of 6 weeks.

This section is based on joint work with Luba Rogoleva that was first

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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presented in her master thesis on “Crowdsourcing Location Information

to Improve Indoor Localization” [138]. Luba implemented the iPhone

app used to collect data and conducted the data collection under my

supervision. With Luba’s consent, in this section we present figures that

were created using data and tools first used for her thesis.

Figure 3.5: Floor plan of the office group. The red dots are the location
of mobile devices while taking measurements.

3.2.1 Setup

To get as many RSS readings as possible and to get a broad picture, we

recruited participants working in two different office setups. The first

group, consisting of 4 people, had been working in the same open plan

office in a company in Zurich. Their working places are illustrated in

Figure 3.5. We refer to this group as the “office” group. The second

group consisted of 10 researchers working at the offices of ETH Zurich.

We refer to this group as the “eth” group. Participants in the later group

had their offices on different floors in two adjacent buildings on the ETH

campus, with the majority working on the “D”-floor2 in the south wing

of building “IFW”, as illustrated in Figure 3.6. Two more participants

were working on the “A”-floor of the same building while another two

participants had their offices in the adjacent “RZ” building (see Figure

3.7 for a floor plan). Without giving any further instructions, participants

2The floor levels at ETH are labeled alphabetically. Thereby, “A” denotes the lowermost floor.
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were asked to record measurements whenever possible. Although getting

most measurements from the rooms our participants were working in, we

collected readings from different rooms on all floors in both buildings.

Figure 3.6: Floor plan of “D”-floor in building “IFW”. Blue dots mark
rooms with known access points. Rooms where measurements were taken
from both fixed and moving receivers are marked green while rooms where
measurements were only taken from moving receivers are marked red.

From our 14 participants, nine users had an iPhone 3GS, five had an

iPhone 3G and one user had the second generation iPhone 2G. Before

recording data, participants were asked to enter a label for their current

location. We instructed people to enter the room number if applicable or

any other label they would use to refer to the room in question. By the

press of a single button, users could then start recording measurements

from all access points in their vicinity. The application would continue

recording until the user quit the application or the iPhone was picked

up. Using the built-in accelerometer, we detected iPhone movement and

would automatically quit recording as soon as the device was not sta-
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tionary anymore. The application was recording a measurement every

30 seconds.

Figure 3.7: Floor plan of “H”-floor in building “RZ”. Blue dots mark
rooms with known access points. Rooms where measurements were taken
from both fixed and moving receivers are marked green while rooms where
measurements were only taken from fixed receivers are marked yellow.

3.2.2 Experiment

We divided the six weeks of data collection into two phases of three weeks

each. During the first phase, participants were told to have their iPhone

at the exact same spot while recording. When discussing results, we

will refer to this phase as “fixed”. For the second phase, we softened

this rule and people were free to replace their devices while recording

measurements, e.g. from one side of the desk to the other. We will refer

to this phase as “moving” because participants recorded measurements

for the same room in different locations within this room.

After 6 weeks of recording, we counted almost 70000 measurements

that have been collect in 23 different locations. About 30000 measure-

ments were taken during the “fixed” phase, recorded in 19 unique loca-

tions. During the “moving” phase, participants recorded almost 40000

measurements in 16 different locations. Note that the last week of our

study took place during holidays. In this last week we did not receive

measurements from participants in the “office” group since they were on

vacation.
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3.2.3 Results

While we did not have the problem of hidden SSIDs we encountered

during our first study, we had to cope with a similar problem. Most

access points in the IFW and RZ building on the ETH campus are used

as different virtual access points to serve different networks and thus

different SSIDs, but also different BSSIDs, i.e., MAC addresses. We con-

ducted different statistical analyses to determine whether these virtual

access points could be treated as the one physical AP it actually is. This

simplification would be possible if all virtual APs transmitted the same

signal strength. To our surprise, the RSS of different virtual APS being

served by the same physical AP did not only differ most of the time but

also varied significantly. Thus we decided to consider each virtual AP

individually and hence equal to other physical APs.

AP: 0:3:52:4d:e7:90 
(IFW D42)

AP: 0:3:52:4d:e7:90 
(IFW D42)

AP: 0:3:52:1c:31:60 
(IFW D46.2)

AP: 0:3:52:1c:31:60 
(IFW D46.2)

Fixed Moving Fixed Moving

Mean -48.80 -58.30 -63.66 -63.40

Std Dev 4.91 7.25 3.29 3.32

Figure 3.8: Mean and standard deviation (in dBm) by fixed and moving
terminals for two exemplary rooms where we got the most measurements
during the whole period of the study.

From what we learned during our first study, we expected that the

observed RSS is lower the farther away a receiver is located from the AP.

However, while first examining the recorded measurements we observed

that the signal propagation is not only a function of distance between the

transmitter and the receiver but also of different transmitting power of

the specific access point and fading effects. In other words, just because

a receiver is closer to an AP a than it is to AP b does not necessarily

mean we will observe higher RSS values.
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Another observation we made is that the standard deviation is sig-

nificantly higher for moving receivers than it is for fixed receivers when

comparing measurements from the same location. Considering all re-

corded measurements, we calculated a maximal standard deviation for

moving receivers of 9.52dBm and 7.758dBm for fixed receivers. This

finding meets our expectations as intuitively RSS varies more when the

receiver is moved than when it is stationary due to the multi-path effect

which can cause several fades in short duration.

Mean values are not varying much between fixed and moving receiv-

ers. As mentioned above, the mean of RSSI is influenced more by the

large-scale fading effect caused by absorption of signals by obstacles

such as walls and floors. However, in the example shown in Figure

3.8, the mean value of RSSI measured in room “IFW D42” from AP

0:3:52:4d:e7:90 for the moving receiver is almost 10dBm lower than for

the fixed receiver. This can be explained by the relatively short distance

between the AP located in room “IFW D43” and the receiver in room

“IFW D42”, since, as explained in the next paragraph, the closer the

transmitter is to the receiver, the higher the fluctuations.

RSS Distribution

Although usually considered to be normally distributed, we expect the

RSS value recorded by users over a long period of time to behave differ-

ently. Due to the known fading effect of human presence and the fact

that the devices used to record measurements change position between

measurements, we expect to see outliers in the RSS distribution. Figure

3.9(a) illustrates the histogram of RSS as measured by a fixed receiver

at location “IFW A44” for a period of 21 days while Figure 3.9(b) shows

the histogram measured by a moving receiver at the same location for

a period of 17 days. As we can easily see, there is obvious irregularity

in the RSS distribution of the moving receiver while the fixed receiver

shows almost perfect normal distribution. RSS distribution can dramat-

ically change.



3.2. User-Driven Study 67

(a) (b)

Figure 3.9: Histogram comparison of RSS for fixed (a) and moving (b)
receivers.

Access Point Visibility

When recording RSS measurements in the same location, one would ex-

pect to observe the same list of APs. However, due to signal variations

and fading effects certain access points may be captured only at certain

times. Consequently, the number of APs observed by a mobile receiver

at a certain location is not constant over time. For example, while the

number of APs observed stays is almost constant during nighttime when

the signal is relatively stable, it varies a lot over the course of a day.

The extent of this finding is of particular importance for algorithms that

use techniques such as filtering [110]. To investigate this effect, we con-

sidered ten classes of AP visibility. APs that can be observed 0%-10% of

the time comprise the lowest class while APs that are observed 90%-100%

constitute the highest visibility class. Figure 3.10 shows the histogram

for a 5 day and a 16 day period respectively. The measurements used

for this analysis have been taken in the “moving” phase. Comparing

Figures 3.10(a) and 3.10(b) we can see that the number of APs that fall

into the class of 0%-10% increases with longer observation time. From
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this we can deduce that this kind of “noise” is well captured by meas-

uring over a long period of time. Moreover, this is an indication that

filtering APs with low visibility before training the radio map is a viable

(a) Visibility over a period of 5 days.

(b) Visibility over a period of 16 days.

Figure 3.10: Visibility observed by moving receivers in room “IFW A44”.
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approach. When filtering one must precede with caution. We also found

that the visibility of APs can change significantly and, moreover, incon-

sistently between periods of different length. For example, APs that are

only seen rarely when observing for a short time of about 2 hours are

visible for over 60% of the time when observing for 5 days. Moreover, we

also found changes in the other direction as well, i.e., APs that are seen

often in short measurements have low visibility in long measurements.

Thus, estimation methods using filtering techniques based on AP visib-

ility might assign erroneous weights to APs when measuring only for a

short time.

Separation of Fingerprints

Signal separation denotes the degree to which RSS signals and patterns

differ between locations. This attribute is thus essential to indoor posi-

tioning systems using location fingerprinting [83]. Graphs of cumulative

signal separation, such as Figure 3.11(a) give an illustration of the ac-

tual fingerprint of a location. We’ve already seen in Section 3.1.3 that

different APs reveal very different signal separation patterns in different

locations and that not every AP contributes to positioning in a positive

manner. We found the same to be true in our user-driven study. Figure

3.11 for example shows the signal separation for two adjacent rooms in

building “IFW”. While we can see clear separation in Figure 3.11(b), the

two APs in Figure 3.11(a) do not help to distinguish the two adjacent

rooms. We can thus confirm our finding from the first study that usually

more than two APs are needed in order to separate between two loca-

tions close by. With this second study we got the chance to study the

difference of open space offices and offices separated by walls. We found

that separation of fingerprints can be problematic in the open space of-

fice even for two locations that are relatively far away from each other.

Figures 3.12(a) and 3.12(b) illustrate for example fingerprint separations

for two locations “R1.2” and “R1.3”, locations that are about 9 meters

apart. In general, we found that walls significantly influence RSS and

thus help to separate fingerprints.



70 Chapter 3. WiFi Signal Characteristics

(a) APs 0:3:52:1c:33:1 and 0:3:52:4d:e7:93.

(b) APs 0:3:52:1c:33:2 and 0:3:52:1c:62:0.

Figure 3.11: Separation of fingerprints for two adjacent rooms in building
“IFW”. Measurements were collected over a 4 day period.
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(a) APs 0:1e:2a:58:c:e and 0:f:cc:dc:7b:4c.

(b) APs 0:1e:2a:58:c:e and 0:6:b1:14:f1:b5

Figure 3.12: Separation of fingerprints for two locations in the open space
office. Measurements were collected over a 4 day period.
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Effect of User Presence

One of the biggest sources of signal variations in office environments are

people. The high frequency signal of WiFi is very well absorbed by the

human body due to its high water content. As people tend to move

around in an office building, they account for most of the of observed

short-term signal variation.

Figure 3.13: Human-caused signal fluctuations, measured by fixed re-
ceiver during night, early morning, and morning.

Figure 3.13 illustrates the RSS of three APs observed in one of the

rooms in building “IFW” between midnight and 11:30 in the morning.

While the signals are relatively stable during night we see little variation

in the early morning and heavy variations after 9:30 am. The effect of

people’s presence on WiFi signals has been studied in the past [83, 102]

and our results are similar, confirming their findings.
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3.3 Conclusion

Although the findings from the two studies may differ in detail, the gen-

eral conclusions are the same. First and foremost, we found WiFi RSS to

fluctuate substantially, both short and long-term. Besides the fact that

there is less signal variation during night when no people are moving

around, we could not find patterns of RSS variations. Therefore, we can

say that it is not possible to predict RSS variation. Thus, it is necessary

to get as many measurements as possible, ideally taken at different times

of the day and at different days.

One notable learning from the first study was that there is no signi-

ficant level off when taking RSS measurements, i.e., when continuously

scanning, the RSS does not change in comparison to the RSS value ob-

served during the first scan. In the controlled study we also found that

different access points have different variances. As a result of that, APs

can appear at different rates independent of the distance to the terminal

or the RSS. As expected, we found that receivers close to each other signi-

ficantly influence each other’s RSS. This may be problematic in situations

where positioning is required for devices that are mobile but used at the

same location for several hours, such as for example laptops. Regarding

signal separation, we found that walls greatly help to classify locations

with room-level precision. Finally, by analyzing the whole dataset col-

lected in the controlled study, we found that in order to achieve a lower

bound accuracy of 95%, at least 5 APs must be observable at any time.

In our second study, where participants used their mobile phones to

take measurements in both fixed and moving locations within a room, we

found the distribution of RSS to change significantly between different

times of the day. The effect was larger with moving than with fixed

receivers. This confirms our findings from the first study. We conclude

that estimation methods may not depend on a specific RSS distribution.

Many proposed localization algorithms use techniques such as filtering

to improve the locator accuracy based on specific data samples and show

good results. However, the findings of our long-term, user-driven study
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showed the unfeasibility of data-specific improvements such as filtering.

Regarding the difference of fixed to moving receivers, we found that the

standard deviation of RSS is generally higher for fixed receivers. The

mean RSS on the other hand does not vary much, unless measuring very

close to the AP. Generally, we found the deviation in RSS to be smaller

the farther away from the AP. However this is not always the case for

moving receivers. Confirming the findings from our first study, we found

no significant correlation between changes in RSS from different APs.

Also in line with the first study is the insight that the presence of people,

in particular if they move around, greatly influences RSS.

Summarizing our findings, we conclude that it is not sufficient to

measure RSS for a few seconds only. In order to guarantee high accur-

acy and precision, a WiFi fingerprinting based indoor positioning system

must be able to rely on measurements taken for minutes and, once again,

repeated over many days. Only then it is possible to effectively cope

with both short and long-term signal variations. This finding somewhat

invalidates many evaluations of proposed systems where measurements

where only taken instantly and in very controlled situations.



The reality for advanced design today is dominated by three ideas:

distributed, plural, collaborative.

– Bruce Mau, 2004

4
Collaborative Labeling

It is immanent to the principle of fingerprinting that the result of a look-

up is better, i.e. more accurate, the more fingerprint data we have to

compare to. In regard to location fingerprinting where the radio map

contains measurements of often and fast changing radio signals, it is thus

necessary to train the radio map with as many fingerprints as possible

in order to get satisfying results. We have seen in Chapter 3 that WiFi

RSS fluctuates substantially, both short and long-term, which means that

fingerprints have to be maintained over time. Consequently, radio map

training has to be a continuous task that is repeated over and over again

during the whole lifetime of the positioning system. In particular, the

results of Chapter 3 indicate that the best way to cope with long-term

variance is to update the radio map frequently by taking measurements

at different times of the day and days of the week. We believe this will

not only address variations of unknown causes, but also infrastructure

changes such as failing or replaced access points.

To overcome all these problems, we propose a new approach to loca-

75
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tion fingerprinting, which we call collaborative labeling. Instead of having

trained staff collecting fingerprints during a designated off-line phase, col-

laborative labeling relies on user contributed labeling. With collaborative

labeling, any user is empowered to add new labels to the radio map, up-

date or correct existing labels, or simply add more measurements to an

existing fingerprint. Thus, collaborative labeling does not require ded-

icated training phases but rather allows for continuous updates of the

radio map.

Parts of this chapter are based on my paper entitled “Redpin — Ad-

aptive, Zero-Configuration Indoor Localization through User Collabora-

tion”, which was published in proceedings of the First ACM International

Workshop on Mobile Entity Localization and Tracking in GPS-less Envir-

onment Computing and Communication Systems held in San Francisco,

USA, in September 2008 [18].

The focus of this chapter is to analyze the feasibility of collaborat-

ive labeling and its potential to improve indoor positioning. Using what

we have learned so far, we consequently set our focus on using existing

hardware, building a system that does not require maps and, most im-

portantly is easy and cost-efficient to setup and use rather than trying to

improve accuracy. We start by introducing the concept of collaborative

labeling and fingerprinting along with the related terminology. In Section

4.2 we will introduce and analyze different systems and services that al-

low or require user contribution. In doing so, we will assess the properties

and features that are relevant to designing a collaborative indoor posi-

tioning system in detail. Subsequently, we show how the problems and

challenges stated in Chapter 1 can be solved by collaborative labeling as

an approach to indoor positioning. We will discuss the concept of collab-

orative labeling in location fingerprinting systems and present the design

of a reference implementation that was built as proof of concept in order

to verify the feasibility of our method in Section 4.3. In Section 4.3.4 we

discuss the implementation of this design for different mobile platforms.

A discussion and evaluation of our approach concludes this chapter.
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4.1 Building Principles

t

traditional

Radio 
Map

Estimation 
Method

Figure 4.1: The “traditional” approach to train the radio map: before
use, an expert adds measurements to the fingerprints in the radio map
during a designated, offline training phase.

The basic principle of collaborative labeling is user contribution. Un-

like most existing indoor positioning techniques [111] that rely on a des-

ignated administrator to collect characteristic radio signal information as

illustrated in Figure 4.1, collaborative labeling relies on the system’s user

to contribute measurements to the radio map. This paradigm shift not

only simplifies the setup and the inherently required maintenance of the

positioning system but it also allows to benefit from users’ knowledge.

Especially in open areas, such as the entry hall of a big train station for

example, it is not possible to define valid location identifiers as people

tend to name places differently.

The key concept of collaborative labeling is to empower the users of

the system to create and manage the locations in a collaborative way

as illustrated in Figure 4.2. Using collaborative labeling, every user can

create, modify and, most importantly, use location information that was

created by other users. Moreover, the users may update the radio map at

any point in time. We believe that this collaborative approach is feasible

as people evidently like to participate and contribute to folksonomy-

based or crowd-based systems. The massive success of websites such
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collaborative
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Figure 4.2: Collaborative Labeling: Every user may add new fingerprints
or add measurements to existing fingerprints at anytime. There is no
designated training phase.

as Wikipedia1 or OpenStreetMap2 is just one piece of evidence for this.

Recent research in this area has in addition shown that people contribute

because of ideological reasons and even more so, because it is fun [31, 122].

This, however, entails that a system that relies on the contribution of its

users should provide an appealing user interface. We will discuss these

aspects in more detail later on in this chapter.

Bhasker et al. [15] previously explored collecting calibration data

during use, rather than in a separate training step. Their localization

system employs a two stage process. First it computes geometric loca-

tion. The result is shown on a map and can be corrected if necessary.

Corrections are treated as virtual access points and given higher prior-

ity when calculating locations. However, this method requires having a

map and interrupting the user’s primary activity to collect input. The

reported mean error is about seven meters. The system also allows only

one correction per location. Unlike Bhasker et al. we collect room labels

directly from end-users during their use of the system.

However, employing a potentially large user-base to train the radio

map and thus lowering the effort and cost required to setup and maintain

1http://www.wikipedia.org
2http://www.openstreetmap.org
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fingerprints is not sufficient. As we have discussed in Chapter 1, the cost

to setup and maintain a positioning system is only one of the problems

that hinders broad deployment of indoor positioning systems. Any col-

laborative system is only as efficient as the number of participating users

and the degree of their contribution respectively. This means that we

have to lower the barrier to become a user and contributing to the radio

map as much as possible. Not only does this imply an easy-to-use inter-

face, but also to support as many hardware terminals as possible. Ideally,

the system works on the existing hardware the user already owns and it

is thus not necessary to purchase new devices just for the purpose of en-

abling positioning. Moreover, we found that it is often very complicated

and time consuming to get map data or floor plans. As we have shown

in Chapter 2, room-level precision is sufficient for most applications in

the Ubicomp domain. Thus, following the example of Castro et al. [33]

as well as Haeberlen et al. [61], we use an unstructured symbolic loca-

tion model in order to reduce the effort required to setup the positioning

system to an absolute minimum.

We allow for multiple different symbolic identifiers per location. This

enables users of the system to actually label a location, i.e., to name or re-

name a location as one thinks best while adding semantic information to

the location information. Hence, we do not only get measurements from

the system’s users but meaningful location labels in addition. This is of

particular interest in environments such as office buildings, where loca-

tions are often labeled using a logical but otherwise meaningless labeling

policy. For example, the room used for coffee breaks in our building is

officially labeled “CNB H112”, but of course no one calls it this way.

Over the first few months of being in this new building, everybody called

this room differently until at last, after several weeks, the name “lounge”

emerged victorious. Collaborative labeling does not only enable this kind

of crowd-based labeling, it can also facilitate this process by assessing the

significance of fingerprints based on the number of contributing users.
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4.2 Harnessing User Collaboration

Over the past five to seven years, we could witness a literal inversion of

the way content is generated and consumed (compare [78]). With the

Internet and in particular the web becoming more and more ubiquitous,

new services made it ever easier for everybody to add content. This has

truly reversed the traditional pattern of content-creation. Instead of very

few people creating content for everybody, we nowadays observe millions

of people creating content like blogs, news, videos, music, short messages,

status updates and many more. This paradigm shift, which goes under

many names such as crowdsourcing or collective intelligence, shows in

the success of hugely popular websites like Flickr3, YouTube4 or Wikipe-

dia5. All these sites rely on their users to add and create new content,

mostly without enforcing traditional quality controls. But even simpler

services like the social bookmark website delicious6 [134] rely or enable

their users to contribute to the content. In the case of the aforementioned

delicious, users can tag bookmarks of websites with freely chosen terms.

These tags are subsequently analyzed and grouped by the service to help

the users find interesting or relevant content more effectively. This tech-

nique of harnessing user knowledge by letting people tag and describe

any type of content is commonly known as folksonomy [103, 129]. But

folksonomies are not just a simplified sub-class of crowdsourcing. As

we will discuss in more detail later on, Robu et al. [136] for example

showed how folksonomies can be used to extract simple tag vocabularies

by analyzing correlations. In the following, we analyze how and why user

collaboration works and discuss some systems making use of this.

4.2.1 Crowdsourcing

There are many different definitions of the term crowdsourcing. Brabham

for example defines crowdsourcing as “an online, distributed problem-

3http://www.flickr.com
4http://www.youtube.com
5http://www.wikipedia.org
6http://www.delicious.com
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solving and production model” [25]. Generally, Jeff Howe and Mark

Robinson are credited with having coined the term crowdsourcing in

the June issue of Wired magazine in 2006 [75]. According to Howe and

Robinson, crowdsourcing “... represents the act of a company or insti-

tution taking a function once performed by employees and outsourcing it

to an undefined (and generally large) network of people in the form of

an open call.” [76]. This process of “outsourcing” a potentially business

critical task to the general public is something that is difficult and was

not thought possible until a few years ago. How can a company or institu-

tion trust their users to do the right thing and do it carefully? Surowiecki

finds that “under the right circumstances, groups are remarkably intelli-

gent, and are often smarter than the smartest people in them” [149]. In

every large enough group there is a specialist or an enthusiast that knows

of a very good solution. But while this solution might be very good, it

almost certainly misses a point. This is where crowdsourcing stems its

strengths from. It creates a “wisdom of the crowds” which is derived

from aggregating solutions, not from averaging them [24, 26].

The increase in popularity of crowdsourcing mechanisms even at large

companies is not only due to the fact that this “wisdom of the crowds”

yields results of great quality. Outsourcing tasks to the public allows for

potentially huge savings in expense for personnel. Yet, if the users con-

tributing to such a system are not payed a salary, what motivates them to

participate? Why do millions of people spend hours and hours working on

“other people’s problems”? One explanation found by Huberman et al.

[78] is that people contributing to crowdsourcing systems perceive their

contribution as a private good. Instead of a payment for their efforts,

users recognize the attention they receive from others as compensation.

As Hubermann et al. showed in 2004 already, attention is a resource so

highly valued that “people are often willing to forsake financial gain to

obtain it” [77]. This is particularly true in the world of academia where

attention is usually the only reward. We write papers and try to publish

them not only to help solving the world’s problems and bringing society

forward, but also to get the attention and appreciation of others. As
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Franck [50] found, we cite and assess the quality of other researchers’

work according to the attention it gathers. Moreover, recognition and

in particular status are considered to be the main motivators of users in

online communities for contributing [104]. Crowdsourcing is also often

compared to open source software development, where a small group of

contributors create code that is afterwards used by thousands of passive

users who are not actively participating in the process of software devel-

opment. Moreover, open source models generally emphasize the common

good [20, 105]. And yet, studies have shown that the problem commonly

known as “free-riding” is not prevalent. Apart from being interested

in the engineering challenge, the desire to develop creative skills or be-

ing intrigued to find clever solutions, people contributing to open source

projects strive for prestige and recognition by the community [117]. This

phenomenon was described by Raymond as “gift culture”, where parti-

cipants “compete for prestige by giving time, energy and creativity away”

[133]. However, it seems that attention and prestige are not the only

motivators to contribute to open source projects [64, 146]. Most prob-

ably stemming from the fact that software engineers like to solve chal-

lenging development tasks and building something new, Ghosh found in

his study in 2005 [55] that developers just plain simply take pleasure in

writing code. Or to cite Linus Torvalds, the father of the Linux operat-

ing system: “Most of the good programmers do programming not because

they expect to get paid or get adulation by the public, but because it is fun

to program.” [54].

In the following, we will discuss the issue of what motivates people to

contribute to crowdsourcing in more detail by analyzing one of the most

successful and most popular service built-on user contribution.

4.2.2 Wikipedia

Wikipedia is a free, web-based encyclopedia that allows anyone to write,

correct or update articles. It makes use of the same principles as the open

source models discussed above where users contribute their resources such

as knowledge and time to create publicly available content by means of
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a collaborative effort [68]. It is counterintuitive at best that an encyclo-

pedia, written by many and often even anonymously, could be precise.

And yet this is exactly what has happened. For this to occur, the par-

ticipating volunteers’ motivation is crucial for sustaining Wikipedia [43].

In an effort to explain volunteering activity, Clary et al. identified six

motivational categories [37, 38].

• Values Contributing allows volunteers to express values related to

altruistic and humanitarian concerns for others.

• Protective Addressing volunteers ego, participating might help to

reduce negative feelings about oneself or address personal problems.

• Understanding Through participation, users may acquire new

learning experiences and increase their knowledge or exercise skills.

• Social As contribution is a collaborative process, people strengthen

social relationships, i.e. they have the chance to find new friends

or maintain friendship.

• Enhancement Similar to the protective category, this category at-

tends to users’ ego, however, in a more positive way. Enhancement

describes volunteers possibility to develop and grow psychologically.

• Career Lastly, contributing may also help to gain and strengthen

skills related to career.

In his study “What motivates Wikipedians” [122], Nov added two

more categories, both of which we have already encountered in the pre-

vious section: Ideology and Fun.

• Ideology This category includes volunteers opinion and belief that

information should be free.

• Fun Users contribute to the system quite simply because the activ-

ity of doing so is fun.
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Working with these eight categories, Nov conducted a study, sending

out a questionnaire to 151 Wikipedia users [122]. Motivation was meas-

ured using the volunteering motivations scale, introduced by Clary [38],

adjusted though to the context of Wikipedia. Participants were asked to

state how strongly they agree to a questions representing mentioned cat-

egories. Quite surprisingly, Nov found the top motivations to be Fun and

Ideology, while others such as Social, Career, and Protective turned out

not to be strong motivations. From this, Nov concluded that in order to

be successful, a system that relies on user-generated content must focus

marketing and retention offers on these motivators to recruit and retain

volunteers. In addition, Bryant et al. found in their descriptive study

of 2005 [31] that user retention can be leveraged by having expert users

setting standard usage patterns. The authors used methods from the

field of social activity to understand why people become collaborators

in Wikipedia. Analyzing the personal user pages and interviewing users

by mail and phone, Bryant et al. found that newcomers become active

members most easily by observing the practices of experts.

4.2.3 Folksonomy

A folksonomy is a mechanism of classification derived from the meth-

ods used in crowdsourcing. Unlike the latter, which can be used to solve

more complex problems, folksonomies are the result of “personal free tag-

ging of information and objects for one’s own retrieval” [153]. The term

folksonomy was coined by Thomas Vander Val in a discussion on a mail-

ing list and is a combination of the words “folk” and “taxonomy” [154].

Vander Val’s definition [58, 153] also clearly states that the act of tag-

ging is performed in a open and shared social environment, done by the

person consuming the information in the end. Thus, while conceptional

based on crowdsourcing and the methods of collaboratively creating and

managing information, folksonomies are used primarily to annotate or

categorize content [129]. Hence, it is often refereed to as social indexing

and social or collaborative tagging [103]. Another important attribute of

folksonomies is that, unlike crowdsourcing, folksonomies are comprised
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of terms in a flat namespace, i.e., there is no hierarchical relationship

between the tags [115].

The concept of folksonomies became famous with the arrival and suc-

cess of new websites like Flickr or Digg7 that provided services such as

photography annotation and social bookmarking. Many of these sites

use so-called tag clouds to visualize different tags and their importance,

i.e., popularity. In the process of generating such clouds, some tags were

found to be of greater relevance than others. In 2007, Halpin et al. [63]

were able to show that consensus around stable distributions and shared

vocabularies can emerge despite the lack of a controlled vocabulary.

To understand the impact and benefit of folksonomies, Mathes ex-

amined user-generated metadata by means of two web services [115]. In

doing so, he particularly studied the difference between metadata created

by professional authors and metadata created by the crowd. Thereby,

Mathes found the primary problem of the former to be scalability and

hence its impracticality for very big amounts of content. Although ded-

icated professionals working with complex, detailed rule sets and vocab-

ularies are generally believed to produce a more detailed and accurate

result, their work is costly in terms of time and effort to produce. A folk-

sonomy on the other hand may be used to cope with even vast amounts of

data, as potentially millions of users help creating the desired metadata.

In addition, Mathes found the most important strengths of a folksonomy

to be its ability to directly reflect the vocabulary of its users. This

supports Merholz’s finding [116] that a folksonomy reveals the “desired

lines”, or in his own words: “A smart landscape designer will let wander-

ers create paths through use, and then pave the emerging walkways, en-

suring optimal utility.” Without any doubt, applying folksonomy allows

for far lower costs in terms of effort and time compared to “traditional”

systems using elaborate classification schemes.

7http://digg.com/
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4.2.4 Games with a Purpose (GWAP)

Building on the idea of a folksonomy, von Ahn created a concept that

combined the “human computation” paradigm, extensively used by the

Open Mind Initiative8 (e.g., [147, 148]), with the simple insight that

people like playing games. People today spend many hours playing com-

puter games [151] and for the first time in history, hundreds of millions

can easily collaborate via the Internet. While computers are great for

many purposes, they fail at tasks that are almost trivial for humans to

perform, tasks like the ones we discussed in the above sections such as

labeling images. But as von Ahn correctly stated, humans, unlike com-

puters, require some kind of incentive, and obviously playing games might

just be the seductive method to encourage users to participate. Making

the labeling task the challenge of a game allows to take advantage of

peoples’ desire to be entertained. Consequently, von Ahn designed the

process of tagging and labeling like a game, where two or more “play-

ers” are asked to compete in the act of performing the labeling task.

The term game with a purpose, or GWAP for short, was later coined by

Lenore Blum, a research colleague of von Ahn.

In 2004, von Ahn published his first paper on this topic in which he

presented a game to created labels for images [152]. By today, many more

games with a purpose, i.e., applications of von Ahn’s human computation

paradigm such as sound labeling or object tracing in images, followed

and von Ahn himself created a website dedicated to the most interesting

ones9. In the following, we will study the labeling images game in more

detail.

The purpose of the labeling images game is to provide labels for an

image. If done “correctly”, players receive points. Thus by playing the

game, players help determine the contents of the image [152]. The game

can be played online by two partners that get randomly paired-up from

the large number of people accessing the website. Neither of the players

is told with whom they’ve been paired-up and they have no means of

8http://openmind.org/
9http://www.gwap.com
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communicating with each other. The only thing both players have in

common is an image both can see. Both players are asked to describe

the contents of this image in their own words, providing one or more

strings. The more strings match between the partners, the more points

both receive. Since they don’t know each other and can’t communicate,

the obvious thing to do in order to get points is to type something related

to the image. And as von Ahn found in his study, the string on which

the players agree is in most cases a good label [152]. In an evaluative

study, von Ahn had 13630 people playing the game for four months, thus

generating 1271451 labels for 293760 different images. More than 80%

of the players played the game at least twice and, quite astonishingly,

33 players played the game more than a thousand times. From these

numbers, von Ahn concluded that the game is fun. Regarding the quality

of the labels generated, von Ahn found that all (100%) of the labels made

sense with respect to the images retrieved [152].

4.2.5 Collaborative Mapping

Another example, closely related to our problem of collaborative labeling

of location fingerprints, that shows just how successful approaches like

crowdsourcing and folksonomies are, is the remarkable popularity of web-

sites that allow their users to create maps in a collaborative manner. The

most popular of these services is OpenStreetMap10, a free and open map

service that allows its users to view, edit and make use of geographical

data of the world. Unlike commercial services like Google Map Maker11,

geographical data is provided under a Creative Commons license 12. Us-

ing any GPS tracking device, users can record their routes and walks

while being en route and upload this information later on. In addition,

users may edit or annotate geographical data manually and the com-

munity powering OpenStreetMap has been given the right to carbon

copy aerial photographies from Yahoo and Bing. Counting around 2500

10http://www.openstreetmap.org
11http://www.google.com/mapmaker
12http://creativecommons.org/licenses/



88 Chapter 4. Collaborative Labeling

users back in July 2006, the OpenStreetMap website now has more than

350000 registered users. The maps that resulted form years of collab-

orative mapping are astonishing. A quick, non-scientific comparison of

the map quality between OpenStreetMap and Google Maps reveals al-

most equal level of detail, at least in populated regions of the world such

as North America or Europe. The information level in lesser populated

areas such as Madagascar is only coarse. Interestingly but not surpris-

ingly, OpenStreetMap provides more accurate information when it comes

to naming small things like creeks or forest tracks. This might stem from

the type of usage, i.e. that OpenStreetMap users add data to the web-

site that they recorded in their spare time, pursuing a hobby like jogging

or ridding a bike. This is also reflected in the fact that OpenStreet-

Map provides purpose-built maps for a specific use, like for example the

OpenCycleMap13. Another indicator of OpenStreeMap’s success is the

interest of CloudMade, a commercial company funding OpenStreetMap

to some extent and using the data for their own products. A slightly

different service is provided by WikiMapia14. Inspired by the success of

Wikipedia, two entrepreneurs created a website that allows its users to

add notes to any location. Although registration is not required to view,

edit, or add notes, WikiMapia has over one million users from around

the world who marked and linked over 14 million places.

4.2.6 Location Sharing

In previous sections we have shown that people actually do create and

share meta-data. In the case of using these concepts for indoor position-

ing systems however, we ask people to tag locations. In the process of

doing so, it is inevitable that users have to reveal their own location, at

least to some level of detail. This might, from a privacy point of view,

be problematic. However, we found many very successful services that

allow people to share their location. One example of such a location

13http://www.opencyclemap.org
14http://wikimapia.org
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sharing service is Yahoo’s Fire Eagle15. Fire Eagle is a location broker

service that allows its users to share their current location with multiple

services in a safe and controlled manner. Hence, users can not only up-

date and access location information on Yahoo’s website but using any

other, authorized, third party application. While we couldn’t find any

numbers on how many actual registered users this services has, Yahoo it-

self lists over 70 applications making use of the service. Another example

of a location sharing applications is Google Latitude16, a location-aware

mobile application, which allows its users to track the location of other

users. Once a user allows another user to get updates on her location,

the two users can locate each other henceforth. While no exact numbers

are revealed, Latitude is believed to have more than 10 million active

users.

4.2.7 Discussion

Having studied the many different systems and services successfully har-

nessing user collaboration, we may conclude that if done right, a collab-

orative system allows to process huge amounts of data while revealing

the information that is most important. As collaborative systems are

used by humans participating in social interaction, it is possible to ob-

tain information that could not have been gained by traditional expert

systems using systematic data gathering. For example, by allowing the

users to create place labels in OpenStreetMap, this service provides la-

bels of places that are of most interest to its users. In addition, the

labels created by the users reflect their own vocabulary, i.e., the labels

correspond to the names people actually use.

A possible disadvantage of collaborative systems is the potential lack

of labels for places that are not of interest to the users. This holds partic-

ularly for systems that require users to effectively visit a place or location

in order to label it. One example of this is the lack of mapping data in

uninhabitated or otherwise unpopular places on OpenStreetMap. Hence,

15http://fireeagle.yahoo.net/
16http://www.google.com/latitude
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without additional means of control, a collaborative labeling system will

almost never achieve full coverage as it will not contain labels of places

people don’t go to or don’t care about. But, a localization system used

to locate people in case of an emergency for example must guarantee

100% coverage at all time. Thus, a collaborative system may require

traditional expert editing in addition to user labeling in order to achieve

the desired coverage.

Regarding users motivation to contribute to the system, Nov [122]

concluded that in order to be successful, a collaborative system must

focus marketing and retention offers on these motivators to recruit and

retain volunteers. If fun is the most important motivation for users to

contribute, the system has to be fun to use. We believe that this includes

not only the user interface, but rather the design of the system in general.

For example, if new users that are unfamiliar with the purpose and the

inner workings of the system struggle to understand how they might

contribute, the system is deemed to be a failure. As we have learned

from Bryant et al. [31], newcomers become active members most easily

by observing the practices of experts. From this finding, we conclude

that a collaborative system must be public and contributor’s work must

be available to anyone.

Finally, by studying systems such as Google Latitude, we have seen

that people do share their location, despite privacy concerns. However,

people are aware of the potential risk these systems bear and it is neces-

sary to give the users the right amount of control and establish awareness,

i.e., users want to know and understand who is given access to their loc-

ation data and under which circumstances. From this we conclude that

if done right, people will share their location, either for their own benefit

or for the common good.
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4.3 Redpin

Redpin is the name of our reference implementation, an indoor posi-

tioning system enabling collaborative labeling of location fingerprints.

Redpin was built not only as a proof-of-concept but moreover to provide

an indoor positioning system that is very easy to setup and maintain

and even easier to use. Given the challenges discussed and motivate in

previous chapters, we wanted to achieve four main goals:

• Hardware

Redpin must not require special hardware but work with standard,

existing devices.

• Cost

Redpin must be very easy to setup and maintain. Expert know-how

about location fingerprinting must not be required.

• Accuracy

Redpin should at least provide room-level precision.

• Signal Variations

Redpin must be capable of coping with both long-term and short-

term radio signal variations.

To achieve these goals, Redpin implements the principles of collab-

orative labeling as presented at the beginning of this chapter. Redpin

enables the end-users of the system to create and alter location labels

while using the system and provides a very simple, graphical user inter-

face for these actions. Redpin, at its core, is a terminal-assisted position-

ing system. While the radio map is stored on a central server, which also

provides estimation methods for positioning, the terminal, or client, is

used to observer and measure RSS. As illustrated in Figure 4.3, we choose

smartphones as terminals and implemented Redpin for three platforms,

namely Apple’s iOS, Google’s Android, and Symbian.
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Figure 2.4: Labeling location marker. Figure 2.5: Locating yourself.

2.2.7 Locating Yourself

To locate yourself, click the ”Locate” button in the bottom right corner. Your current location
will be displayed on the corresponding map as shown in Figure 2.5.

2.2.8 Navigating Between Views

There are two possibilities to navigate between different views of the application.

• Use the back button on your Android device to navigate to a previous view.

• Use the menu button on your Android device and choose one of the views from menu
options. For example, Figure 2.6 shows menu options for the map view. From the map
view you can navigate to one of the list views, search view or add a new map view.

2.2.9 Viewing the Main List

To get to the main list view navigate between views as described in Section 2.2.8. From the
main list view you can choose one of the maps or locations lists. Figure 2.7 shows the main
list view.

2.2.10 Viewing the List of Maps

To view all available maps navigate to the main list view (Section 2.2.9) and choose the maps
list option. Figure 2.8 shows the maps list view. You can choose on one of the maps to be
displayed in the map view.

Figure 4.3: Redpin system overview: The backend server provides radio
map and estimation method for all three mobile client implementations
of Redpin, from iOS to Android and Symbian.

As discussed in Section 4.1, we use unstructured symbolic identifiers

to denote locations and places. Hence, from a user’s point of view, a

location is nothing more than a label. This approach also entails the

advantage of being able to forgo a potentially erroneous calculation of

exact geographic coordinates. Consequently, localization of a mobile user

or device can be reduced to the problem of mapping a set of RSS meas-

urements to a known symbolic identifier, like for example a room number.

Note however, that with Redpin it is possible to assign many fingerprints

to the same location.

In order to achieve room-level precision, i.e., selecting the correct loc-

ation given a measurement, Redpin allows to measure the signal strength

of the currently active GSM cell, the signal strength of all WiFi access

points as well as the Bluetooth identifier of all non-portable Bluetooth
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devices in range. However, given the API limitations of iOS and Android,

we only measure WiFi RSS on these two platforms. Only the Symbian

version of Redpin allows to measure all three types of signals. On the

latter we could additionally increase the system’s accuracy by measuring

the signal strength of all GSM cells, and not just the one GSM cell that

is currently active, but this is currently not possible with the devices we

used.

In the remainder of this chapter, we will present how Redpin works,

discuss its design and implementation and discuss its performance by

means of an experiment. We will start by explaining Redpin on iOS

from a user’s point of view.

(a) (b)

Figure 4.4: Using Redpin on iOS, the user is shown the current position
as a red circle along with the according label. The user can correct this
or enter new location labels by tapping the label.
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4.3.1 Redpin in Action

After installing Redpin on iOS, the user can start-up the application right

away. Already during initialization, Redpin is scanning for WiFi access

points and measures the RSS of all WiFi access points in range. This

measurement is then sent to the Redpin server which will subsequently

try to locate the mobile device given all known fingerprints in the radio

map. If the system can locate the mobile device, the user is presented

with the map of the current floor and the current location, which is

indicated by a red circle, as illustrated in Figure 4.4(a). The user can

change the map section by dragging the map as well as zoom in and out

using the “‘pinch” gesture. If the system can not locate the mobile device,

(a) (b)

Figure 4.5: Known locations are shown as red pins in Redpin. By tapping
the list button, the user can access the list of all available maps. To switch
maps, the user just has to select it from the list.

for example because the location is yet unknown, the user is informed

accordingly and Redpin will display the last known location. In the

background, the system is continuously taking measurements, comparing
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the last three measurements, thereby trying to detect a stable state.

Upon detecting a stable state, the system will again try to locate the

device. If the device can still not be located, the user will be prompted

to name the place of the current location and indicate the appropriate

position on the map. Thus, the user can choose from a list of known

floor plans (see Figure 4.5(b)), set the marker (purple pin) to its current

position, and enter the name of the current location, for example the

room number as illustrated in Figure 4.4(b). In addition, a user can

always correct the location in case Redpin provided the wrong identifier.

This way several fingerprints may be stored for the same identifier with a

different timestamp. In order to display not only the name of the current

(a) (b)

Figure 4.6: Advanced features on iOS: Adding new maps and searching
the list of maps and locations.

location but also show the position on the map, the system must be given

images or map renderings. These images can be uploaded to the server

at any time. However, the system does not require floor plan images

since a location is defined solely by its symbolic identifier in Redpin. As
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illustrated in Figure 4.6(a), the user can indicate the URL to an existing

image, choose to upload an existing image from his phone, or take a

photograph in order to create a new map. In addition to browsing the

list of location labels, the user can also search it by entering any part of

a label. The result list, as illustrated in Figure 4.6(b), is updated while

the user is typing.

(a) (b) (c) (d)

Figure 4.7: Using Redpin on a Nokia N95: The user interface is similar to
iOS. Instead of entering and correcting labels directly on the map view,
the user is presented a “Set position” dialog (d).
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Figure 2.6: Navigating between different
views from the map view.

Figure 2.7: Main list view.

Figure 2.8: Maps list view. Figure 2.9: Context menu of a map item.

(a)
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Figure 2.4: Labeling location marker. Figure 2.5: Locating yourself.

2.2.7 Locating Yourself

To locate yourself, click the ”Locate” button in the bottom right corner. Your current location
will be displayed on the corresponding map as shown in Figure 2.5.

2.2.8 Navigating Between Views

There are two possibilities to navigate between different views of the application.

• Use the back button on your Android device to navigate to a previous view.

• Use the menu button on your Android device and choose one of the views from menu
options. For example, Figure 2.6 shows menu options for the map view. From the map
view you can navigate to one of the list views, search view or add a new map view.

2.2.9 Viewing the Main List

To get to the main list view navigate between views as described in Section 2.2.8. From the
main list view you can choose one of the maps or locations lists. Figure 2.7 shows the main
list view.

2.2.10 Viewing the List of Maps

To view all available maps navigate to the main list view (Section 2.2.9) and choose the maps
list option. Figure 2.8 shows the maps list view. You can choose on one of the maps to be
displayed in the map view.

(b)
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Figure 2.6: Navigating between different
views from the map view.

Figure 2.7: Main list view.

Figure 2.8: Maps list view. Figure 2.9: Context menu of a map item.(c)
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2.2.15 Searching

To search for a specific name in maps and locations names navigate to the search view as
described in Section 2.2.8. The search view groups locations by their corresponding map as
shown in Figure 2.12. Type the name you are looking for. If your query matches a map’s
name, this map with all its locations is shown. If your query matches a location name, this
location with its corresponding map is shown. An example of search results is shown in
Figure 2.13.

Figure 2.12: Search view. Figure 2.13: Example of search results.

2.2.16 Adding a Map from URL

To add a new map from URL navigate to the add map view as described in Section 2.2.8.
Specify a URL of the image you want to upload and press ”URL” button (Figure 2.14). To
save the map give it a name and press ”Save” button.

2.2.17 Adding a Map from Phone

To add a new map from your phone’s gallery navigate to the add map view as described in
Section 2.2.8. Press ”Phone” button and choose one of the images from your phone’s gallery
. To save the map give it a name and press ”Save” button.

2.2.18 Changing Server Preferences

To change the host and port number the Redpin application on your mobile device is connec-
ted to go to Preferences screen by clicking on the ”Redpin” icon in the top left corner. Prefe-

(d)

Figure 4.8: Using Redpin on Android: the interface is identical to the
iOS version of Redpin.
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4.3.2 Architecture

Being a terminal-assisted system, Redpin consists of two basic compon-

ents: the server, which holds the radio map of stored fingerprints and

executes the estimation method to determine the current position, and

the client, which gathers and collects radio signals from different wireless

devices in range to create a measurement and provides the user interface.

While the component to collect radio signals has to run on the mobile

device for obvious reasons, the estimation method could be run either on

a central server or on each mobile device separately. As discussed before,

while running the estimation method (and hence storing the radio map

with the fingerprints) locally would be beneficial considering the user’s

privacy, we need to store this data on a central server in order to simplify

user collaboration. This way a user can immediately make use of any

changes made to the radio map by every other user.

Symbian Client

Server

Radio 
Map

(MySQL)

Locator
(Java)

Sniffer
(Symbian)

User Interface
(Java ME)

Figure 4.9: System Architecture Overview of the Redpin Implementation
for Symbian.
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Hence, Redpin implements the radio map and the estimation method

as a server service, using Java and MySQL as illustrated in Figure 4.9.

For the communication with the client, Redpin provides a well-defined

interface and communication protocol. We will discuss the two in more

detail later on.

The client’s main job is to measure and collect radio signals of all

devices in range. Obviously, having many readings from many different

devices is favorable as this additionally helps to set the fingerprints apart.

Unfortunately, not all platforms on which we implemented Redpin so far

allows access to WiFi, GSM, and Bluetooth. On iOS, the API forbids

access to GSM and Bluetooth, only WiFi is accessible17. On Symbian, we

use Java Micro Edition for the GUI and all communication aspects, and

Symbian Series 60 to collect the measurements. As illustrated in Figure

4.9, we refer to this special application as Sniffer. This separation was

necessary, as only the Symbian API would allow us to get the information

we wanted to collect.

4.3.3 Redpin Server

The Redpin server, hosting the radio map and the estimation method,

provides several services for mobile clients. First and foremost, it provides

a service that allows to store and update the fingerprints in the radio

map. This service is called whenever a mobile client creates, corrects or

redefines a location label. Another service allows mobile clients to create

and retrieve maps, i.e., images of the floor plan that are associated with

a certain location. Most importantly, the server provides a service to

determine the position of a mobile device, i.e., to compare a measurement

to all known fingerprints and selecting the location that matches best. In

the following, we will discuss these services and the necessary concepts

in detail.

17While it is possible to access this information on iOS, it is not allowed by Apple’s App Store
Guidelines, which prevents publication of Redpin in said store.
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Communication Protocol

All services provided by the server are made available to the clients by

means of HTTP GET and POST calls, using JSON18 to encode the pay-

load. As there are many JSON libraries for all supported platforms, from

iOS to Android and Symbian, implementing the data communication

between the server and the client is straightforward. In the following,

we present the definition of the request as well as the response using

EBNF-notation.

request = ’{’ ’"action":’ action [’,’ ’"data":’ object ’ ] }’

action = ’"setFingerprint"’ | ’"getLocation"’ | ’"getMapList"’

| ’"setMap"’ | ’"removeMap"’ | ’"getLocationList"’

| ’"updateLocation"’ | ’"removeLocation"’

object = fingerprint | location | map | measurement

id = [’"id":’ Integer ’,’]

fingerprint = ’{’ id ’"location":’ location ’,’

’"measurement":’ measurement ’}’

location = ’{’ id ’"symbolicID":’ String ’,’ ’"map":’ map ’,’

’"mapXcord":’ Integer ’,’ ’"mapYcord":’ Integer ’,’

’"accuracy":’ Integer ’}’

map = ’{’ id ’"mapName":’ String ’,’ ’"mapURL":’ String ’}’

measurement = ’{’ id [’"timestamp":’ timestamp ’,’]

[’"gsmReadings":’ gsm ’,’] [’"bluetoothReadings":’ bluetooth ’,’]

’"wifiReadings":’ wifi ’}’

wifi = ’[’ [ wifireading {’,’ wifireading } ] ’]’

wifireading = ’{’ id ’"bssid":’ String ’,’ ’"ssid":’ String ’,’

’"rssi":’ Integer ’,’ ’"wepEnabled":’ bool ’,’

’"isInfrastructure":’ bool ’}’

bool = ’false’ | ’true’

timestamp = Long (* unix time stamp *)

String = ’"’ { Char } ’"’

Listing 4.1: Shortened Definition of Redpin Request

18JSON - the JavaScript Object Notation is a well-defined, lightweight data-interchange format,
which is easy for humans to read and write (http://www.json.org).
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Request A request to the Redpin server must always contain an action,

i.e., an identifier of what the client wants from the server (e.g. getLoca-

tion). The action is followed by an object, which is either a fingerprint,

a location, a map, or a measurement. All objects are again well defined

which allows for easy and fast parsing methods on both the client and

the server. A fingerprint for example has an id, a location and a meas-

urement. A measurement may contain any number of GSM, Bluetooth

or WiFi readings.

Response A response from the Redpin server is equally simple in

structure. Every response contains a status message, indicating whether

the request could be processed successfully or whether the call prompted

problems or even failed entirely. In case the request could be processed

successfully, the response contains a response object or a list of response

objects (for example if asked to send the list of available maps). The

definition of response objects is the same as for the request (see listing

above).

response = ’{’ ’"status":’ status [ ’,’ ’"message":’ message ]

[ ’,’ ’"data":’ data ’ ] }’

status = ’"ok"’ | ’"failed’ | ’"warning"’ | ’"jsonError"’

data = list | object

list = ’[’ [ object {’,’ object } ] ’]’

Listing 4.2: Shortened Definition of Redpin Response

Example In the following listing, we present a simple example of a

Redpin request-response call from a client to the server. Using the set-

Map action, the client tells the server to create a new map object for

the floor “IFW A”, using the map image given by the mapURL. After

successfully creating a new map object, the server responds with an “ok”

status message containing the unique id used to identify the map object

throughout the system, i.e. on the server as well as on all client devices.
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request

{"action":"setMap","data":{

"mapName":"IFW A",

"mapURL":"http://www.redpin.org/maps/ifw_a.gif"

}

}

response

{"status":"ok","data":{

"id":57,

"mapName":"IFW A",

"mapURL":"http://www.redpin.org/maps/ifw_a.gif"

}

}

Listing 4.3: Example of a simple Request-Response communication with

the Server.

Data Model

The data model used to represent and store required data on the server

is given in Figure 4.10. As discussed before, a location is defined only by

its symbolic identifier. As Redpin uses unstructured symbolic identifiers,

there are no further associations between locations. However, to visual-

ize the location in a way that is both appealing and easy to understand,

a location may, but is not required to, be associated with a map. The

map entity is a named proxy for an image file, providing a name and a

URL, which can be used to download the actual image data. Every loca-

tion is associated with exactly one fingerprint. The fingerprint represents

the radio signal characteristics of a location. Building on the basic data

concept of terminal-assisted location fingerprinting that we discussed in

Section 2.4.1, every fingerprint may have a (theoretically) unlimited num-

ber of measurements associated with it. Consequently, a measurement is

a collection of radio beacons or readings observed at a certain point in

time. As Redpin supports WiFi, GSM, and Bluetooth, a measurement

may be associated with any number of readings of any type. A reading

represents the radio signal transmitted by a wireless device along with

available meta-data such as a unique device identifier. To process the

readings later on, i.e., when executing the estimation method to determ-
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Figure 4.10: The Redpin Data Model

ine a position, every reading must be uniquely associated with the actual

devices transmitting the beacon.

To create an internationally unique GSM identifier, we readout the

cell identifier (CI), the mobile country code (MCC), the mobile network

code (MNC), as well as the location area code (LAC). In the case of

WiFi it is sufficient to get the basic service set identification (BSSID)

as this value is unique by definition. Bluetooth devices can be uniquely

identified by the Bluetooth device address (BD ADDR), similar to the

MAC addresses of a network card. In addition to these unique identifiers,

a reading also represents the received signal strength (RSS) as an absolute

value. However, due do technical limitations this is only possible with

WiFi and GSM beacons.

Estimation Method

Because a location is simply expressed by a symbolic identifier in Redpin,

the problem of calculating the current position is reduced to the problem
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of finding the one fingerprint that best matches the given measurement.

For this purpose, Redpin implements a very simple variant of the well-

known and often used k-nearest-neighbor (k-NN) algorithm using our

own distance metric for comparison. While being ranked among the

simplest machine learning algorithms, k-NN entails the big advantage of

being “lazy”, i.e., all computation may be deferred until classification.

With respect to Redpin, this allows to add measurements any time during

use and still being able to guarantee that the estimation method will also

consider the newest measurements.

To compare different measurements, we defined a simple distance met-

ric that allows to check the level of equality. As the estimation method

makes heavy use of this method, the quality of this metric greatly ac-

counts for the accuracy of the positioning. Note that for the reference

implementation being discussed in this chapter, we did not focus on per-

fecting positioning accuracy. However, we also developed more sophist-

icated methods, which are presented in Chapter 5.

dW (Mx,My) =

#SSIDmatch∑
i=0

(BW ∗ ||RSSIMx −RSSIMy ||) + #SSIDnonmatch ∗MW

dG(Mx,My) =

#CIDmatch∑
i=0

(BG ∗ ||RSSIMx −RSSIMy ||) + #CIDnonmatch ∗MG

dB(Mx,My) = #BTIDnonmatch ∗BB + #BTIDnonmatch ∗MB

The distance between two measurements, d(Mx,My) is computed us-

ing a straightforward model. For every type of measurement, Redpin

calculates a specific distance. The smaller this distance the more likely

we found the fingerprint corresponding the the user’s current location.

In the case of WiFi for example, the distance dW (Mx,My) is given by

the sum of all matching identifiers, i.e., matchings in which the WiFi

BSSID occurs in both measurements, multiplied with an additional con-

tribution that is calculated based on the difference of observed RSSI

(||RSSIMx
− RSSIMy

||). Differing identifiers, i.e., in case the BSSID



104 Chapter 4. Collaborative Labeling

does not match (#SSIDnonmatch), cause a diminution. While matching

pairs are rewarded a bonus (BW ¡ 1.0), non-matching pairs are given

a penalty (MW ¿ 1.0). The calculation works similarly for GSM read-

ings (dG(Mx,My)). In case of Bluetooth readings (dB(Mx,My)), only the

number of matching and non-matching BTIDs are compared while the

RSSI is not considered. The overall distance between two measurements

Mx and My is thus given by:

d(Mx,My) = dW + dG + dB

To determine the position of a mobile device, the estimation method

compares the current measurement, as given by the mobile device, with

all known fingerprints in the database by calculating the distance met-

ric as described above. If a fingerprint can be found whose distance to

the current measurement is smaller than a predefined threshold, i.e., the

decision boundary, the associated location will be returned to the mo-

bile device. If multiple fingerprints are found, the system will return the

best match. To be able to implement estimation methods other than our

KAPITEL 2. STANDALONE-SERVER 7

Abbildung 2.4: org.redpin.server.standalone.locator UML Diagramm

2.2.4 Lokalisierung

Beim Lokalisierungsteil6 des Servers wurde besonders darauf geachtet, dass der Algo-
rithmus so einfach wie möglich geändert werden kann, da dieser im Vergleich zum Rest
des Servers den grössten Änderungen unterliegt. Dafür wurde ein Interface ILocator
erstellt und eine Locator Factory LocatorHome, welche den aktuell verwendeten Lo-
cator erzeugt.

2.3 Datenbank

2.3.1 Datenbanksystem

Als Datenbanksysteme werden MySQL und SQLite unterstützt. MySQL wird aus
Gründen der bereits erwähnten Rückwärtskompabilität zum alten Server unterstützt
und ist für den Produktionsbetrieb vorgesehen.

Als zweites Datenbanksystem wurde SQLite gewählt, weil dieses ohne Konfigurati-
on lauffähig ist. Die Datenbank wird in einer einzigen Datei gespeichert und SQLite
kommt ohne externe Abhängigkeiten aus. Somit ist es möglich, während dem ersten
Starten des Server automatisch die Datenbank zu initialisieren.

SQLite kommt jedoch mit ein paar Einschränkungen. Unter Anderem sperrt SQLite die
komplette Datenbank während dem ein Benutzer in die Datenbank schreibt [18]. Somit
ist SQLite für den Produktionsbetrieb mit sehr vielen Benutzern nicht geeignet. Für die-
sen Fall sollte immer auf MySQL zurückgegriffen werden. Ein weiteres Problem das bei
der Entwicklung des Server auftauchte, war einen passenden JDBC Treiber für SQLite
zu finden. Im Gegensatz zu MySQL gibt es für SQLite keinen offiziellen Treiber. Schlus-
sendlich wurde der Xerial Treiber [17] gewählt. Dieser basiert auf dem Zentus Treiber [4],
ist jedoch aktueller und wird aktiv gepflegt wird.

6org.redpin.server.standalone.locator

Figure 4.11: Data Model and Interface Design for the Locator Compon-
ent

k-NN variant, we defined an abstract locator interface as depicted in Fig-

ure 4.11. This way Redpin can use different estimation methods and is

even capable of mixing the results of different algorithms run in parallel.

Every locator must implement methods that allow for comparison of sim-
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ilarity of two measurements as well as providing the actual positioning

(by means of the locate method). Illustrated in Figure 4.11, the estim-

ation method discussed above is implemented as RedpinLocator. The

distance metric is provided by our own implementation of Java’s com-

parator interface. This abstraction allows to exchange distance metrics

easily.

4.3.4 Mobile Clients

To meet our goal of making Redpin as easy-to-use as possible while using

existing hardware, we implemented the Redpin client software for the

three popular smartphone platforms iOS, Android and Symbian. While

designing the UI, we tried to incorporate best-practices and features as

used in Google’s own mobile map application. Hence, the user-interface

itself focuses on presenting locations on a map.

The main feature of all Redpin mobile clients is of course the ability

to locate the device. Also, the user can browse and search locations and

maps. In addition, and for the purpose of Redpin most importantly,

by means of the mobile client the user is capable of adding new map

images, creating new locations (i.e. add new labels), as well as correcting

existing locations (i.e. adding more measurements to existing locations).

A rundown of Redpin in action is given in Section 4.3.1.

While implementing Redpin for iOS and Android was straightforward,

Symbian caused many non-trivial problems. In particular, we wanted to

use Java for the UI on Symbian in order to create code that would be

reusable on other platforms. However, as it is not possible to get ra-

dio signal measurements using only the Java API, we had to implement

a Symbian application just for the purpose of collecting radio signals.

Whereas corresponding libraries on iOS and Android are restricted when

it comes to commercial distribution, the required API calls are integrated

and easy to use from a software developers point of view. In the follow-

ing, we will hence discuss the implementation for the Symbian operating

system in detail and only present the biggest challenges we faced when

implementing Redpin for iOS.
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Symbian

Our decision to implement Redpin for Symbian made it necessary to have

two applications on the mobile device as illustrated in Figure 4.12. As

we wanted our source code to be as easy and portable as possible, we

decided to implement the client software in Java ME. But as the limited

API of Java ME would not allow access to the current RSS of neither

the GSM nor WiFi, we had to implement the Sniffer component in Sym-

bian. Hence, the Sniffer maintains a separate, asynchronous thread for

each signal type (GSM, WiFi, and Bluetooth) that collects the appropri-

ate information and stores it in a common buffer. This is necessary, as

scanning GSM and WiFi signals is usually a matter of seconds whereas

scanning for Bluetooth devices can take up to two minutes, depending

on how many devices currently are in the vicinity. To alleviate this prob-

lem, we additionally limit the Bluetooth scanner to ten seconds. After

this timeout, the Bluetooth scanner will automatically stop scanning and

report the devices found so far. Eventually, the Sniffer communicates its

current measurement to the Java MIDlet via a local TCP socket. The

Java MIDlet on the other hand provides the user with the graphical user

interface and handles all the communication with the server. To increase

the overall localization accuracy, in our case the success rate of calcu-

lating the correct location identifier, we measure three different signal

sources, namely GSM, WiFi, and Bluetooth. In addition, we try to read

the RSS of as many different sources as possible. While both GSM and

WiFi signals may fluctuate, Bluetooth devices are not always detected

in the very short time range during which we scan for devices. As a res-

ult, measurements may differ considerably, even when taken at the same

place and in short succession. Hence, the biggest advantage of having

combined fingerprints of GSM, WiFi, and Bluetooth signals is that the

estimation method may adapt depending on the actual measurement at

hand (see Section 4.3.3 for details).

Unfortunately, Symbian’s Telephony API19 only provides information

about the currently active GSM cell. Thus, a GSM reading only contains

19Symbian Version 9.2
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Symbian Client

Sniffer
(Symbian)

User 
Interface
(Java ME)

Measurement Buffer
start
stop
get

response

SnifferClient

GSMSniffer WiFiSniffer

BTSniffer

SnifferServer

get

start
stop

write

Figure 4.12: Sniffer architecture on Symbian: the Sniffer application is
written in Symbian and provides the measurements to the Java ME user
interface as a local server service.

one entry instead of possibly up to 15, which would obviously contribute

to even better positioning accuracy. Unlike with GSM, we are able to

collect this information about WiFi access points. Even when using act-

ive scanning, a WiFi measurement usually contains information about

all access points in range, including the BSSID and the RSSI. Regard-

ing Bluetooth, we have to retrieve the major and the minor device class

during inquiry as we only want to consider non-portable devices. This

way we can ignore mobile devices like mobile phones or portable audio

devices that would distort the result otherwise. The RSS, although avail-

able on the Bluetooth host controller interface (HCI), is not exposed in

the Symbian API.

Stable Detector As discussed before, we need to detect quasi-stable

states in order to detect whether the device is stationary or in motion.

This is necessary as Redpin only considers measurements taken while
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being in stable state in order to further improve accuracy. In its simplest

form, a stable state can be detected by comparing the distance measure

of at least three successive measurements as illustrated in Figure 4.13. If

the distance between all measurements is lower than the threshold, we

assume that the mobile device has not been moved.

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

S t a r t  G e t  S t o p

S t a r t S t o p

3 x  G e t

S t a r t S t o p

3 x  G e t

M i n u t e s

Figure 4.13: Detect stable states by comparing three consecutive meas-
urements to a threshold.

Note that detecting stable state by comparing measurements has the

advantage of working on all platforms and the results of this method are

sufficient for collaborative labeling. However, when recording measure-

ments over long time periods for interval labeling purposes, we need a

more reliable method of detecting stable state. Hence, we developed a

more sophisticated method, which we will discuss in Chapter 5.

iOS

Unlike with the Symbian version of Redpin, we are not able to get GSM or

Bluetooth readings from iOS due to API restrictions. Even getting WiFi

measurements, although technically possible, requires API calls that are

marked private by Apple. Hence, although we are able to realize a Redpin

iOS app using WiFi, the resulting app may never be published in Apples

official App Store. On the upside, iOS features very rich data persistency

and communication layers. Thus, our primary focus with the iOS version

of Redpin was to support online as well as offline operation along with a

data synchronization framework that is aware of the current connection

state.

The implementation of this synchronization framework was the biggest

challenge. On one hand, data must be stored locally on the iOS device.
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On the other hand data must be sent to and received from the Redpin

server and aligned with local data. To guarantee data integrity, the iOS

app must therefore distinguish between online and offline mode. In order

to detect the connection mode, we try to connect to the Redpin server

using the InternetConnectionManager. If we can successfully connect

to the server, the app goes into online mode while switching to offline

mode in case of failure. Stable state detection in Redpin for iOS is basic-

ally implemented as described above (Section 4.3.4). However, as most

iOS devices feature an integrated accelerometer, we are able to detect

device movement more accurately by also considering acceleration force.

In our first implementation of the accelerometer-based stable detector,

we simply compare the current mean acceleration of all three axis to a

given threshold. If the reading is bigger than an empirically determined

threshold, we assume the device is being moved by the user. As men-

tioned above, we will discuss a more elaborate version of this algorithm

in Section 5.

4.3.5 Preliminary Evaluation

In this section we present a short and preliminary evaluation of the Red-

pin system as the focus of this chapter is on presenting the reference

implementation only. Because we will introduce improvements and en-

hancements to our indoor positioning system in the next chapter, a more

detailed analysis and evaluation will follow in Chapters 5 and 6. The

four main goals of Redpin are, as given in the beginning Section 4.3:

• Hardware

Redpin must not require special hardware but work with standard,

existing devices.

• Cost

Redpin must be very easy to setup and maintain. Expert know-how

about location fingerprinting must not be required.

• Accuracy
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Redpin should at least provide room-level precision.

• Signal Variations

Redpin must be capable of coping with both long-term and short-

term radio signal variations.

The first goal, namely not to require special hardware, has clearly

been achieved. By strictly using standard programming languages such

as Java for the server and implementing Redpin mobile client software

for the most popular smartphone platforms, Redpin may be adopted in

any office or home environment without the need to purchase additional

hardware. Having the user in mind in every design decision we made,

Redpin is very easy to both setup and use. For example, it only requires

one Java command to setup and start the Redpin server on any computer

on which Java is installed. As Redpin enables collaborative labeling, the

usually time-consuming and costly offline training phase can be omitted

entirely. In addition, as Redpin’s concept of location is very simple, any-

one is able to create, change or correct location labels. This is further

simplified by the graphical, map-based user interface on the mobile cli-

ents that is intuitive and familiar to anyone who has been using Google

Maps or a similar application before. Because Redpin allows for multiple

measurements per location, taken at different times, a first mechanism

to cope with signal variation is in place. However, as we will introduce

a more sophisticated method of coping with signal variations in Chapter

5, we will not evaluate the quality and performance of this mechanism

in this chapter but refer to the next chapter instead.

Evaluating the accuracy of an indoor positioning system is not straight-

forward as it depends on the output of the system as well as on the

definition of location. As Redpin uses unstructured symbolic identifiers

to denote location, we can evaluate the systems performance by answer-

ing two questions. First, how good is the positioning, i.e., in how many

cases is the room correctly determined? And second, how long does it

take until a device can be located in every room, i.e., until the map for

a building is complete? The latter question should be a good indication
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Figure 4.14: Points where measurements were taken. The labels A to W
indicate on-floor measurements while X, Y, and Z indicate measurements
that were taken on the stairs between the floors.

of whether collaborative labeling of location fingerprints can actually re-

place expert training in an offline-phase.

To get answers to these questions, we installed the client software

on multiple mobile phones (two Nokia N95 and one Nokia N95 8GB)

and conducted several experiments in our office building. In order to

investigate the accuracy, we added fingerprints of randomly chosen rooms

of one floor to the radio map as illustrated in Figure 4.14. Note that some

rooms in this building are smaller than 5 by 3 meters. Subsequently,

we used another mobile device to determine the current location. We

repeated the verification several times and over several days, during work

hours as well as during the night. Overall, the system located the device

in the correct room in 9 out of 10 cases. The cases where the algorithm

returned the wrong identifier could be explained by our threshold settings

used in the estimation method, which were set to very strict values in

order for the system to work in buildings with small rooms. In this case,

the estimation method would return the identifier of a room next to



112 Chapter 4. Collaborative Labeling

the one sought-after. Note that we never added additional fingerprints

during the experiment to adapt to changes in the environment.

Given these results, the time it takes to get at least one fingerprint

for every room depends only on how active users are in contributing to

the system and on their mobility. A very short survey showed that when

only 10 (out of 50 people working on this floor) contribute to the system,

the map is complete after just one day.

4.4 Conclusion

With the main goal to make indoor positioning systems easier to setup,

use, and maintain while saving costs in comparison to existing systems,

we presented Redpin, our reference implementation of a location finger-

printing system using collaborative labeling. The system relies on the

users to contribute measurements to the radio map as opposed to ex-

isting indoor techniques that rely on a designated administrator to col-

lect characteristic radio signal information. Using collaborative labeling,

every user can create, modify and, most importantly, use location inform-

ation that was created by other users. We have shown that harnessing

user collaboration is a concept that has been used with great success

in crowdsourcing or folksonomy based systems. Moreover, by analyz-

ing correlations folksonomies can even be used to to extract simple tag

vocabularies. Hence, if applied to the problem of labeling places and loc-

ations, our approach to indoor positioning can help to solve to problem

of finding the “correct” label for a location.

However, in order for a collaborative system to be successful, the

barriers get users involved must be low. Only when as many users as

possible are capable and willing to contribute to the system, the effect of

“wisdom of the crowds” can arise. Thus, it is not only necessary to give

users access to the system by supporting different devices and platforms,

but also the knowledge of how to participate. These requirements could

be fulfilled with Redpin. As discussed in Section 4.3.5, Redpin supports

existing hardware while being very intuitive to use. As a result, Red-
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pin succeeds in providing room-level indoor positioning while being cost

effective.

In our first implementation, we did not actually capture the concept

of a user, i.e., every mobile device that contributes to the system uses the

same radio map. This allows to easily share knowledge about locations

and enables a quick mapping of a building. On the other hand, this aspect

entails security and privacy implications which are not yet addressed.

Lastly, we are happy to report that the resulting Redpin source code

was released under an open-source license. The resulting project can be

found at http://www.redpin.org. To this day, Redpin was downloaded

over 1000 times and has an active user community.





Prediction is very difficult, especially if it’s about the future.

– Niels Bohr

5
Interval Labeling

While the Redpin system discussed in the previous chapter proved to

be a good solution to the problem of training the radio map and coping

with long-term signal variations, we have shown that short-term signal

variations, which may occur over the course of minutes and hours, are

still an issue. Given the characteristics of location fingerprinting systems

in general, we know that the estimation method’s accuracy and perform-

ance is better the more measurements the radio map contains. Ideally,

measurements are taken at different times of the day and at different

days of a week. The signal traces we have seen during our WiFi signal

study (see Chapter 3) clearly showed that the best way to reduce the er-

ror caused by short-term signal variance is to average a large number of

measurements taken during a short time. To cope with short-term signal

variations, the radio map must contain different measurements that have

been taken in short succession. Thus, the obvious solution to this prob-

lem is to record measurements over an interval of many minutes instead

Part of this chapter is based on joint work with Kurt Partridge, Maurice Chu, Marc Langheinrich
[19].

115
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of just one discrete instant. We believe that by extending user-provided

labels from an instant to an interval, i.e., a period of time over which the

device is stationary, can greatly improve positioning accuracy.

Parts of this chapter, in particular Section 5.3, are based on joint

work with Kurt Partridge, Maurice Chu, Marc Langheinrich. While I

was the main researcher on this topic, Kurt, Maurice and Marc suppor-

ted my analysis and initial investigation into interval labeling. Together

we published the results in our paper entitled “Improving Location Fin-

gerprinting through Motion Detection and Asynchronous Interval La-

beling”, which was published in proceedings of the Fourth International

Symposium on Location- and Context-Awareness (LoCA) held in Tokyo,

Japan, in May 2009 [19]. I was the main author of this paper and wrote

the main parts, this chapter is based on, myself. I worked on this paper

while I was visiting researcher at PARC. Maurice and Kurt advised me in

my research and, together with Marc, helped me to improve the quality

of the paper by giving it more structure and polishing my english.

In this chapter, we will present our asynchronous interval labeling

method. We start by introducing the technique and main building blocks.

In Section 5.2 we will elaborate on the problem of detecting stationary

state. In doing so, we will also compare our solution to current state-of-

the art methods used in the field. As with the approach of collaborative

labeling presented in the previous chapter, we will then present our refer-

ence implementation that was built as proof of concept in order to verify

the feasibility of interval labeling. A discussion and evaluation of our

approach in Section 5.3.3 concludes this chapter.

5.1 Building Principles

Collecting measurements may be tedious and is not something an end-

user is very eager to do, especially if this needs to be done several times a

day. Two challenges are: How can a system get users to contribute many

labeled measurements to the system even over the course of one day

without interrupting their work routine? And how can a system continue
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Figure 5.1: In contrast to the collaborative labeling method (see Fig-
ure 4.2), interval labeling allows to record many measurements in short
succession without the need of user input.

to update the radio map over days and weeks, again unobtrusively?

Our method of interval labeling addresses these two challenges. La-

bels provided by end users are applied not only to the immediate signal

strength measurement, but to all measurements taken during the inter-

val while the device was stationary at the same place. Figure 5.2 gives

an example of the process of interval labeling. Using data from the ac-

celerometer, we partition time into alternating periods of “moving” and

“stationary” as indicated in the second row of the figure. (The imple-

mentation of the motion detection process is described in Section 5.2.1.)

Whenever the system is stationary, it continuously adds measurements

to the interval. When it detects movement, it stops taking measurements

until the device rests again, at which time a new interval begins.

In addition to increasing the number of WiFi measurements that can

be associated with a location label, intervals can improve the user experi-

ence of labeling. Because intervals are known to be periods of immobility,

they can be more easily labeled asynchronously. Users are more likely to

remember their location during the entire interval (knowing its starting

time and duration) than they are likely to remember their location at a

specific instant. In consequence, we enable the user to label a location at

any time. Our system does not have to prompt the user as soon as a new
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A B C D E F

t

Confirmed ConfirmedUnconfirmed Retrospectively Confirmed

MovingStationary Stationary StationaryMoving

Unconfirmed

Figure 5.2: Interval labeling allows the user to update the radio map with
all data taken while the device is stationary. Because intervals provide
more cues to users (starting time, ending time, and duration of interval),
users are more likely to remember where they were during an interval
than at an instant.

location is entered but supports asynchronous labeling. This gives the

system the freedom to postpone labeling until a more convenient time

such as the start of the next stationary period, or when users return to

their desk. This can further help the system reduce the obtrusiveness of

any explicit location prompts.

Asynchronous labeling can also make sure that only important labels

are solicited, i.e., of places that the user stays in for a long time or visits

repeatedly. If the user has been at an unknown place for only a few

minutes, the system can decide not to prompt the user altogether. Once

the user enters a label, however, the system can label a particular signal

fingerprint retroactively, thus incorporating all measurements taken at

that particular location into the radio map.

For the purpose of putting asynchronous labeling to the test, we use a

quite simple heuristic for deciding when to prompt the user for an asyn-

chronous label: the system detects the change from battery power to AC

power and interprets this as the user returning to office or home, which

it believes to imply a task closure after a previous, battery-powered out-

ing (e.g., a meeting). Consequently, we then prompt the user to confirm

the current as well as the previous label. If the system is unsure about

the current position, it might also ask to confirm/enter this information

as well. For the choice of which previous interval to label or confirm,

we again rely on simple heuristics. Our system prefers longer intervals

over shorter ones, and more recent ones over older ones. However, we
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noticed in our initial experiments (see section 5.3.3) that users were quite

comfortable identifying locations even if prompted several hours later, as

long as they did spend a sufficiently long time there.

5.2 Detecting Stationary State

Obviously, recording measurements over an interval of time is only pos-

sible if the system is certain the recording device is still at the same

location. Hence, we need an additional system component that is able

to detect whether a device, and thus a user, is actually stationary or

moving. A user’s physical activity is considered a major aspect of his

context. Thus, many systems have been developed to infer and classify

human activities such as standing, walking, or running. Most of these

systems make use of several accelerometers that are distributed over a

user’s body. Bao and Intille for example describe a system [8] that uses

5 accelerometers and allows to recognize everyday activites such as fold-

ing laundry or brushing teeth with an accuracy rate of 84%. A system

proposed by Lester et al. [107] showed that comparable accuracy rates

can be achieved even when only using a single accelerometer. While be-

ing able to infer very complex activities, Kern et al. showed in [85] that

using an accelerometer to distinguish “moving” (be this walking, run-

ning, or jumping) from “still” (be this stand or sit) is straightforward.

Some positioning systems also perform motion detection. For example,

Krumm and Horovitz’s LOCADIO [98] uses WiFi signal strength to both

localize a device and infer whether it is moving. However, due to the nat-

ural fluctuation of signal strength readings even when standing still, this

motion detection’s error rate is 12.6%, which results in a high number

of false state transitions (e.g., from “stationary” to “moving”) during

experimental use (24 reported when only 14 happened).

King and Kjærgaard [86] also use WiFi to detect device movement,

reporting results similar to Krumm and Horovitz’s on a wider variety

of hardware. They use motion data to minimize the impact of loca-

tion scanning on concurrent communications: If the device is stationary,
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the system does not need to re-compute its position (which might inter-

fere with regular communications as both activities share the same WiFi

card). In contrast, we use motion information not only for positioning,

but also to aid the training: If the device is stationary, the system can

collect stable WiFi measurements. In addition, instead of using WiFi to

infer both location and movement, we detect the latter using accelero-

meter data.

5.2.1 Motion Detector

The motion detector we propose is a discrete classifier that reads the

accelerometer to determine whether the device is being moved or whether

it is stationary. Classification needs to be somewhat forgiving, so minor

movements and vibrations caused by readjusting the screen or resting the

computer on one’s lap are still classified as “stationary”. Only significant

motion such as walking or running should be classified as “moving.”
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Figure 5.3: Example data from the motion detector. As soon as the
magnitude delta exceeds the stationary-to-moving threshold, the device
is considered to be moving. This holds as long as the magnitude delta
does not fall below the moving-to-stationary threshold.

To classify the device’s motion state, the motion detector samples

all three accelerometer axes at 5 Hz. It then calculates the acceleration

magnitude and subtracts it from the previously sampled magnitude. To

prevent misclassification of small movements as “moving,” the signal is

smoothed into a moving average of the last 20 values. Figure 5.3 shows
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that this method yields a sharp amplitude increase in the magnitude

delta whenever the user is walking. The classifier includes hysteresis

with different threshold values when switching between the moving and

stationary states. The threshold values were established through a series

of informal experiments. Figure 5.3 shows the motion magnitude trace

of a user going from his office to a colleague’s office (A) and back (B and

C), with two stationary phases in between: a longer discussion at the

colleague’s office and a brief chat in the hallway. The sequence bar at

the bottom of the figure shows the motion detector’s output. Due to the

use of a moving average, the system imposes a small delay of 2-4 seconds

before values fall below the threshold for the stationary state.

5.3 The PILS System

As with Redpin for collaborative labeling we built a reference implement-

ation to showcase and test the concept of asynchronous interval labeling.

Building on lessons learned from Redpin but using different hardware,

we built PILS, an adaPtive Indoor Localization System.

Our main goal and reason of building PILS was to show the feasibility

of interval labeling in location fingerprinting systems. In particular with

focus on the concept of asynchronous labeling, which requires the system

to prompt the user for an asynchronous label, we decided to implement

PILS for laptop devices. This way, we were able to determine when

to prompt the user simply by detecting the change from battery power

to AC power, a simple but accurate idea that would not have worked

with smartphones. While reusing parts of the source code of Redpin for

iPhone, we decided to re-design and re-implement some components for

PILS in order to adhere to the new concepts. The most defining differ-

ence between Redpin and PILS lies in the system architecture. While

Redpin is a pure terminal-assisted system using a central radio map and

estimation method, PILS is designed as a hybrid solution. In its basic

setup, PILS uses a local radio map, i.e. location fingerprints are not

shared between devices. However, PILS may also use any Redpin server
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to store and exchange location fingerprints. This ability was devised to

integrate low-power devices that require a central server to execute the

computationally heavy estimation method.

Figure 5.4 gives an overview of the three main system components

of PILS: a scanner to listen for announce beacons, a locator to compare

current measurements with the assembled radio map from a fingerprint

database, and a motion detector to inform the locator about interval

boundaries (i.e., changes between the moving state and stationary state).

Radio Map

Terminal-BasedTerminal-Assisted

Motion Detector

Measurement
Scanner

Measurement

Fingerprints

STATIONARY / 

MOVING

User Interface

Locator

Components

Execution Environment

Location
Corrections

Feedback

Figure 5.4: Our terminal-based system has four components. The signals
observed by the scanner are sent to the locator, which estimates the
location using the fingerprints stored in the radio map. The motion
detector informs the locator whether the device is stationary or moving,
and the user interface collects the labels.

In the following we give a description of the platforms and the hard-

ware we used to implement PILS and explain the estimation method used

for the locator in more detail.



5.3. The PILS System 123

C U

MOVING

STILL & User Input

start

t

2212

M
ov
ing

St
ill

M
ov
ing

St
ill

St
ill

2218 Aquarium

A B C D E F

t1 t2 t3 t4 t5

Figure 5.5: Asynchronous interval labeling is based on a motion detector
triggered state machine that captures whether the user confirmed the
location (C). The system may continue collecting labeled measurements
as long as the system has confirmed location and the device is stationary.

5.3.1 Hardware and Setup

PILS requires a WiFi communications module and an accelerometer in

the terminal—two components that are often available in today’s laptops

and high-end mobile phones. We implemented our initial version of PILS

on Mac OS X 10.5 using MacBook Pros (revision B and C), making sure

PILS would be easily portable to the iPhone platform due to their large

architectural overlap. The 15-inch machines that we used have a WiFi

network card from Atheros or Broadcom. In addition, these laptops

possess an accelerometer, which is used for their motion-based hardware

and data-protection system. This system detects sudden acceleration,

for example when dropping the computer, and prepares the hard disk for

impact by disengaging its heads. In the 15-inch machines we used, the

accelerometer is a Kionix KXM52-1050, a three-axis accelerometer chip,

with a dynamic range of +/− 2g and a bandwidth up to 1.5kHz.

From the WiFi measurement data described in Chapter 3, we estim-

ated that at every location within the building at least five access points

(AP) would be visible. Given the characteristics of the 2.4 GHz radio

signal used in IEEE 802.11, this is usually the case in an office building

where a wireless LAN has been installed to be used for business cru-

cial purposes. However, for security reasons the WiFi network might be
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Figure 5.6: Overview of the office environment at PARC. The red circles
indicate the APs of the public WiFi network. The green circles indicate
additionally APs we added later on.

configured such as that access points do not send out announce beacon

frames, i.e., the SSID of the network becomes invisible. As this was the

case in our office building, we extensively examined possible solutions

like passive scanning or actively opening data connections. Eventually,

we found that the simplest and cheapest solution to this problem is to

just add more open access points. A simple WiFi access point today

costs no more than $30.-. As it does not even have to be connected to

the corporate network, but only needs to send beacon frames, it is also

not a security problem.

In our office environment, as illustrated in Figure 5.6, we found eight

public access points of which we could get beacon frames and thus the

SSID and the received signal strength (RSS). To guarantee that at least 5

access points were visible in every location within the testbed, we bought

and installed 8 additional access points, thus reaching a total of 16 access

Note that the exact effect depends on the network card. While some cards allow to at least get
SSID readings, network cards from other manufacturers completely hide such networks.
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points to cover 70 rooms with a combined area of about 1000m2. This

comes out to a density of 0.23 access points per room, or 1 access point

per 62.5m2 of office area.

5.3.2 Probabilistic Estimation Method

As we described in Section 2.4.2 of this thesis, probabilistic positioning

methods make use of a large number of measurements per fingerprint. As

probabilistic estimation algorithms apply statistical methods on finger-

print data in the radio map, the performance and thus the accuracy can

obviously be improved by adding more measurements. Given the fact

that the radio map contains much more measurements when using inter-

val labeling, we expected a probabilistic estimation method to provide

better accuracy than k-nearest neighbor. Hence, we did not use the Red-

pin estimation method discussed in Chapter 4. Our approach for PILS to

location fingerprinting is to learn a probabilistic model of the likely read-

ings of received signal strength (RSS) of WiFi beacons for each location

we are interested in. With these learned models, we estimate the device’s

location by choosing the model that gives the maximum likelihood.

Our probabilistic model is similar to the approach taken by Chai and

Yang [34], except that we use normal distributions for RSSI rather than

quantizing RSSI values and using histograms. As long as the RSSI values

are not multi-modal, such a unimodal approach still offers good perform-

ance while being computationally much simpler. By keeping only the

mean and variance, updates are very fast and do not use much memory.

In addition, the larger number of free parameters in a histogram approach

is more susceptible to over-fitting when there is not much data.

Each received signal strength reading is stored as a pair consisting

of the access point’s BSSID and the measured indicator of its signal

strength, i.e., bt = (BSSIDt, RSSIt), with RSSIt being the received

signal strength from the WiFi access point with unique identifier BSSIDt

at time t.

For each location l we learn a model of the readings received by a

device in location l. For a set of n readings {b1, ..., bn} in location l, we
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adopt the following model for the likelihood of the set of readings:

Pl(b1, ..., bn) =
n∏

i=1

pl(BSSIDi) ·N(RSSIi;µl(BSSIDi), σ
2
l (BSSIDi))

(5.1)

where N is the normal distribution and pl(BSSID) is the probability

that the reading in location l comes from WiFi access point BSSID.

We model each reading to be independently generated from a normal

distribution with mean µl(BSSIDi) and variance σ2
l (BSSIDi), which

can be different for each access point.

Given a set of n readings {b1, ..., bn} in location l, the model paramet-

ers which maximize the likelihood of the readings are given by:

pl(bssid) =
Rbssid

n

µl(bssid) =
1

Rbssid

∑
i:BSSIDi=bssid

RSSIi

σ2
l (bssid) =

1

Rbssid − 1

∑
i:BSSIDi=bssid

(RSSIi − µl(bssid))2

where Rbssid = |{bi|BSSIDi = bssid}| is the number of readings that

came from WiFi access point bssid. Note that a location l will not get

readings from all access points. For those access points which were not

part of the readings for learning the model, we set pl(bssid) to a very

small value, e.g., 10−15. The parameters µl(bssid) and σ2
l (bssid) can be

chosen in any way as long as the product of pl and the normal distribution

is small. To estimate the most likely location l̂ from a set of readings

{b1, ..., bn}, we can compute Eq. 5.1 and find the maximum likelihood

location as follows:

l̂ = argl maxPl(b1, ..., bn) .

We compute logPl(b1, ..., bn) as it is numerically stable and the monotonic

property of the logarithm guarantees the same answer for l̂.
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5.3.3 Evaluation

To understand whether interval labeling would work well in practice,

we conducted a user study. The study examined whether users would

voluntarily correct incorrect location predictions, what the characteristics

of the labeled intervals were, and whether labeling increased the system’s

confidence in the user’s location.

Experimental Setup

We recruited 14 participants who installed a custom application on their

MacBooks. The software placed an extra menu in the right side of the

menu bar, as shown in Figure 5.7. Users were instructed to correct the

system if they saw that it incorrectly guessed the location. This was also

the mechanism for adding new labels to the system. The users gained

no benefit from the application other than the satisfaction of making

the correction. The study ran for five weeks, which included the winter

holiday period.

To remind users about the study and to provide additional feedback

to the user about the system’s inferences, the user could optionally en-

able a voice announcement of “moving” and “stationary” when the device

transitioned between moving and stationary states. Music could also op-

tionally be played while the device was in the moving state. However, as

the laptops went to sleep when their lids were closed, the music typically

did not continue for the entire moving duration.

Location inferences were made on the users’ laptops, however all WiFi

measurements and labeled data were uploaded to a server for later ana-

lysis.
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(a) The user corrects an erroneous inference
through the “Correct My Location...” menu op-
tion.

(b) The user can enter any label for the current location by a simple dialog.

Figure 5.7: User interface for collecting label corrections: The system’s
prediction of the room is placed in the menu bar to provide ambient
awareness.
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Results

WiFi Scans and Label Frequency When running, the program con-

ducted an active WiFi scan once every five seconds. A total of 322,089

WiFi measurements were taken. Each scan contained on average 6.6

beacons, with a standard deviation of 4.4.

Users labeled 31 intervals, with a surge on the first day, and declin-

ing frequency afterward (see Figure 5.8(a)). However, users continued

to correct the system at a roughly constant rate until the end of the

experiment, despite not receiving any reminders about the study other

than the ambient awareness in the menu bar. Furthermore, continued

labeling was not concentrated in a couple individuals—the contributions

after the tenth day came from five different participants. All these results

suggest that providing corrections is a low-overhead activity that can be

sustained for at least a month.

Interval Characteristics Figure 5.8(b) shows a histogram of interval

durations. Most intervals were only a few minutes long. Of those under

a half hour, five lasted less than a minute, and sixteen less than ten

minutes.

Generally, users provided labels at the beginning of an interval. 28

intervals were labeled within the first two minutes. Of the remaining

three intervals, one was labeled at the end of a half-hour interval, and

two others were labeled in the middle of multi-hour intervals. From these

observations we conclude that since users chose to enter corrections when

arriving at a new place, this is the best opportunity for a more proactive

system to query users for location data.
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Benefits of Labeling Intervals To understand how much the system

benefitted from interval labeling, we examined the recorded data more

closely. A sample of 1,000 WiFi measurements was drawn. Each scan

was classified according to its most likely location, given the labels that

the system knew about at the time the scan was taken. Two classifiers

were compared, one that learned from all WiFi scans in previously labeled

intervals, and another that learned only from the WiFi scan at the instant

a label was assigned.
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Figure 5.9: Distribution of the log-likelihoods of 1,000 random WiFi
scans, excluding those with zero likelihood (which include 484 for Inter-
val Labeling, and 924 for Instant Labeling). The proportionally higher
likelihood scores indicates that WiFi scans are much more likely to find
labels when using Interval Labeling than when using Instant Labeling.

Figure 5.9 compares the distribution of maximum log-likelihoods for

the class returned by each classifiers. The graph does not include the

scans whose WiFi likelihood scores were zero, as explained in the cap-

tion. For the over 92% of scans in the instant labeling condition, the

likelihood value gives no information about which label is best. Likeli-

hood values can be computed, however, for over half of the scans in the
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interval labeling condition. Furthermore, even when a likelihood value

is computed, the values are, in general, relatively higher in the interval

labeling condition, which indicates greater certainty of the answers.

Survey

Following the user study, we surveyed participants to better understand

the user experience. We felt that it was important to get users’ perspect-

ive on both the accuracy of the system as well as the overhead involved

in collecting the labels. At the end of the five week study period, we sent

out a questionnaire to all 14 participants asking to give a qualitative as-

sessment by answering the 6 questions as listed in Figure 5.10. Eleven of

the participants responded to the survey.

Questions Answer Choices

1. The labeling prompts in PILS were intrusive. scale from 1-7; 1=strongly disagree, 7=strongly agree

2. I was prompted very often by PILS scale from 1-7; 1=strongly disagree, 7=strongly agree

3. The prompts after connecting to AC power 
did not interrupt my workflow

scale from 1-7; 1=strongly disagree, 7=strongly agree

4. The accuracy got better over time scale from 1-7; 1=strongly disagree, 7=strongly agree

5. PILS often showed a wrong or missing label Number

6. How many times per day do you reconnect 
your laptop to AC power (on average)?

Free Text

Figure 5.10: Questionnaire sent out to all participants at the end of the
user study.

Participants’ perceptions about the system accuracy were mixed. On

a Likert scale from 1–7, where 1 stands for “strongly disagree,” responses

to “PILS often showed a wrong or missing label” had a mean of 3.0 and

standard deviation of 1.9. But in response to “the accuracy got better

over time,” responses averaged 4.3 with a standard deviation of 0.8.

In free responses, participants offered several improvement sugges-

tions, such as reducing the latency to make an estimate and improving

the autocompletion of labels. Two participants appreciated the music

that played when the laptop was moving. One found it to be not only



5.4. Optimizing Location Estimation 133

a useful form of feedback about the system’s operation, but also an in-

teresting prompt for social engagement. The other wanted to be able

to choose the music from their iTunes library. One participant particu-

larly appreciated the audio feedback that indicated when the device was

moving. He found it to be not only a useful form of feedback about the

system’s operation, but also an interesting prompt for social engagement.

Answer Choices Q1 Q2 Q3 Q4 Q5

1 42.9% 42.9% 14.3% 0.0% 28.6%

2 28.6% 42.9% 0.0% 0.0% 0.0%

3 0.0% 14.3% 14.3% 0.0% 14.3%

4 14.3% 0.0% 14.3% 57.1% 14.3%

5 14.3% 0.0% 0.0% 28.6% 28.6%

6 0.0% 0.0% 42.9% 14.3% 14.3%

7 0.0% 0.0% 14.3% 0.0% 0.0%
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Figure 5.11: Results from the participants survey.

5.4 Optimizing Location Estimation

From our experiences with PILS we learned that interval labeling, in par-

ticular asynchronous interval labeling, will greatly increase the number

of measurements in the radio map. However, the evaluation has shown

that the used probabilistic estimation method did not perform to the

level we expected. While the accuracy of PILS was significantly higher

than with Redpin, our survey revealed that in some cases and for some

users the accuracy actually decreased over time (see previous section).
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Moreover, having thousands of measurements per fingerprint in the radio

map posed a new problem: the query time, i.e. the time required for a

location lookup was growing. Eventually, our estimation method took

several seconds for a single lookup.

To analyze the effect of growing numbers of measurements in the radio

map and to subsequently optimize the estimation method, we integrated

the radio map and estimation method implementation of Redpin and

PILS. In addition, we included a new, kernel-based estimation method

based using the principle of a “support vector machine” (SVM) as de-

scribed in [121]. To implement a simple kernel-based estimating method,

we used LIBSVM. This way, we were able to compare three different

estimation methods: the k-nearest neighbor method used in Redpin (see

Section 4.3.3), the bayesian method used in PILS (see Section 5.3.2) and

an SVM based method as described above.

This section is based on joint work with Luba Rogoleva that was first

presented in her master thesis on “Crowdsourcing Location Information

to Improve Indoor Localization” [138]. Luba collected data and imple-

mented combined estimation method algorithms under my supervision.

Together we analyzed her data and created a new toolset to evaluate

estimation methods using very large datasets. With Luba’s consent, in

this section we present figures that were created using data and tools

first used for her thesis.

5.4.1 Method Comparison

Having these three estimation methods at hand, we wanted to further

analyze the effect of interval labeling and the improvements over instant

labeling. To evaluate the performance, we re-used the data set of our

user-driven WiFi study (see Section 3.2). Thereby, we made use of the

most popular approach for estimating the accuracy of a given classifier,

namely running it through cross validation [139]. This technique of per-

formance estimation involves repeatedly partitioning a given dataset into

non-overlapping training set and testing set. The training set is being

See http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.
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used to induce the classifier, which is then validated using the unseen in-

stances in the testing set. To simulate instant labeling, we we randomly

selected measurements of non-consecutive readings.

First, we compared the accuracy of interval labeling using datasets

of different size. The base datasets were created by choosing a single

interval of measurements per location, varying the length of the selected

interval between 5 and 100 minutes. In this scenario, an interval of 5

minutes contains 10 measurements as the mobile devices used to collect

the data scanned the WiFi environment every 30 seconds.
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Figure 5.12: Accuracy comparison of different estimation methods using
interval labeling technique.

As we can see in Figure 5.12, the bayesian method yields the lowest

accuracy, in particular below an interval length of 45 minutes. Both,

the SVM and the Redpin estimation methods improve accuracy up to an

interval length of 15 minutes and yield consistently good results there-

after. SVM in particular shows very good results, reaching almost 100%

accuracy with intervals of 25 minutes length or more.
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Second, we compared the accuracy of instant and interval labeling.

We know from previous evaluations (see Section 5.3.3) that interval la-

beling will outperform instant labeling. With this experiment, we wanted

to analyze this effect in more detail. For this experiment, we selected N

random intervals of different length and compared the results with in-

stant labeling using N random measurements.
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Figure 5.13: Accuracy comparison of instant labeling and interval la-
beling using the Redpin estimation method.

Although the results using instant labeling are satisfactory (even a

small number of measurements offers accuracy of about 0.89), the res-

ults presented in Figure 5.13 clearly show the advantage of using interval

labeling. Using even short intervals of 5 minutes yields accuracy improve-

ments of 6%. While using longer intervals allows for improved accuracy

in general, the improvements of using intervals longer than 15 minutes

are negligible. This confirms our observation that using overlong inter-

vals does not improve accuracy per se. In some cases, using overlong

intervals might even diminish accuracy, as we can see in Figure 5.13 by

comparing the results of using intervals of 20 and 30 minutes.

Finally, we wanted to study the effect of using different estimation

methods towards time required for query and training. While probab-
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ilistic algorithms like Redpin’s k-nearest neighbor or bayesian methods

don’t require training, i.e., the insertion of a measurement into the data

structure used as radio map does not yield computational overhead, us-

ing kernel-based methods such as SVM require explicit training. As SVM

lookups operate on a deduced data set of classifications, the classifier has

to recompute this regression every time a new measurement is added to

the radio map. In the following, we analyze the query and training time

of Redpin and SVM in both the C and the Java version.
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Figure 5.14: Comparison of average query time using Redpin, SVM C,
and SVM Java for datasets of increasing size.

While Redpin requires significantly more time to perform a query,

SVM shows much better performance for average query time. SVM C

takes slightly more time than SVM Java. We believe this is due to

the additional overhead incurred by the interface between the C code of

LIBSVM and the Java code of the Redpin system into which SVM Java

was integrated by implementation. As the estimation method used in

Redpin has to compare a measurement with every entry in its radio map
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to lookup a location, the query time of this method obviously increases

with the size of the radio map. We expect the same effect for SVM, but

given the optimized structure of the dataset created by the classifier, we

expect this effect to be much smaller. Surprisingly, the increase in query

time due to bigger datasets is almost similar to the effect seen when using

Redpin. Thus, using SVM does not solve to problem of increasing query

time on its own but requires additional improvements when using very

large datasets.
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Figure 5.15: Comparison of average training time using Redpin, SVM C,
and SVM Java for datasets of increasing size.

As already mentioned, Redpin does not require training phase as

results in Figure 5.15 clearly show. On the other hand, the average

time required to train SVM growths exponentially. In our case, the Java

implementation of SVM in particular required very long time to run the

kernel-based regression.

From the analysis of query and performance time, we learned that the

performance of SVM in regard to accuracy is generally higher than the
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other estimation methods. In regard to query time, Redpin in its current

implementation requires very long time for a lookup. Even for small radio

map datasets with less than 2000 measurements, the average query time

is more than 2.5 seconds. A kernel-based method like SVM outperforms

probabilistic methods in this regard. But SVM based methods require

to update the regression classification every time a new measurement

is added to the radio map. Thus, while providing great accuracy and

fast query time, using SVM yields the disadvantage of computationally

expensive classification to update the radio map.

5.5 Conclusion

Building on the principle of collaborative location fingerprinting intro-

duced in the previous chapter, we proposed and described new mechan-

isms that allow to label measurements taken during intervals, i.e. longer

periods of time, instead of just instants. By using the built-in accel-

erometer, we were able to create a motion detector, which is able to

determine whether a device is stationary or moving with high accuracy.

In only very few cases did the motion detector report a false stationary

state, while false reports of moving states never occurred. This enables

the WiFi scanner component to continue recording measurements as long

as the device is stationary. Consequently, the radio map contains more

measurements by order of magnitudes. In addition, as these measure-

ments where taken over periods of many minutes, our system is able to

cope with the problem of short-term signal variations we observed in our

WiFi studies (compare Chapter 3).

To further reduce obtrusiveness of the system, we introduced the

concept of asynchronous labeling. With asynchronous labeling, the sys-

tem continuously records intervals of measurements in the background.

Using simple heuristics, the system determines the optimal point in time

to prompt the user for a label of previously recorded intervals. In addi-

tion, by making intervals the unit of labeling, the labeling process can

be performed at a less obtrusive time, since users are more likely to re-
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cognize intervals of stability than they are to recall their locations at

instants. By means of this concept, we expect users to label even more

measurements over a longer period of time.

While we saw a noticeable drop after the first day in the number of

labels entered into the system, this is most likely due to the fact that by

then most important places had been labeled, rather than assuming that

users grew tired of the system. This is supported by the fact that users

continued to correct the system at a roughly constant rate during the

whole period of the experiment. Asynchronous labeling can also ensure

that only “important” labels are solicited, such as the places that the

user stays for long time periods or visits repeatedly. If the user stays

at an unknown place for only a few minutes, our system can omit the

prompt, thus further reducing the intrusiveness of the system.

Our initial results from both the experimental study and the survey

give a strong indication that the accuracy of location fingerprinting can

be improved by interval labeling. However, about one third of the survey

participants reported that accuracy seemed to decline over time, which

could have arisen from long-term signal fluctuations or over-fitting effects

in the radio map. Moreover, the user study shows that labels can be

collected without greatly burdening users, and that when such labels are

applied to intervals, the maximum-likelihood of a new WiFi measurement

is much higher than it would be if only instants were labeled.

In regard of estimation method optimization when using interval la-

beling, we found that probabilistic algorithms like k-nearest neighbor

used in Redpin or the bayesian method used in PILS have disadvantages

when the number of measurements is high. The biggest issue of probab-

ilistic algorithms is the time required for location query. Once the radio

map contains several thousand measurements, probabilistic algorithms

like k-nearest neighbor require several seconds to find a matching finger-

print. In addition, the probabilistic algorithms we tested showed unstable

accuracy when used with large datasets. Both of these problems can be

diminished using kernel-based approaches like SVM. However, while our

SVM based estimation method showed greatly reduced query time and
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very high, stable accuracy, this approach has the disadvantage of requir-

ing computational overhead to train the classification. But as adding

one or two measurements to a radio map that already contains tens of

thousands of readings does not make a difference on average, we conclude

that the classification can be run in the background at times when CPU

time is available, for example overnight.





I may not have gone where I intended to go, but I think I have

ended up where I intended to be.

– Douglas Adams

6
Conclusion

In this thesis we have presented several new methods to improve indoor

positioning. From our analysis and evaluation of existing methods to

indoor positioning using radio signal fingerprinting, we learned that this

method shows good results in terms of accuracy and precision. However,

in order to achieve sufficient accuracy, the radio map used for position

estimation must contain ample number of measurements. Traditionally,

these measurements are taken during an offline training phase, often by

specially trained personnel. This method of training the radio map is

time consuming and costly. Moreover, as radio signals fluctuate sub-

stantially both short- and long-term, the radio map needs to be updated

periodically, thus aggravating the issue. We propose a new approach to

location fingerprinting that omits this offline training phase. With our

approach, any user is empowered to add new labels to the radio map,

update or correct existing labels or simply add more measurements to

an existing fingerprint. By outsourcing the task of radio map training

to the users of the system in a collaborative manner, we were able to re-

143
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duce the effort of setting-up and maintaing the radio map. Based on the

findings of our studies on WiFi signal characteristics, we proposed an ad-

dition to collaborative labeling called “asynchronous interval labeling”.

As we presented in this thesis, repeatedly collecting measurements over

an interval of several minutes instead of just instants can greatly improve

accuracy and helps mitigating the problems of short- and long-term sig-

nal variations.

In the first part of this thesis we presented an overview of existing

location models and positioning technologies. Thereby, we have shown

that hybrid location models are best suited to realize complex scenarios

and applications in the field of Ubicomp. But as most existing location

models are tightly integrated to other components, it is not possible to

easily exchange location information between different systems. Corres-

ponding abstractions that would allow for location oriented programming

have been proposed but no model has prevailed to date. Recent work in

the field of location models and efforts to build a common abstraction

of positioning systems have certainly simplified the usage of such system

for application programmers. However, a lot of work needs to be done

as most concepts have drawbacks in either usability or their potential

field of application. Of particular importance is work on location models

with a focus on distributed applications. Especially issues like reliability,

privacy, or authenticity are not satisfyingly covered by current work.

We thus chose to use a simple model to represent location informa-

tion in order for our system to be easily integrated with other solutions.

As we have shown, room level accuracy is generally sufficient for applic-

ations in the Ubicomp domain. Hence, we use an unstructured symbolic

location model representing location simply by an identifier. However,

as we exclusively rely on user input to label different locations, any user

can (re)-define a location’s label at any time. Consequently, users will

most probably use different labels for the same location. People don’t

always use the “right” labels or same tag for different locations. For ex-

ample, while some users prefer the term “bathroom”, others might use

the label “toilet” to denote the same location. As we have shown in this
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thesis, the problem of ambiguous labels can emerge as users contributing

to an otherwise uncontrolled collaborative system apply different labels

in different ways. In this thesis we did not look into this problem in

particular. But as crowd-sourcing becomes ever more common, we are

confident that solutions to this problem will eventually emerge.

By means of two WiFi studies, we investigated WiFi signal charac-

teristics. We found Wifi radio signals to fluctuate substantially, both

long-term and short-term. Affected by absorption, reflection, refraction,

multi-path, humidity, temperature, and many other factors, observed

WiFi signals change over time without identifiable patterns. In particular

the presence of humans changes the received signal strength considerably.

This becomes evident when looking at RSS measurements taken dur-

ing the night, which show significantly less signal variation compared to

measurements taken during the day when people are moving around. We

also found that different access points show different variances. Hence,

access points may appear at different rates irrespective of their distance

to the measuring terminal. In consequence, it is not possible to predict

signal variation. It is thus necessary to take as many measurements as

possible and update the radio map periodically. Moreover, we found that

it is not sufficient to measure RSS for a few seconds only. To achieve high

accuracy and precision, a fingerprinting based positioning system must

be able to rely on measurements taken for minutes and, once again, re-

peated over many days. Only then is it possible to effectively cope with

both short- and long-term signal variations. On the other hand, we could

show that walls greatly improve signal separation. From this we conclude

that achieving room-level precision is most feasible.

In the main part of this thesis, we presented novel approaches to

location fingerprinting that minimize the effort of setting up and main-

taining the radio map while coping with signal variations at the same

time. With Redpin, we presented our implementation of a location fin-

gerprinting system based on collaborative labeling. Using our method,

every user may contribute measurements to the radio map at any time.

This is opposed to existing fingerprinting methods that rely on specially
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trained personnel to collect RSS measurements in an offline-phase. Our

initial experiments showed that even with a very simple distance measure

and locator algorithm, the system achieves accuracy of about 90%. In

addition, we could show that to get a complete map of an office building,

only a few users must actually contribute to the system. Also, as Redpin

allows multiple measurements per fingerprints for the same location, it

is able to adapt to changes in the environment since users can always

add new measurements by correcting their location. With Redpin we

managed to create an easy-to-use and cost effective indoor positioning

system that provides room-level precision with high accuracy.

While we have shown the feasibility of our approach by comparing it

to existing systems making use of crowdsourcing and folksonomies, the

barrier to participate must be low in every collaborative system. It does

not suffice to simply give users access to the radio map by supporting

different platforms. Users must be educated about the workings of the

system and how they can partake and, more importantly, benefit by

participating. We believe that the best way to achieve long-term user

contribution is to design the user interface and the application per se such

that location labeling is an integral part of the user experience instead

of an additional task. For example, indoor positioning might be used

for a location-aware chat application. In this case, the user is willing to

enter a location label when “checking-in” to a location in order to start

communicating. This procedure is used by very successful mobile apps

such as Foursquare and shows that users are willing to enter a location

label if they get a benefit from the action.

To maximize the leverage of user contribution, all fingerprints are

shared between all users of the system. We employed this simple ap-

proach in both Redpin and PILS. This method allows to easily share

location information between users and enables fast setup of radio maps

in new buildings. On the other hand, this mechanism entails security

and privacy implications. As we have shown in this thesis, the informa-

tion about a user’s location can be used to deduce important information

about friends, activities or even political preferences. Because location
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information is so useful, it is most interesting to malicious attackers. In

consequence, the user must be given complete control of her location

information. Ideally, the positioning system provides different methods

to anonymize, hide or mask a user’s location. Different approaches that

allow for these measures have been discussed in the introduction of this

thesis. However, with the current version of both Redpin and PILS we

have not yet addressed this issue. Another issue that we left for future

work is the problem of coping with sensor variations. Using different

hardware, i.e. different antennas and different network cards with differ-

ent operating systems yield completely different RSS readings. Methods

to eliminate these differences such as normalization are known but have

not been implemented in our work.

With our method of “asynchronous interval labeling”, we presented a

method that can help to cope with both short- and long-term signal vari-

ations. Instead of taking single instances of measurements, we created

a method that allows to label measurements taken over longer periods

of time. By making use of the accelerometer we designed a motion de-

tector, which can determine stationary state with high accuracy. This

allowed us to continue taking measurements as long as the device is sta-

tionary. Hence, we were able to collect more measurements by order

of magnitude compared to previous solutions were measurements were

only take during instants. First, this allowed to average readings taken

during intervals and thus eliminating the problem of short-term signal

variations. Second, as the radio map contains much more readings, we

could substantially increase the system’s accuracy. However, we found

that probabilistic algorithms such as k-nearest neighbor previously used

as estimation method have major drawbacks when used on very large

radio maps. The biggest issue we found was that query time of these

estimation methods is very high. Even for relatively small datasets, con-

taining only a few thousand readings, it took several seconds to execute a

single lookup query. To alleviate this problem, we implemented a kernel-

based estimation method using support vector machines. As we could

show in this thesis, using an SVM-based estimation method allows for



148 Chapter 6. Conclusion

much shorter query time and provides slightly better and more stable ac-

curacy. However, for this method to work, the system must update the

regression mapping to account for newly added measurements, a process

which is computationally expensive. But as adding a few measurements

to a fingerprint that already contains hundreds of readings rarely makes

a difference, we can afford to run the classifier in the background at times

when CPU time is cheap.

Building on our learnings from the evaluation of Redpin, we intro-

duced the concept of asynchronous labeling to further reduce obtrusive-

ness. While continuously recording measurements in the background, our

system employs simple heuristics to determine the optimal point in time

to prompt the user for a label later on. This way, the labeling process can

be deferred to a point in time at which prompting the user for feedback

does most likely not interrupt her workflow. However, with our first ver-

sion of PILS we did use the change from battery power to AC power on a

laptop to determine when a user is returning to her office or home. Ob-

viously, different heuristics are required to apply this method to mobile

phones. Since users are more likely to remember intervals of time than

instants, we expected the rate of contribution to be stable. In addition,

asynchronous labeling can also ensure that the user is only prompted for

relevant labels, as the user has to be stationary at the same location for

a longer period of time before being prompted. Our evaluation of asyn-

chronous labeling has shown that although the number of newly entered

labels dropped after the first day, users label more measurements over a

longer period of time when being prompted for important labels only.

One possible drawback of interval labeling is the fact that continu-

ously scanning the WiFi environment might degrade the bandwidth of

this communication channel. Most network cards do not allow concurrent

data transmission and network scanning. Therefore, data transmission

has to be interrupted every time the positioning system wants to record a

new measurement, effectively degrading the WiFi channels original pur-

pose of transferring data. This issue is obviously bigger with interval

labeling. However, as we have shown in our study on WiFi characterist-
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ics, it usually takes minutes for the WiFi signal to change significantly.

We thus suggest to adapt the frequency of recording measurements given

the variance of the WiFi signal observed over the last minutes and the

amount of bandwidth used by other applications. While we did not eval-

uate the effect of interval labeling to bandwidth degradation, we believe

that by simply lowering the scan frequency given simple heuristics, this

problem can be resolved.
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[99] A. Küpper. Location-based services. John Wiley & Sons, Jan 2005.



162 Bibliography
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