Prototypical Implementation of
Location-Aware Services based on a
Middleware Architecture for Super-Distributed
RFID Tag Infrastructures *

Jiirgen Bohn

Institute for Pervasive Computing
ETH Zurich, Switzerland
bohn@inf.ethz.ch

Summary. We provide evidence of the feasibility and effectiveness of a middle-
ware architecture for mobile devices which employs dense distributions of small
computerized entities for providing fault-tolerant location-aware services. We do so
by describing exemplary implementations based on radio frequency identification
(RFID) as an enabling technology. Firstly, we present prototypical implementations
of the hardware abstraction layer and of selected core middleware services. The lat-
ter enable a mobile device to store and retrieve data and position information in
physical places in a fault-tolerant manner, and to identify places based on a location
abstraction which is robust against failure of individual tags. Secondly, we inves-
tigate the feasibility of some higher-level services and applications by developing
and evaluating prototypical systems for tracing and tracking, self-positioning, and
collaborative map-making.

Keywords: ubiquitous computing; location awareness; super-distributed RFID
tag infrastructures; radio frequency identification; positioning; map-making.

1 Introduction

Different from conventional means of RFID tag deployment and utilization,
massively-redundant tag distributions provide novel RFID-based services and
applications to mobile user devices [2]. By deploying cheap passive RFID
tags (i.e., tags without a built-in power supply) in large quantities and in a
highly redundant fashion over large areas or object surfaces, one obtains a
so-called super-distributed RFID tag infrastructure (SDRI). Based on such an
SDRI, [2] identifies a number of technical challenges and describes potential

* An earlier version of this article [1] was presented at the 19th International Con-
ference on Architecture of Computing Systems (ARCS ’06) in Frankfurt am Main,
Germany.

2 J. Bohn

benefits and first prototypical results. The practical relevance of this concept
is reflected in the recent appearance of industrial products that make use
of such redundant RFID tag distributions, such as the “first carpet contain-
ing integrated RFID technology” presented by Vorwerk in cooperation with
Infineon Technologies [3].

As a generalization of the SDRI concept, we propose super-distribution of
small computerized (and therefore “smart”) entities as a general design prin-
ciple for the development of reliable and highly available location-dependent
services for mobile devices. For that, we developed a layered service mid-
dleware architecture [4] that exploits two fundamental characteristics of the
resulting infrastructure for achieving fault-tolerance and serviceability: the
high degree of redundancy with regard to smart entities (abundance aspect),
and the support for localized interaction between mobile devices and their
immediate physical environment (locality aspect).

In this paper we describe a number of concrete prototypical implementa-
tions based on super-distributed smart entities, using RFID as an enabling
technology. In doing so, our major aim is to provide first-hand evidence of
the practicability and effectiveness of the suggested approach by demonstrat-
ing the capabilities and performance of exemplary middleware service imple-
mentations, rather than presenting specific state-of-the-art solutions for the
particular application domains we cover in the process.

In the following, we define a smart entity (SE) as a physical artifact that
is enhanced by embedded computing technology in such a way that it has a
globally unique identifier, a built-in memory with data read/write capabili-
ties, and support for close-range wireless ad-hoc communication. Likewise, we
refer to super-distribution of smart entities as the process of deploying and
distributing SEs in a dense, highly redundant fashion. The resulting substrate
is called a super-distributed smart-entity infrastructure.

2 Middleware Support for Super-Distributed Smart
Entity Infrastructures

2.1 Middleware Architecture

Our service middleware for super-distributed SE infrastructures described
in [4] is based on a five-layered architecture (Fig. 1): The distributed physical
smart entities in their entirety constitute the physical infrastructure on the
lowest level (Hardware Layer or Layer 0). The access to this layer is con-
trolled by the Hardware Abstraction Layer on the next higher level (Layer
1). It is represented by an Entity Read/Write (ERW) service, which defines
a generic and unifying interface to the underlying physical SE infrastructure.
The Core Service Layer (Layer 2) consists of fundamental abstractions and
generic services that operate with individual SEs by means of the ERW ser-
vice. The Higher-Level Service Layer (Layer 3) is represented by a collection

2 Middleware Support for Super-Distributed Smart Entity Infrastructures 3

of specialized services and service templates. These services do not directly
operate on individual SEs of the underlying physical infrastructure but rely on
the core services instead. Finally, in the Application Service Layer (Layer 4),
we find application-specific services and specialized instantiations of service
templates.

Sensor-Assisted i | Collaborative - N Er, ialized o ey
P Reckoni Map-Maki Sensor-assisted Entity-based Directory Directory
©0s. Reckoning ap-iaking Tracing & Track. Tracing & Track. Type X Type Y

N %z N L

Layer 4: Application Service Layer

N N

Device Presence Advanced Map Generic Tracing & Topology Generic Directory
Manager Manager Tracking Service Manager Service

Layer 3: Higher-Level Service Layer

Local Position Location Region MoD Position Basic Map History
Data Sharing Manager Manager Manager Reckoning Manager Manager

Layer 2: Core Service Layer

Entity Read/Write I

Layer 1: Hardware Abstraction Layer

S S0 D & 0% ¢ 0;% > OOO SIS

Layer 0: Physrcal Smart Entity Infrastructure Layer (Hardware Layer)

Fig. 1. Overview of the service middleware for super-distributed smart entities

The middleware architecture is extensible, facilitating the integration of
additional services by means of a modular design. For dependable operation,
the redundancy resulting from the super-distribution of SEs is exploited by
the middleware services for the realization of fault-tolerance mechanisms. Ser-
vice bootstrapping and maintenance tasks are performed autonomously by the
individual services, as far as possible, thus reducing the need for manual in-
tervention and servicing. For instance, the core middleware services support
the integration of additional SEs that are distributed at a later point in time
without a noticeable service interruption (hot-integration of SEs) [4]. Further,
the services of the lower middleware layers mask the complexities of applied
fault-tolerance, self-organization, and self-calibration mechanisms as well as
hardware-specific details from higher-level services and applications.

2.2 Middleware Employment

From the user’s perspective, interaction with the SE infrastructure is per-
formed by means of a mobile device (MoD), which features a wireless com-
munication interface for communicating in an ad-hoc fashion with SEs in its
immediate vicinity. On each MoD, an independent instance of the service mid-
dleware is installed, executing the individual middleware services as separate

4 J. Bohn

processes (modules). Services can be turned on or off and configured sepa-
rately, which allows the MoD to adjust the computational load according to
the available resources and the currently required functionality. A MoD can
be carried by a user or may be part of other devices, such as being integrated
into a vehicle, a wheelchair, or into a blind man’s stick, for example.

The execution of the service middleware on the MoDs themselves (rather
than providing the services as part of a fixed background infrastructure) em-
powers the devices to interact with the super-distributed smart-entity infras-
tructure in an autonomous fashion. In particular, by maintaining information
in SEs at the physical places where it is required, middleware services on a
MoD can remain operational even in the case of physical damage in other
areas of the infrastructure, and in the absence of network connectivity or the
unavailability of remote services.

Note that — in contrast to sensor networks — our work is concerned with the
explicit goal of enabling individual MoDs (or their users) to directly and locally
interact with — possibly passive — SEs placed in the physical environment.
Communication between the SEs themselves is much less an issue than in
sensor networks.

2.3 Prototypical Reference Implementations based on RFID

For our prototypical implementation, we selected a number of exemplary mid-
dleware services based on both a bottom up and top down approach: On the
one hand, we implemented services of the lower layers that provide general
basic functionality, which includes the Hardware Layer, the Hardware Ab-
straction Layer, and three essential services of the Core Services Layer: Local
Data Sharing, Location Manager, and Position Manager. On the other hand,
based on these services, we investigated the feasibility and practicability of
some higher-level services by developing and evaluating prototypical systems
for tracing and tracking, self-positioning, and collaborative map-making.

In our implementations, the SEs were represented by passive RFID tags.
As a result, the Hardware Layer in our prototype implementation consti-
tuted a super-distributed RFID tag infrastructure (SDRI) as described in [2].
We therefore use the terms “RFID tag” or simply “tag” synonymously with
“smart entity” in the remainder of the article. The MoD executing the service
middleware software was represented by a notebook computer, to which a mo-
bile RFID reader and antenna were attached to enable a localized interaction
with the SDRI.

2.4 Motivating Scenarios

In the following, we first present scenarios that highlight various opportunities
and advantages of services based on a super-distributed SE infrastructure from
the perspective of the user. We then motivate the need for middleware support
from the systems developer’s point of view.

2 Middleware Support for Super-Distributed Smart Entity Infrastructures 5
User-Centric Location-Dependent Services

Within a super-distributed SE infrastructure, users directly interact with the
SEs at their current location. This enables applications for geographic guid-
ance and navigation, where a MoD determines its current position by cal-
culating an estimate from the individual positions stored on nearby SEs, or
simply looks up the current location with the help of a local map containing
the positions of individual SEs.

A super-distributed SE infrastructure can also be employed in the sense of
a “ubiquitous blackboard”, where users share information about local points
of interest or leave personal messages directly in the physical places where
the information is most helpful and required. For instance, it is conceivable
to provide public directories whose entries are physically distributed across
SE infrastructure, providing localized information about room numbers or
names of departments, offices, or personnel, enabling visitors to find their
way unassistedly even in unfamiliar places and buildings with the help of
their MoD.

Besides, users can leave virtual data traces in an ad-hoc fashion on the SEs
passed along the way, similar to “pheromone trails” laid by ants, permitting
friends or colleagues to follow at a later point in time to places where an
activity or meeting is to take place.

By integrating the MoD with a blind man’s stick or with a wheelchair, vi-
sually impaired people or persons with walking disabilities can be empowered
to make use of these services, too, thus greatly enhancing their capabilities of
perceiving and interacting with their physical surroundings. Such users par-
ticularly benefit from the ability to share information in situ that is tailored to
their particular needs, such as information about nearby obstacles, dangerous
crossings, handicapped accessible ramps and gangways, etc.

Dependable and Safety-Critical Services

Disasters caused by natural or human factors (e.g., earthquakes, large fire inci-
dents, or terrorist attacks) often lead to the failure of infrastructure services in
buildings or public places, disrupting electricity and communication networks.
However, by maintaining safety-critical information in SEs at the physical
places where it is required by rescuers, services based on super-distributed
SE infrastructures remain operational in physically intact areas of the SE
infrastructure even when conventional background service infrastructures col-
lapse or other areas are damaged, as the MoD directly interacts with local
SEs via short-range ad-hoc communication. In addition, a super-distributed
SE infrastructure allows for the provisioning of dedicated emergency services.
For instance, by means of permanent virtual data traces stored on the SEs of
a super-distributed SE infrastructure, it is possible to provide services that
direct users (including professionals such as firefighters and emergency physi-
cians) to the nearest emergency exit or life saving equipment.

6 J. Bohn
Systems Support for Collaborative Activities

In some cases the activities of individual MoDs can be combined to contribute
to a global task. For instance, MoDs that have a third-party positioning service
(such as GPS) at their disposal can store obtained position readings on the SEs
at their respective places. Thus the SE infrastructure can be “bootstrapped”
with position information over time through a collaborative effort. Another
example for collaboration is the construction of a global site map of a super-
distributed SE infrastructure by joining partial SE mappings obtained from
individual MoDs, as we later see in Sect. 5. An SE infrastructure can also serve
as a vast communal information space: the individual contributions of users in
different physical places can contribute to the creation of open, community-
driven information services and directories.

Middleware Support

While in general the ad-hoc realization of specialized applications and services
based on super-distributed SEs is always possible, such a procedure is bound
to lead to closed systems with a narrow, limited scope and functionality. To
support the systems developer in the rapid development of whole classes of
applications, a fundamental challenge is to provide a set of general, basic
services that satisfy a broad spectrum of requirements and needs. The devel-
opment of reusable, basic services has the advantage that it greatly facilitates
the development of higher-level services and applications.

In order to identify location-dependent services that particularly benefit
from the availability of a super-distributed SE infrastructure, we performed an
analysis of the needs of various ubiquitous computing projects [5]. We further
identified a number of basic building blocks that encapsulate the hardware-
specific aspects of the underlying physical infrastructure, provide low-level
services and abstractions, and mask the complexities of fundamental main-
tenance and fault-tolerance management tasks from higher-level services. In
a second step, we combined the various services into the layered middleware
framework outlined earlier in Sect 2.1, according to their respective levels of
specialization and universality. The detailed description of our general mid-
dleware architecture, however, is beyond the scope of this article and has been
discussed elsewhere [4].

3 Implementation of Basic SDRI Middleware Services

3.1 Hardware Layer: Super-Distributed RFID Tag Infrastructure
Prototype

The RFID hardware we used for the SDRI consisted of ISO 15693 compliant
smart labels (transponders) that operated at a frequency of 13.56 MHz. As

3 Implementation of Basic SDRI Middleware Services 7

transponders, we employed Philips I CODE tags (Type 1) [6], with a dimen-
sion of 7.5 cmx4.5 cmx0.1 cm. The I.CODE RFID tags feature 64 byte of
physical memory, which is organized into 16 slots 4 4 byte (of which 11 slots
are rewritable). This allowed us to store the data of several middleware ser-
vices (e.g., Position Manager and Tracing and Tracking Service) directly on
the physical memory of individual tags during our experiments.

Table 1. Properties of plastic foil templates used for building a prototypical SDRI

Dimension of plastic foil templates 123 cnx 128 cm
Mean distance between two adjacent RFID tags 17.5 cm
Standard deviation of tag distribution 2.1 cm
Number of tags per plastic foil template 61 tags/foil
Average area covered by a single RFID tag 258 cm?
Average RFID tag density per square meter 39 tags/m?>

For building the SDRI, we attached the transponders onto four identical
plastic foils using the same pseudo-random distribution pattern. This yielded
four RFID-tagged templates with equal characteristics as shown in Table 1.

3.2 Hardware Abstraction Layer: Entity Read/Write

For the realization of the Entity Read/Write (ERW) service on the Hardware
Abstraction Layer, we used the RFIDStack [7], which offers a manufacturer-
independent API to applications and incorporates drivers for various types
of RFID hardware. Based on the RFIDStack, the ERW service provides the
interface for writing data to and reading data from the underlying RFID tags
of the SDRI, masking the complexity and hardware-specific characteristics of
the underlying RFID hardware from the higher service layers. The writing of
data can either be performed physically, writing to the physical tag memory,
or virtually, storing the data in the so-called virtual tag memory. The latter
is managed by a service instance of the RFIDStack residing in the Internet,
which can be accessed by means of XML messages sent via a TCP connec-
tion [7]. The virtual tag memory not only mirrors the physical memory of a
tag, but also provides an extended storage space. Our ERW implementation
only allows a MoD to access the virtual memory of a tag if that entity is
physically present within communication range.

The ERW service also implements the data management for the physical
and virtual tag memory. It emulates a simple file system for the physical tag
memory, where Service Data Units represent files and the Smart Entity Direc-
tory represents the root directory. A Service Data Unit constitutes a service-
specific data unit that encapsulates the information that a service requires
to be stored on a single tag for a well-defined purpose. To detect incomplete

8 J. Bohn

or inconsistent data units on tags caused by interrupted, incomplete write
operations, CRC error checking is performed.

In particular, the ERW service provides the following basic methods for
accessing the physical memory of individual tags: 1istTags, listTagDir-
ectory, writeTagFile, readTagFile, deleteTagFile. Parameters include
tag ID, file type, file data, and flags that indicate the use of the virtual memory
and declare if a file should be stored persistently or can be overwritten at a
later point in time (persistence flag).

3.3 Core Service Layer: Local Data Sharing

The Local Data Sharing (LDS) service provides MoDs with an APT for sharing
data in physical places of the SDRI with other devices. In doing so, the LDS
service exploits the high tag density in the SDRI for fault-tolerant data storage
by replicating Service Data Units across multiple tags in antenna range at the
current location. Data can be shared in situ by using method shareData,
which is parameterized with the service-specific data type and the persistence
flag. Previously shared data can be retrieved by means of the getData method.

The API of the LDS service allows the user to set the replication degree,
which can be defined as an absolute number and which is targeted on a best
effort basis, or as a relative percentage value. These values apply to the ini-
tial replication and the later replication maintenance procedure. The actual
replication management is hidden from the service clients. For accessing the
tags of the SDRI, the LDS service is based on the API of the ERW service.
Further the LDS service allows to set a tolerance threshold for the number of
failed tag identify/read/write attempts of the underlying ERW service. For
example, if data is to be read from or written to eight different tags, failed
read /write attempts for two of the tags are tolerated given a tolerance thresh-
old of 25%. This enables the service to deal with known imperfections of RFID
systems (e.g., tags in range may not be detected, or read /write operations may
abort [8]). When Service Data Units are retrieved from local tags, the LDS
service transparently filters duplicates.

3.4 Core Service Layer: Position Manager

The main contributions of the Position Manager service are the methods get-
Position and setPosition. The setPosition method enables a MoD to
locally store its current position p™ obtained from a third party positioning
service on the nearby tags. In doing so, for each tag, the new position pf .,
is calculated as the weighted mean of the position p™ of the MoD and the
old position pf;, of the tag, using the number of previous write operations
w as a weight: pl.,, = (™ + w-p',;) : (w+1). Vice versa, upon calling
getPosition, the Position Manager first scans all tags in antenna range and
extracts their individual position coordinates if available. Then it calculates
an estimate for the current position as the mean over all obtained individual
tag positions.

4 SDRI Tracking and Positioning Prototype 9

3.5 Core Service Layer: Location Manager

The Location Manager (LM) provides an API to define and resolve abstract
locations: a Location has a unique identifier and is defined by the set of (sta-
tionary) SEs that are detected in a well-defined range of the MoD executing
the service [4]. The Location identifiers are directly stored on the defining SEs
themselves.

The main contribution of the LM is the getLocation method, which
determines an abstract Location L as the set of RFID tags taglDSet; de-
tected at the respective physical place [in the SDRI: L := taglDSet; :=
{tagID; : inRange(t,l,r)}, where taglD; is the unique identifier of tag ¢,
and inRange(t,l,r) a Boolean predicate that equals true iff tag ¢ is within
distance r of the field of the RFID antenna at place [and false otherwise.
In our prototype system, the range r of the RFID system was defined by the
characteristics of the used RFID hardware. Ideally, the range of the RFID
reader/antenna should be customizable to enable the integration of different
RFID systems with variable characteristics.

If the getLocation method is called to determine the Location of the cur-
rent place, then the LM searches for predefined Location identifiers on all tags
in range r. The Location whose identifier is stored on the majority of the de-
tected tags is returned as the current Location. In case no predefined Location
is available, or if the number of tags containing the dominant Location iden-
tifier is below a well-defined percentage value T', then the LM automatically
defines a new Location and stores the corresponding Location identifier on
the affected tags. This ensures that adjacent Locations only overlap in up to
(100—T)% of the tags, which in return enables a robust and selective Location
detection in situations where individual tags fail to respond temporarily.

4 SDRI Tracking and Positioning Prototype

The SDRI Tracking and Positioning prototype system provides two main ser-
vices: laying and following of data traces, and self-positioning.

4.1 Prototype Description

We have developed a fully functional SDRI Tracking and Positioning proto-
type, which consists of two major hardware components. Firstly, a trolley with
the RFID equipment (RFID reader and antenna) and the MoD (in our case
represented by a notebook computer running the SDRI Tracking and Position-
ing application). Secondly, four RFID-tagged templates forming a prototypical
SDRI (Fig. 2).

The RFID hardware consisted of an ISO 15693 compliant mid range RFID
reader, and an external mid range RFID antenna?. The RFID reader sup-

2 Manufacturer: Feig Electronic, model: OBID i-scan HF ISC.MR100 and OBID
i-mid ISC.ANT340/240

10 J. Bohn

Notebook computer
running tracking and
positioning application

Trolley

SDRI templates
RFID reader device
RFID antenna

" (not visible)

Marked test track

Fig. 2. Measurement trolley and prepared test track

ported collision resolution, which enabled it to simultaneously identify mul-
tiple transponders within antenna range. The RFID antenna was attached
underneath the center of the bottom pane of the trolley, at 10 cm above the
floor space. At this distance, the approximately square operating area of the
RFID antenna was about 50 cmx50 cm. For constructing the prototypical
SDRI, the four RFID-tagged templates described in Sect. 3.1 were arranged
in an L-shape around a corner of a corridor in our office building (Fig. 2). On
the templates, we manually marked a test track for our experiments with a
total length of 526 cm.

4.2 SDRI Tracing and Tracking Service

The SDRI Tracing and Tracking Service features a tracing mode, which en-
ables the MoD to leave a digital data trace in the SDRI, and a tracking mode,
which allows a MoD to follow a previously laid data trace. Each mode itself is
divided into a basic and advanced version, which we describe in the following.

Tracing Mode

A basic trace is represented by a sequence of trace data objects stored on tags
of the SDRI. Each trace data object (TDO) consists of an anonymous trace
identifier (trace ID), which is generated by random, and a timestamp. A trace
ID only has to be unique in the local area where it is applied, but not on a
global scale. Further, all TDOs are flagged as non-persistent, and over time,
the SDRI Tracing and Tracking Service overwrites the oldest TDOs on a tag
with newer traces if memory space is short.

4 SDRI Tracking and Positioning Prototype 11

In our prototypical implementation, we replaced the timestamp in the
TDO with a trace counter serving as logical clock to obtain a more compact,
memory-space-saving representation. This was feasible since it is usually only
necessary to locally distinguish the age of detected TDOs belonging to the
same trace, which we achieve by applying a sliding-window approach. In ad-
dition, we adapted the TDO overwrite strategy to selecting a random TDO
for replacement, as the use of logical clocks no longer allows to identify the
oldest TDO on a tag. Memory-wise, we used 1 byte for the trace ID and one
for the trace counter (with a window size of 12) per basic TDO, which fit into
a single slot of our physical RFID tag memory.

If tracing is active, new TDOs are stored in a redundant fashion on the
RFID tags at the current position of the MoD (by using the Local Data
Sharing service) at a well-defined update rate (specified in milliseconds). For
preventing repetitive trace updates at the same physical location, which would
lead to a discontinuity of the trace counter values, the IDs of the locally
detected tags are cached. A new TDO is only written to the SDRI if at least
K percent of the local tag IDs have changed. Concretely, we used a trace
update rate of 500 ms and set the update tolerance to K = 50%.

The advanced tracing mode uses position information (e.g., obtained from
the Position Manager or from a third-party positioning service) to create an
augmented trace: the individual trace data objects are augmented with the
current information about direction (orientation), change of direction, and
speed of the MoD.

Tracking Mode

The tracking mode of the SDRI Tracing and Tracking Service enables a MoD,
the follower, to follow a trace by detecting the corresponding TDOs in the tags
of the SDRI. We call the MoD that previously laid the trace the forerunner.
Initially, the forerunner has to reveal its randomly chosen trace ID of the trace
to the devices that are to become its followers, and to inform them about
potential starting points for picking up the trace (which are not necessarily
equal to the starting point of the trace).

Once a follower has detected or rediscovered the trace (i.e., tags in the
SDRI which contain a TDO with the forerunner’s trace ID), the follower
repeatedly searches for tags with more recent trace information and moves
into this direction. More precisely, the follower continuously seeks TDOs of
the wanted trace ID with either a more recent timestamp, or with a higher
trace counter value (based on the counter window calculated using modular
arithmetic). In our system, the detected trace counter values for a specified
trace are displayed in a graphical user interface window (GUI). If an RFID
tag map of the prototypical SDRI is available, the GUI visualizes the tags
of the trace that have been detected so far, and highlights the most recent
trace information. In case of an augmented trace, the GUI also displays the

12 J. Bohn

augmented information, such as the current direction and change of direction
(as numerical values and visually by means of an arrow symbol).

4.3 SDRI Positioning Service

The SDRI Positioning Service enables the MoD to store position information
to or to retrieve it from individual RFID tags of an SDRI, either using the
physical on-tag memory or a remote virtual tag database.

Calibration Mode

For the calibration of the SDRI with position information, the SDRI Posi-
tioning Service supports two modes of operation: Firstly, the ezact calibration
mode allows the user to calculate the individual tag positions of all RFID tags
of an SDRI template at once, based on two manually entered reference posi-
tions per template. The determined exact tag positions are then stored on the
physical tags and/or in the virtual tag database. The physical tag calibration
procedure is supported by a tool that shows the progress and status of the
calibration with the help of a graphical display.

Secondly, the incremental calibration of the SDRI uses the position in-
formation of a third-party positioning service to update the position coordi-
nates on the individual tags by calculating a new weighted mean as described
in Sect. 3.4. This procedure can be performed in a collaborative fashion by
independent MoDs. In the process, the accuracy of individual tag position
coordinates usually increases with the number of positions that are stored on
the respective tags: as the actual positions of the MoDs performing the cali-
bration are typically scattered around individual tags, the errors of the single
position values that are averaged tend to cancel each other out.

Positioning Mode

The implemented position calculation or positioning procedure of the SDRI
Positioning Service uses the positioning procedure of the Position Manager:
First the tag position coordinates stored on the single RFID tags within an-
tenna range are retrieved. Then the arithmetical mean of the obtained sin-
gle tag position coordinates is calculated and used as the estimated position
(z,y, z) of the MoD.

4.4 Experimental Results

We performed our experiments by pushing the trolley at a constant speed
along the marked test track (Fig. 2). We further calibrated the tags of the
SDRI with local positioning coordinates using the exact calibration tool.

4 SDRI Tracking and Positioning Prototype 13

X [cm]
800 850 900 950 1000 1050 1100 1150
2600
.Jh;

2650 (’

2700 -
T ‘k\
S,
> :

2750 ‘\

2800 \ ——— e —— |

=7
2850
|— Exact <—Run 1 —+—Run2 —=— Run 3]

Fig. 3. Three positioning experiments of the SDRI Positioning Service performed
at 50 cm/s

Efficiency of Virtual and Physical Tag Memory Access

For our positioning measurements, we used both the virtual and physical tag
memory.

For accessing the virtual tag memory, which was maintained in a database
on the MoD itself, it was sufficient for the ERW service to retrieve the IDs of
all RFID tags within antenna range with a single command call (identify).
The duration of the identify command was independent from the number
of tags within range, and took approximately 200 ms on average (using 16
time-slots for multi-tag-detection as part of the anti-collision protocol of the
reader). This enabled a maximum rate of up to 5 Hz for multi-tag detection
and subsequent position calculation.

The efficiency of the physical tag memory was more than one order of mag-
nitude lower, since our particular RFID hardware required sequential scans
for reading out a data slot: one identify command followed by a separate
read command for each detected tag. In our implementation, we needed two
physical memory slots to store positioning coordinates on a tag. Therefore, for
attempting to read the two data slots from four RFID tags detected during
an inquiry, the duration of the scan varied from approximately 2 seconds (8
successful reads), if no errors occurred, to up to 5 seconds (8 failed reads) in
the worst case if all eight sequential read operations failed. These numbers are
based on timing measurements for successful and failed attempts for reading
a single data slot, which for our RFID hardware were approx. 250 ms and
600 ms respectively. However, if we used a more advanced RFID system that
supported the direct and parallel reading of a data slot from multiple tags in
range without a prior identify operation, the duration of the physical tag

14 J. Bohn

memory access would be reduced to the order of magnitude of the duration
of the virtual tag memory access.

Accuracy of the Positioning Procedure

Due to the comparably slow physical tag memory access of our RFID hard-
ware, we used the virtual tag memory for our experiments. We performed
three test runs at a speed of 50 cm/s, using exact manual measurements of
the test track as reference (Fig. 3). The resulting mean absolute positioning
error was approx. 15 cm. Given our specific configuration, the maximum tol-
erable speed of the trolley is 2.5 m/s, which is determined by the tag inquiry
time of approx. 200 ms (required by the ERW service for determining the tag
IDs for accessing the virtual tag memory) and the length of the antenna field
in moving direction of 50 cm.

5 Collaborative SDRI Mapping Prototype

The prototypical Collaborative SDRI Mapping system has two main tasks:
The localization and mapping of RFID tags in an SDRI by means of au-
tonomous vehicles, and the merging of overlapping partial RFID tag map-
pings, which were constructed independently from each other by these vehicles
as part of a collaborative effort.

We do not aspire to contend with state-of-the-art solutions for the general
collaborative map-making problem, which has been in the focus of research
in the domain of mobile robots for decades (cf. to the work by Burgard, Fox,
et al. [9,10], for instance). Our primary goal is to demonstrate the feasibility
and practicability of using a super-distributed RFID tag infrastructure for the
realization of collaborative activities, which is not considered by traditional
map-making systems. In contrast to our approach, RFID tags for positioning
have so far only been used in the function of dedicated artificial landmarks
on walls or floor spaces, providing auxiliary support to dedicated positioning
and navigation systems [11-13].

5.1 Prototype Description

The Collaborative SDRI Mapping prototype consists of the following com-
ponents: a model vehicle, a prototypical SDRI, an on-board vehicle control
application (for evasive driving and dead reckoning), an off-board RFID tag
mapping application, and a stand-alone collaborative map-merging applica-
tion for fusing partial map observations obtained during independent test
runs.

The model vehicle was constructed using Lego Mindstorms [14] technology.
It is self-propelled, featuring two actuated parallel wheels in the back (each

5 Collaborative SDRI Mapping Prototype 15

Fig. 4. Model vehicle with mu-chip Fig. 5. Bottom view of the model vehi-
reader on top of the Lego RCX, within cle prototype showing the wheel config-
the prototypical SDRI tagged with mu- uration, front bumper, and the mu-chip
chip RFID inlets antenna

equipped with a rotation sensor and an electrically powered motor) and one
castor wheel in the front for stabilization. A bumper sensor connected to a
front bumper is used for collision detection. An on-board LEGO Mindstorms
RCX controller hosts the software for controlling the motors of the vehicle, and
for monitoring the rotation and bumper sensors. In addition, the model vehicle
is equipped with an on-board RFID reader (Fig. 4), and an RFID antenna®
mounted at the bottom at 1 cm distance from the floor space (Fig. 5). Due to
the size of the model vehicle, the vehicle control application was executed on
a separate notebook computer, which was connected to the RCX controller
and the RFID reader by cable.

For obtaining a prototypical SDRI test area, we evenly distributed 32 mu-
chip inlets across a wooden panel of the size of 50 cmx50 cm (Fig. 4). This
corresponds to a tag density of 128 tags/m?2. Each mu-chip tag features a
unique 128-bit ID stored in its read-only memory (ROM). The test area of
was rounded off with a solid wooden barrier to mark off its boundaries.

The on-board vehicle control application is executed on the RCX controller
and performs the following actions: It triggers an evasion manoeuvre whenever
the bumper sensor connected to the front bumpers reports an obstacle. It
also continuously monitors the two rotation sensors and calculates the current
position by means of a basic dead reckoning algorithm. The RFID tag mapping
application is executed off-board on the notebook computer. It is connected
to the RFID reader and continuously maps detected RFID tags, using the
latest dead reckoning position information obtained from the RCX controller
of the model vehicle as reference.

Overlapping partial map observations, which were created during indepen-
dent map making runs, are merged with a single, gradually growing compre-

3 Manufacturer: Hitachi Kokusai Electric Inc., model: MRE200 No. 1010 and PA1-
2450A8

16 J. Bohn

hensive map of the area by the collaborative map-merging application. The
map merging algorithm uses an affine coordinate transformation between two
arbitrary maps with different local (or global) coordinate systems. The trans-
formation is unambiguously defined by a translation vector and a rotation
angle given two or more overlapping tags (i.e., tags that are contained in
both maps). The affine transformation is calculated numerically using a least
squares metric for minimizing the overall transformation error.

5.2 Experimental Results
Experimental Method and Validation

Four map-making test runs were carried out in our test area of 2500 cm?.
Starting from a random position (which served as the origin of the local coor-
dinate system for the measurement), the model vehicle drove along a straight
trajectory within the SDRI at a constant speed of 3.6 cm/s. Whenever the
bumpers hit the encircling barriers, the vehicle stopped and performed an ap-
prox. 90-degrees turn on the spot, and resumed its straight movement. While
driving, the off-board application recorded the tag IDs together with the cor-
responding local position coordinates of the tags detected by the RFID reader
on the vehicle. The position coordinates were obtained from the dead reck-
oning program running on the vehicle’s RCX controller. Each test run lasted
approx. 90 seconds, during which the vehicle performed 6 turns (each of which
took approx. 6 seconds). Thus, on average, the vehicle covered a distance of
approx. 200 cm per test run.

To validate our experimental results, we have manually measured the exact
local position coordinates of all RFID tags in the test area as a reference.
To assess the quality of an experimental RFID tag map, we calculated the
overall minimum, maximum, and mean absolute tag localization error. For
an individual tag, the localization error was determined by calculating the
Euclidean distance between its estimated position and its corresponding exact
reference position.

Dead Reckoning Error

The driving distance of the model vehicle was approx. 0.33 cm per rotation
sensor increment. The average absolute error of the dead reckoning algorithm
for an approx. 90° turn of the vehicle on the spot was about 4%, and its lateral
drift approx. £ 7 cm per meter during straight driving. When considering
several consecutive turns, the occurring negative and positive errors partly
annihilate each other, leading to a lower effective error. In our case, the overall
error of six consecutive turns was reduced to approx. 1.4 %, which corresponds
to an accumulated drift of only about 2 cm per meter of straight driving.

5 Collaborative SDRI Mapping Prototype 17
Tag Localization Error

The specific RFID antenna we used detected tags inside an area of approx-
imately 6 by 9 cm around its center point, at approx. 1 cm distance from
the floor space. Since each mu-chip of our SDRI test area covered an area of
approx. 78 cm?, only one tag was within antenna range at a time. Therefore,
whenever the model vehicle took its current reckoned position as a position
estimate for a detected RFID tag, the error caused by the uncertainty about
the exact tag position within the antenna tag reception area, which we call
tag localization error, added to the dead reckoning error.

In our prototype system, the tag localization error equaled the distance
between the center of the tag reception area of the antenna and the center
point of the mu-chip inlet. Concretely, assuming that the center point of the
vehicle is also the center point of the RFID antenna tag reception area, the
mean tag localization error amounted to approx. 2.7 cm. In the worst case,
if a detected tag was situated in one of the corners of the tag reception area,
the resulting maximum tag localization error was approx. 5.4 cm.

Tag Mapping Error

During the mapping, the deviation erp of experimentally measured tag posi-
tion coordinates from the true coordinates, which we call tag mapping error, is
determined by two factors: the error epg of the dead reckoning system (which
is proportional to the distance traveled since the initial starting position was
set), and the tag localization error epy,, which depends on the properties of
the RFID hardware and RFID tag distribution: epp = epgr + ery.

Evaluation of Mapping Procedure

As a result of the four map-making test runs, four partial maps were created.
In the process, on average 11 tags were detected per test run, and 21 different
tags were detected altogether. Each two created maps overlapped in two or
more tags. The resulting tag mapping errors for the tags of each partial map
in comparison to the tags of the exact reference map are shown in Table 2.
The average tag mapping error over four experiments was 4.1 cm, with little
variation (standard deviation ¢ = 1.4 ¢cm). The overall maximum tag mapping
error remained below 8 cm.

Evaluation of Map Merging Procedure

To assess the robustness of our map merging procedure with regard to the
order in which overlapping maps are merged, we have joined the four partial
maps in different sequential orders and compared the resulting minimum,
mean, and maximum tag mapping errors.

18 J. Bohn

Table 2. Tag mapping errors of four experimentally constructed partial maps

Std. dev. of

Partial map | No. of tags | Min. error | Max. error | Mean error | mean error
1 10 2.5 cm 6.7 cm 4.3 cm 1.3 cm
2 9 1.0 cm 5.2 cm 3.2 cm 1.3 cm
3 11 1.9 cm 7.3 cm 4.3 cm 1.8 cm
4 14 2.0 cm 7.9 cm 4.4 cm 1.3 cm
Average: 11 1.9 cm 6.8 cm 4.1 cm 1.4 cm

Table 3. Tag mapping errors of pairwise merged partial maps

Std. dev. of

Merged maps | No. of tags | Min. error | Max. error | Mean error | mean error
142 15 1.5 cm 8.1 cm 3.9 cm 1.5 cm
143 15 1.4 cm 9.2 cm 5.2 cm 2.5 cm
1+4 21 1.0 cm 10.0 cm 4.7 cm 2.4 cm
2+3 17 1.0 cm 7.1 cm 4.0 cm 1.8 cm
244 16 1.2 cm 7.9 cm 4.1 cm 1.6 cm
3+4 18 1.3 cm 8.0 cm 4.2 cm 1.9 cm
Average: 17 1.2 cm 8.4 cm 4.4 cm 2.0 cm

In a first step, we merged the individual maps pairwise. The results show a
slight increase of the mean tag mapping error to 4.4 cm, with a higher variabil-
ity (0 = 2.0 cm), as shown in Table 3. The mean absolute tag mapping error
increased slightly to 8.4 cm, with a new overall maximum error of 10.0 cm.
The results differ significantly for each combined pair of partial maps. An ex-
planation for this observation is that — at this stage — a better map merging
result can be expected for maps that have more tags in common.

Table 4. Tag mapping errors of maps obtained after two consecutive merging op-
erations

Std. dev. of

Merged maps | No. of tags | Min. error | Max. error | Mean error | mean error
(1+2)+(3+4) 21 0.5 cm 7.6 cm 3.8 cm 1.8 cm
(143)+(2+4) 21 1.6 cm 7.6 cm 4.2 cm 1.6 cm
(1+4)+(2+3) 21 0.8 cm 7.7 cm 3.9 cm 1.8 cm
Average: 21 1.0 cm 7.6 cm 4.0 cm 1.7 cm

In a second step, we merged the previously paired maps. The resulting
errors are shown in Table 4. We can see that the mean tag mapping error
stabilized at 4.0 cm, with a lower standard deviation than in the case of the
original partial maps. A stabilization can also be observed with respect to the

6 Conclusion 19

minimum and maximum errors. The maximum tag mapping error after two
consecutive map merging operations has even dropped below the initial values
to 7.7 cm. Apparently, independently from the merging order, the errors with
opposite signs tend to partially cancel each other out as the estimated tag
positions of all available partial maps are eventually combined.

6 Conclusion

Based on an existing service middleware architecture for super-distributed
smart entity infrastructures, we prototypically implemented basic middleware
layers and services with the help of RFID technology: the Hardware Layer,
the Hardware Abstraction Layer, and the three essential core services Local
Data Sharing, Location Manager, and Position Manager. We demonstrated
the application of these services by developing and evaluating systems for
tracing and tracking, positioning, and collaborative map-making.

The SDRI-based tracking and positioning system we implemented on top
of two core middleware services is fault-tolerant with respect to individual tag
failures: (1) it redundantly stores trace data objects in physical places using
the Local Data Sharing service, and (2) it exploits the data fusion capabilities
of the Position Manager, which allows the service to tolerate the unavailabil-
ity of single tags by interpolating the position coordinates of the MoD at a
physical location. By means of experimental evaluation we demonstrated that
our positioning service provides an average accuracy of approx. +15 cm at
walking speed in our prototypical SDRI with a tag density of 39 tags/m?.
We consider this a promising result and a strong indication for the practi-
cability and effectiveness of our approach, in particular considering that we
used off-the-shelf RFID equipment that was not optimized for use in mobile
environments.

The prototype system for the collaborative mapping of super-distributed
smart entity infrastructures used mu-chip RFID tags as smart entities and
low-cost rotation sensors for implementing the dead reckoning system. We
experimentally evaluated an application for merging partial SDRI mappings
created independently by autonomous MoDs. We observed that the mean tag
mapping error stabilized on the level of the corresponding errors of the original
individual mappings, independent from the order in which the mappings were
combined. The maximum and particularly the minimum tag mapping errors
were even reduced in the process, which we consider evidence for the feasibil-
ity of our approach. We conclude that the collaborative mapping prototype
provides an encouraging example for the general idea of employing super-
distributed smart entities as a substrate for the realization of collaborative
activities.

Currently we are in the process of investigating means for performing the
dead reckoning itself with the help of a pure SDRI-based middleware service,
to free the MoD from its dependence on the rotation sensors. Besides, we

20

J. Bohn

intend to further develop our mapping system to make use of the Location
abstraction provided by our Location Manager implementation to improve
the robustness against individual tag failures.

Acknowledgements

We wish to thank Vito Piraino for his work on the implementation of the SDRI
middleware prototype [5]. We further wish to acknowledge Nicola Oprecht for
his work on the implementation of the SDRI Tracking and Positioning pro-
totype [15], and Marco Bér for his work on the Collaborative SDRI Mapping

system [16].
References
1. Bohn, J.: Prototypical Implementation of Location-Aware Services based on

10.

11.

Super-Distributed RFID Tags. In: Proceedings of the 19th International Con-
ference on Architecture of Computing Systems (ARCS ’06). Number 3894 in
LNCS, Frankfurt am Main, Germany, Springer (2006) 69-83

Bohn, J., Mattern, F.: Super-Distributed RFID Tag Infrastructures. In
Markopoulos, P., Eggen, B., Aarts, E., Crowley, J., eds.: Proceedings of the 2nd
European Symposium on Ambient Intelligence (EUSAT 2004). Number 3295 in
LNCS, Springer (2004) 1-12

Vorwerk & Co. Teppichwerke GmbH & Co. KG: Vorwerk is presenting the first
carpet containing integrated RFID technology. Press release, Hamlin, Germany
(2005)

Bohn, J.: User-Centric Dependability Concepts for Ubiquitous Computing. Doc-
toral dissertation, No. 16653, ETH Zurich, Zurich, Switzerland (2006)

Piraino, V.: A Middleware for Robust Self-Organizing Services Based on Highly
Redundant RFID Tag Infrastructures. Master’s thesis, Institute for Pervasive
Computing, Dept. of Computer Science, ETH Zurich, Switzerland (2004)
Philips Semiconductors: [-CODE — Smart Label Technology. Homepage at www.
semiconductors.philips.com/products/identification/icode/ (2006)
Florkemeier, C., Lampe, M.: RFID middleware design - addressing application
requirements and RFID. In: Proceedings of sOc-EUSAI 2005 (Smart Objects
Conference), Grenoble, France (2005)

Florkemeier, C., Lampe, M.: Issues with RFID usage in ubiquitous computing
applications. In: Proceedings of PERVASIVE 2004. Number 3001 in LNCS,
Linz/Vienna, Austria, Springer (2004) 188-193

. Burgard, W., Moors, M., Fox, D., Simmons, R., Thrun, S.: Collaborative multi-

robot exploration. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). (2000)

Fox, D., Burgard, W., Kruppa, H., Thrun, S.: A Probabilistic Approach to
Collaborative Multi-Robot Localization. Autonomous Robots 8 (2000) 325-344
Hahnel, D., Burgard, W., Fox, D., Fishkin, K., Philipose, M.: Mapping and
Localization with RFID Technology. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), New Orleans, LA, USA (2004)

12.

13.

14.
15.

16.

References 21

Kubitz, O., Berger, M.O., Perlick, M., Dumoulin, R.: Application of radio
frequency identification devices to support navigation of autonomous mobile
robots. In: 47th IEEE Vehicular Technology Conference Proceedings. Volume 1.
(1997) 126-130

Ni, L., Liu, Y., Lau, Y., Patil, A.: Landmarc: indoor location sensing using active
RFID. In: Proceedings of the 1st IEEE International Conference on Pervasive
Computing and Communications (PerCom). (2003) 407-415

LEGO Mindstorms: Homepage at http://mindstorms.lego.com/ (2006)
Oprecht, N.: Positioning and Object Tracking Based on Super-Distributed RFID
Tag Infrastructures. Master’s thesis, Distributed Systems Group, ETH Zurich,
Switzerland (2005)

Béar, M.: Collaborative Map-Making in an Area of Randomly Distributed RFID-
Tags using a LEGO Mindstorms Robot Vehicle. Semester thesis, Institute for
Pervasive Computing, Dept. of Computer Science, ETH Zurich, Switzerland
(2004)

