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Abstract. Location information as a piece of context is considered to be of par-
ticular interest to ubiquitous computing applications. In this work, we present a
probabilistic positioning service that employs an available ubiquitous computing
infrastructure for the localization of mobile devices. The service draws on various
heterogeneous sensors that serve as sources of location information. Data from
these sources are transformed independently of each other into an abstract repre-
sentation of location estimates. By means of a probabilistic fusion process, these
estimates are then combined into a single position value. The quality of the result
increases with the number of available sensors. Also, since the fusion procedure
is not depending on the type and number of available sensors, failures of single
sensors or sensor types can be tolerated.

1 Introduction

Thanks to advancements in the field of miniaturization of computer technology and
mass production, many ubiquitous computing applications that once bore the stigma of
utopia have become technically feasible today. In the meantime, ubiquitous computing
technology has become increasingly wide-spread in public places and even in private
homes. For instance, wireless communication infrastructures such as Wireless LAN
(WLAN) or Bluetooth have become quite popular in airports, train stations, and public
buildings, and not only as substitutes for expensive wired networking [10, 18]. Simulta-
neously, other typical pervasive computing technologies such as radio frequency identi-
fication (RFID) have become commonplace in industrial and commercial facilities, e.g.
in manufacturing plants and department stores [22].

Considering emerging ubiquitous computing applications, context awareness has
become a major field of research [5]. Here, the general idea is that a broad range of
applications may benefit from the capability of responding to their current situation and
to the prevailing circumstances [8, 19]. Location awareness is of particular interest, and
location information has been identified to remain “the single most important piece of
context used in ubicomp applications” [1]. As a consequence, numerous location aware
systems [13] have been conceived, e.g. the Lancaster mobile tourist guide [6] or various
indoor navigation systems [23, 25].



While outdoor positioning systems are mainly based on cellular networks and satel-
lite-based technologies [16], the majority of indoor location systems usually relies on
different technologies, usually of a single kind, e.g., on Wireless LAN signal strength
measurements [3], video analysis [23], infrared beacons [25], or ultrasonic sound [28].
As typical outdoor positioning technologies such as GPS are not suitable for indoor us-
age, and vice versa, location and research in the field of indoor and outdoor positioning
systems is generally conducted separately.

However, a positioning system that is solely based on one technology has various
disadvantages. On the one hand, it is prone to service disruption and interferences,
because the unavailability or failure of the single underlying technology leads to a com-
plete failure of the service as a whole. Therefore, the dependence on dedicated hard-
ware is a major drawback of existing positioning systems, especially if they are to be
deployed in environments with stringent reliability and availability demands such as
hospitals, for example.

On the other hand, current location systems do not fully exploit the sources of lo-
cation information that are already available in existing ubiquitous computing environ-
ments. Thus they are not able to take advantage of various new sources of location
information that are – as a side-effect – implicitly provided by the infrastructure. While
technologies such as RFID, WLAN or Bluetooth may have been invented with a cer-
tain primary application in mind, e.g. to be used for object identification or wireless
data transfer, these technologies often leak location information during operation. Fur-
thermore, the majority of existing location systems usually require special dedicated
hardware, e.g. grids of customized infrared or ultrasonic beacons, GPS receivers, etc.,
leading to additional costs.

In this work, we present a robust and scalable probabilistic positioning service
which addresses the described shortcomings of common ubiquitous computing location
systems. The service is based on high-level sensor fusion and makes use of symbolic in-
formation represented in maps. Its architecture is modularized and supports an arbitrary
number of sensors to be integrated.

The remaining sections of this paper are organized as follows: In the next section,
we explain how sensor fusion allows us to take advantage of various available sources
of location information, thus contributing to increase the overall robustness and avail-
ability of the positioning service. We also discuss the benefits of using a grid based
map model as part of the positioning procedure. In Section 3, we describe the overall
architecture and the main components of a probabilistic positioning algorithm that uses
map knowledge and high-level sensor fusion to increase the accuracy and plausibility
of its positioning results. Then, in Section 4, we discuss how the positioning service
addresses various dependability problems. Afterwards, we give an overview of related
work in Section 5. Finally, in Section 6 we conclude with a short summary and give an
outlook on future work.

2 Fundamentals

There are many systems available that use dedicated hardware infrastructures for local-
ization. The most widely used system today is the Global Positioning System (GPS),
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which is restricted to outdoor localization. Since the use of dedicated hardware is often
very costly, both for the infrastructure and dedicated components in end-user devices,
it is desirable to use features of already existing installations for localization. Com-
munication technology such as wireless networks (WLAN, Bluetooth) or identification
systems (RFID, barcodes) come in handy for that purpose. Our goal is the exploitation
of this existing infrastructure for determining the location of objects. Features of wire-
less communication such as signal propagation time or signal strength are promising
candidates. Identification systems where the location of one component is known (such
as a stationary RFID reader) provide us with immediate position information.

2.1 High-Level Sensor-Fusion

Basically, there are three possible levels on which to perform sensor fusion [11]: on raw
sensor data, on features extracted from raw data, and on the decision level.

Fusion on raw sensor data is only possible if the domain of all sensors is the same,
i.e. they are of the same type and measure the same quantity. In our approach, this would
be possible, but the fusion process would be located within a module representing a
sensor and the outcome of that process would be regarded as the measurement of a
single sensor. (As an example, consider multiple RFID tags located on the same object.
Each tag, when recognized by a RFID reader, would provide a location of the object.
But since this location is the same for all tags—the location of the RFID reader—the
locations can simply be collapsed into one.)

Feature extraction is a technique that reduces the amount of data produced by a sen-
sor and abstracts away all information that is irrelevant for the task at hand—in case of
a positioning system, only information relevant to determining the current location is
retained. Multiple sensors (working on different domains) can be combined after rele-
vant features have been extracted from the raw data. On the one hand, feature extraction
for RFID tags makes no sense, since RFID tags immediately yield an object’s location.
Therefore, data obtained from RFID tags and WLAN data cannot be fused on the fea-
ture level. On the other hand, for data obtained from Bluetooth and WLAN receivers,
e.g. signal strength information, feature level fusion may be suitable. In its current state,
our system does not support data fusion on the feature level directly, since no compo-
nent for feature extraction and combination is incorporated. However, data fusion on
the feature level can again be accomplished in the sensor modules themselves.

Currently, sensor fusion is performed mainly on the decision level, i.e. each sensor
module provides the system with a set of possible values (object locations) represented
as a probability distribution. These distributions are combined to compute a new prob-
ability distribution that represents the most likely location of the object.

This approach, sensor fusion at the decision level, facilitates a modular and extensi-
ble system architecture. The number and types of sensors are not limited. Processing the
sensor data can be performed remotely (i.e., not on the object itself) and pushed to the
object in the form of an internal location event. When single sensors fail (or are shut off
due to power saving efforts), the quality of the localization is affected, but the system
as a whole remains functional. If the quality of the positioning dropped to room-level
accuracy, for instance, it would still serve applications for which it is sufficient to get
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regular updates on the position whenever the user enters another room, being indifferent
to all intermediary positions of the user.

2.2 Map Knowledge

The existence of a map model is an important aspect in our approach. The map model
serves two main purposes. First, it provides a frame of reference within which all sensor
data is interpreted. Second, it provides applications with symbolic and sub-symbolic lo-
cation information, e.g. “near table” or “at coordinates (x, y) in room Z”, respectively.

In our system, a map is internally represented as a 2-dimensional grid with a fixed
cell size where the cell size can be chosen individually for each map. A cell is repre-
sented by a data structure, which contains the following information:

– a value for the probability that the tracked object is located within this cell;
– probability values for movement into the eight adjacent cells, and for staying in the

cell.

There are also cells of a special type (inherited from the standard type) that mark the
transition to another map; this allows switching to other maps when the object leaves
the area of the current map.

The map model is used throughout the localization process. In a learning phase,
symbolic locations are linked to map coordinates. During usage of the positioning, map
knowledge is exploited in various ways, e.g. obstacles are considered when recomputing
the position probabilities.

When no location update events arrive, the position gets increasingly blurred. This
is reflected by the spreading of the probability distribution, i.e. the number of cells with
a non-zero probability increases, but the probabilities for single cells are lowered. The
spreading is guided by movement patterns (which can be acquired in a preprocessing
stage) and map topology. For example, walls and static objects like furniture that are
recorded in the map designate areas where the object simply cannot move, therefore the
spreading stops at these points.

When a new position is to be determined, the outcome of the positioning process
generally is a list of locations, ordered by probability. However, map knowledge can
be exploited in order to eliminate certain points from that list, e.g. if a point is located
outside of a building.

3 Probabilistic Positioning Service

The positioning system has been designed to combine the location information ex-
tracted from various sensors. It is capable of running self-sufficiently as a stand-alone
service on the mobile device itself, only drawing upon the locally available sensors.
However, the positioning service is also able to take advantage of sensory information
provided by a surrounding infrastructure, if appropriate.
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Fig. 1. Architecture of the probabilistic positioning service

3.1 Architecture

The implemented positioning system consists of several separate components as shown
in Figure 1. The main components are:

– Sensor Plugins
• Asynchronous plugins (push semantics)
• Synchronous plugins (pull semantics)

– Event Abstraction Layer
• Event buffer
• Sensor events
• Position events

– Positioner
• Geographic map model (cell grid)
• Map-based fusion algorithm
• Map manager

– Management Tools
• Graphical map builder
• Graphical sensor emulation tool

In the following, we will refer to a sensor as an internal or external source of location
information. In our context a sensor may be either a physical device or an application
that in turn preprocesses the location information of other physical devices or applica-
tions. A sensor plugin is associated with one specific type of sensor. It preprocesses
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and transforms sensory location information into an abstract representation of position
estimates we call sensor events. We also differentiate between synchronous (active)
and asynchronous (passive) sensor plugins. A synchronous sensor returns a position
estimate whenever it is prompted to do so, whereas asynchronous sensors provide po-
sition estimates at irregular intervals only because their functioning is decoupled from
the operation of the other components. For instance, Wireless LAN position estimates
based on the received signal strength are actively triggered by a synchronous sensor
plugin, while the scanning of a barcode or the detection of an RFID tag are passively
monitored by an asynchronous sensor plugin. Since asynchronous sensor readings may
occur at unforeseen times, these asynchronous sensor events are stored temporarily by
means of an internal event buffer.

The central system component is the positioner, a separate module which performs
the actual positioning computation. During each computational iteration step, the po-
sitioner calculates a single position by fusing the location information of the available
sensor events. The fusion process is accomplished by means of a probabilistic fusion
algorithm running on top of a two-dimensional map model. The fusion process will be
explained in detail in Section 3.3. Map models represent geographic maps and are re-
alized using an equidistant cell grid. The cell grid may contain obstacles (or walls) and
arbitrary objects, e.g. markers for symbolic locations or sensors (see also Section 2.2).
The cell grid data structure also offers a range of auxiliary methods (e.g., to access
and modify cells or to resolve the position of objects) and advanced methods (e.g., to
calculate the decay of occupancy probabilities of single cells or to compute the mini-
mal distance between two cells with respect to blocking walls and obstacles). The map
manager unit is responsible for the loading of maps and the updating of position prob-
abilities in cell grid data structures.

Whenever a position computation has completed, the resulting position estimate
is converted into a position event and fed into the external event infrastructure. Ad-
ditionally, the position event is written into a local event buffer which is readable to
applications and services running on the mobile device.

In order to create and edit maps, a graphical map builder has been implemented.
The map builder provides the means to place and name objects, to draw walls and to
insert transition cells to other maps, for instance. The editor has been enhanced by
a simulation mode that allows the manual emulation of sensor events which proved
suitable for preliminary testing of new heuristics and algorithms for positioning, as
well as for the optimization of configurational parameters.

3.2 Sensor Events

All position information that is received from the sensor plugins is translated into an
abstract internal format of absolute positions with respect to a given two-dimensional
map model.

Depending on the sensor type, position estimates vary in terms of accuracy. In our
system, we discern two categories of sensor events, exact and fuzzy sensor events. In
the grid map model, an exact point sensor event (in short: exact sensor event) specifies
a single cell which is considered to provide an exact match of the current position;
i.e., the position probability of that cell yields one hundred percent. As a consequence,
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exact sensor events can be exploited for immediate position updates. In contrast, a fuzzy
area sensor event (in short: fuzzy sensor event) only specifies a certain region on the
map, i.e. a collection of cells on the grid, with a certain characteristic distribution of
position probabilities. Figuratively speaking, spacial sensor events define a fuzzy cloud
of position probabilities, allowing the uncertainty of position information to be modeled
with respect to the accuracy and precision of a single sensor.

The dispersion of the position probabilities for fuzzy events is performed by a pa-
rameterized spreading function, which is specific to each sensor class. Let a fuzzy sen-
sor Sf return a symbolic location whose anchor point is located on the map at cell x j .
This cell receives the position probability value of P (X = xj |Sf = sk) with respect
to the reading sk of a single sensor. Now the spreading function for S f also assigns
position probability values P (X = ni|Sf = sk) to nearby cells ni up to a specified
maximum distance dmax, so that distance(xj , ni) ≤ dmax holds. Depending on the
characteristics of a sensor, the spreaded probability values for neighboring cells can be
chosen according to a linear, exponential or any other (customized) mathematical func-
tion of distance d. At the moment, a linear and an exponential spreading function have
been implemented.

3.3 Probabilistic Fusion Algorithm

The central system component of the positioning service, the positioner, runs in a sep-
arate thread, gathering sensor information and recalculating the position of the mobile
device in a continuous loop. A single run consists of several computational iteration
steps, during which the positioner calculates a single position. This is achieved by fusing
the location information of the available sensor events into a single position estimate.
For that, the positioner continuously collects available sensor location information. The
actual fusion process is accomplished by means of a probabilistic fusion algorithm run-
ning on top of a two-dimensional map model. Figure 2 gives an overview of the different
stages and procedures of the positioning algorithm that is described in this Section. In
the following, for sake of clarity, we will use the term current position exclusively to
refer to the last calculated position of the mobile device.

Sensor Data Acquisition. In the initial phase of the positioning algorithm, position
estimates are acquired from the available sensor plugins for a well-defined period of
time. In doing so, synchronous sensor plugins are actively inquired at regular intervals
(e.g., every second) and the obtained location information is processed (pull semantics).
Asynchronous sensor input is preprocessed in a separate thread as soon as the data has
been received (push semantics).

At the end of the data collection phase, the obtained sensor events are analyzed.
Depending on the types of the received sensor events, there are two separate processing
sequences, the immediate update and the fusion-based position derivation sequence.

a) Immediate Position Update Procedure. The immediate update procedure is chosen
if at least one exact sensor event was received in the previous phase. First, the location
of the latest exact sensor event is resolved on the map and instantly taken as the new
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Fig. 2. Probabilistic sensor event fusion algorithm

current position of the mobile device. Thus the costly fusion-based position derivation
procedure can be bypassed, resulting in an efficient (and in this case deterministic)
position update. In a second step, the position probabilities in the grid map model are
recalibrated: the position probability of the cell corresponding to the current location is
marked with a one hundred percent probability, whereas the position probabilities of all
other cells are reset to zero.

b) Fusion-Based Position Derivation Procedure. If merely fuzzy sensor events were
received but no exact ones, the fusion-based position derivation procedure is executed:
In the beginning, the position probability (cell occupancy probability) for each fuzzy
sensor event is spread over a certain number of cells in the cell grid model, respecting
obstacles and walls modeled as part of the grid.

While the spreading process of the individual sensor event probabilities is per-
formed in compliance with the well-defined characteristics of the respective sensor type,
the probability values that are distributed for each sensor event are accumulated and
overlaid. The repeated execution of the spreading function on top of the same grid map
data structure yields a fusion of the individual sensor event probabilities. The fused sen-
sor event probabilities are then merged with the existing position probabilities stored in
the cell grid, which is followed by a global probability normalization covering all active
maps. The result is a common probability distribution for the current position described
by probability value X and n sensors S1, . . . , Sn. (Please note that n is not an absolute
number; instead, its value varies from execution to execution, depending on the number
of available sensors that provide sensor events for the current processing cycle.) This
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Fig. 3. Visualization of position probability distribution in cell grid during operation. The black
x marks the last known position of the mobile device (1). Darker shaded areas on the map cor-
respond to higher position probabilities. The sequence of white markers (2) defines the shortest
path to the new position (3) as calculated by the positioning service

probability distribution is defined by Equation 1,

P (X |
∧

k=1,...,n

Sk) := P (X = x|
∧

k=1,...,n

Sk = sk), (1)

where P (X |∧k=1,...,n Sk) equals the probability that cell x is the current position,
given that each sensor Sk evaluates to the value sk, with k = 1, . . . , n. In the follow-
ing, we will use a similar short notation of the kind depicted in Equation 2 whenever
appropriate:

P (X |S) := P (X = x|S = s) (2)

A metaphorical interpretation of the probability distribution defined in Equation 1
is a cloud of probability values covering the cells in the grid map: the denser the cloud
at a certain cell is, the higher is the probability that the device is currently located in
that spot (see example in Figure 3).

In order to solve Equation 1, we first apply the rule of conditional probabilities

P (A|B) =
P (A ∧ B)

P (B)
, (3)

and we get

P (X |S1 ∧ S2 ∧ · · · ∧ Sn) =
P (X ∧ S1 ∧ S2 ∧ · · · ∧ Sn)

P (S1 ∧ S2 ∧ · · · ∧ Sn)
. (4)

.
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By applying Equation 3 once more to the numerator of Equation 4, we obtain

P (X |S1 ∧ S2 ∧ · · · ∧ Sn) =
P (S1 ∧ S2 ∧ · · · ∧ Sn|X) · P (X)

P (S1 ∧ S2 ∧ · · · ∧ Sn)
. (5)

Let S1, . . . , Sn be n statistically independent sensors,

∀i ∀j P (Si ∧ Sj |X) = P (Si|X) · P (Sj |X), (6)

then Equation 5 can be transformed into

P (X |S1 ∧ S2 ∧ · · · ∧ Sn) =
P (S1|X) · P (S2|X) · . . . · P (Sn|X) · P (X)

P (S1 ∧ S2 ∧ · · · ∧ Sn)
. (7)

Let us now define a, s, p as short notations for the following probabilities:

a(s1, s2, . . . sn) := P (S1 = s1 ∧ S2 = s2 ∧ · · · ∧ Sn = sn) (8)

p(x) := P (X = x)
s(s, x) := P (S = s|X = x)

Thus we can rewrite Equation 7 as

P (X |S1 ∧ S2 ∧ · · · ∧ Sn) =
s(s1, x) · s(s2, x) · . . . · s(sn, x) · p(x)

a(s1, s2, . . . sn)
. (9)

This last expression can be resolved, because we can determine the value of all
terms on the right-hand side of Equation 9: First, s(s, x) is the probability that sensor
S returns value s at the known position x; these values may be influenced by external
conditions such as time, network load, etc., and need to be determined a-priori for each
sensor, e.g. by means of calibration, initial learning, or mathematical model. 1 Second,
p(x) is the probability that cell x is our current position in the map model, based on
the position probabilities calculated during earlier grid-based fusion processes. Third,
the term a can be determined indirectly, using the theorem of total probabilities: Let
Ai, . . . , An be n mutually exclusive events that form a partition of the event space,
Ai ∩ Aj = ∅ for i �= j and

⋃
i Ai = Ω, then their probabilities sum to unity:

∑

i=1,...,n

P (Ai) = 1 (10)

This allows us to determine the missing term a(s1, s2, . . . sn) by solving the fol-
lowing equation:

∑

i

s(s1, xi) · s(s2, xi) · . . . · s(sn, xi) · p(xi)
a(s1, s2, . . . sn)

= 1 (11)

1
a(s1, s2, . . . sn)

∑

i

s(s1, xi) · s(s2, xi) · . . . · s(sn, xi) · p(xi) = 1

1 A varying number of people in a building, for instance, is known to cause considerable vari-
ations of radio frequency signal propagation, thus interfering with signal strength based posi-
tioning systems in a Wireless LAN environment [3].
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By transformation of Equation 11, the term a(s1, s2, . . . sn) can be isolated:

a(s1, s2, . . . sn) =
∑

i

s(s1, xi) · s(s2, xi) · . . . · s(sn, xi) · p(xi) (12)

As a result, all right-hand side terms of Equation 7 are known, and Equation 1 is solved.
Now the final step of the fusion-based position derivation procedure, after the fu-

sion procedure has terminated and the probability distribution on the cell grid has been
updated, is the determination of the cell which is the best fitting choice for the new cur-
rent position of the mobile device. This position derivation is performed by means of a
heuristic which reduces the cell search space to one single cell. The heuristic searches
for the cell with the highest position probability on the currently active grid map(s)
within a maximum distance of the cell representing the last known device position. The
heuristic includes plausibility checks that reduce the search space to positions that can
actually be reached within the 2-dimensional model (i.e., by considering walls and a
maximum movement rate), starting from the current position.

To prevent great leaps between subsequently calculated positions, the system allows
to set an average motion speed which is then used to compute intermediate positions
that gradually approach the latest position derived by the fusion algorithm. For instance,
the black marker in Figure 3 does not jump to the newly calculated position. Instead, it
gradually approaches the new position at the specified movement rate, e.g. matching the
walking speed of the person carrying the device, thus smoothing the transition between
calculated positions.

xj

= n0,j
n1,j

n2,j n3,j n4,j

n5,j

n6,jn7,jn8,j

Fig. 4. Cell xj with neighboring cells ni,j (0 ≤ i ≤ 8)

Cell Grid Probability Degradation. At the end of either event processing procedure,
for all cells in the cell grid a defined decay function is calculated to account for the
gradual increase of position uncertainty over time (if no new probabilities are added).
Let Xt be the position at time t and ni,j (0 ≤ i ≤ 8) the neighboring cells of cell xj

(see Figure 4). Then the decay function is applied to the position probability of each
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cell xj as described in Equation 13. P (Xt = xj |Xt−1 = ni,j) is the probability of a
transition from the neighboring cell n i,j at time t − 1 to cell xj at time t.2

P (Xt = xj) :=
∑

i

(P (Xt−1 = ni,j) · P (Xt = xj |Xt−1 = ni,j)) (13)

This probability degradation ensures that position probabilities of earlier proba-
bility fusion calculations wear off over time: all cells gradually spread their position
probabilities over adjacent cells if they are not allotted additional probability values
during subsequent processing loops.

Initially, the transition probabilities for each cell are defined as follows: let w be
the number of neighboring cells (including the cell itself) that can be reached, then the
transition probability for these transitions is equally set to 1

w , favoring no particular
direction. For all remaining directions, e.g. in case the neighboring cell is blocked by a
wall or does not exist, the transition probability is set to zero. Later, these cell transition
probabilities can be adjusted according to characteristic personal movement patterns
acquired during a learning phase, for example.

4 Discussion

We have presented a positioning system for ubiquitous computing that emphasizes the
robustness of the core functionality, namely self-localization of a “smart object” by
means of sensory input. The system architecture allows for simple integration of mul-
tiple sensors due to the loose coupling between the acquisition of sensory data and the
positioning algorithm by means of an event-based communication mechanism. Previ-
ously unknown (or returning) modules for sensors can simply fire events to trigger an
update of the positioning.

The positioning service is capable of operating in a decentralized and self-sufficient
manner. Since it is designed to incorporate a wide variety of sensors, it can tolerate
the failure of large subsets of them. The functioning of the service is not interrupted
in the presence of frequent sensor interruptions. This feature can even be exploited to
increase battery lifetime of mobile devices by switching off certain sensors if they don’t
contribute to the required sensor quality.

Due to the probabilistic nature of the position algorithm and the high-level sen-
sor fusion, sensor failure leads to graceful degradation of the quality of the position
information. The position fusion algorithm is robust in terms of tolerating the failure
of single sensors. The absence of sensors only affects the quality of the positioning,
but as long as there is some sensory input available, the positioning algorithm stays
“alive” and continues to generate position estimates, maximizing the availability of the
service: If a highly accurate sensor failed and the overall accuracy of position infor-
mation dropped from cell level to room level, applications that are satisfied with rough
position estimates would still be fully functional. Additionally, even in case all sensory

2 The use of discrete time values in the equations has been motivated by the fact that position
events are generated at particular, discrete moments. Alternatively, the notion “time t” could
also be replaced with “position event t”.
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input temporarily fails to appear, movement heuristics and dead reckoning techniques
can be applied to get a rough picture of the location of the object, e.g. by counting the
number of footsteps of a walking person [26]. Alternatively, the momentary absence of
all sensory input can be compensated by deploying heuristics for a short-time position
prediction.

The system is also resilient to sensors providing inaccurate data: Location infor-
mation gained from such sensors is mapped to fuzzy sensor events that, by defining
a region rather than an exact position, reflect the corresponding uncertainty of posi-
tion information. Even false sensor data or outliers that occur sporadically, e.g. due
to transient interference, are tolerated by considering the reachability of positions and a
maximum speed of movements while calculating a position from the current probability
distribution.

By introducing more sensor modules, the quality of positioning results can be im-
proved, at the cost that a potentially higher number of sensor data has to be processed.
For synchronous sensors, the increase of sensor data depends on the frequency by which
the system polls them for updates. Overall, the complexity of the position estimation
process is linear in the number of sensor modules and sensor readings. Thus, scalabil-
ity with regard to the number of sensors is maintained, and the system is open to quality
improvement.

In many contexts, location information is considered as sensitive information [12].
Concerns about the privacy of such information are addressed by exclusively using local
sensor information, that is such information which is passively available and requires no
external requests. Thus, by solely relying on local sensors, the system can be configured
not to introduce new channels by which location information about the device itself is
revealed. However, in some cases such a policy is difficult to enforce due to technical
restrictions: For instance, a node communicating over WLAN reveals its location (to a
certain degree) to the base station, which cannot be prevented by our system.

The use of an existing communication and identification infrastructure instead of
dedicated hardware for localization has the advantage of avoiding additional cost for
installation and maintenance. However, our system can easily integrate a dedicated po-
sitioning infrastructure. This makes it suitable for environments where certain areas
require high location resolution, accuracy and precision. By using a unified format for
sensor events, our system supports a seamless transition between areas where differ-
ent positioning technologies are available, including the transition between indoor and
outdoor areas.

5 Related Work

An overview of (indoor) positioning systems for ubiquitous computing environments
and their relation to robot positioning is given in [13]. There are systems based on
dedicated hardware, such as cameras [7, 17, 23], infrared beacons [27], ultrasonic emit-
ters [21, 28], pressure sensors [2, 20], and special hardware for dead reckoning [26].
Some effort has also been invested in systems that require no additional hardware to
locate objects. The RADAR project [3] draws location information from the signal
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strength of WLAN installations. In our system, we used basically the same approach.
[1] uses biometric sensors and RFID for immediate location updates.

Our system provides applications which are executed on a “smart object” with loca-
tion information about that same object. In contrast to this decentralized approach, the
Location Service [1] is a centralized service providing access to location information
about arbitrary entities. It supports a variety of sensors, but doesn’t emphasize fusion
of data acquired from these sensors. Rather, it seems to consider all sensor input as
accurate, though possibly not being complete (e.g. lacking orientation information).
By merging different sensor data, it generates complete location updates for tracked
objects. The most significant difference to our work is the Location Service’s global
availability, i.e. it is built to supply all applications with location information, not only
the tracked object itself. From a reliability point of view, such a centralized service
constitutes a single point of failure, which is not acceptable for critical applications.

The Location Stack model proposed by Hightower et al. in [14] provides a multi-
layered design abstraction for location-aware ubiquitous computing systems. The fusion
of sensor information is described in general terms and attributed to one of the layers in
the stack. Two exemplary systems are discussed where a customized data fusion process
is used to merge the location information available from a specific set of sensors. In
contrast, our work concentrates on the fusion aspect, combining an arbitrary number
of sensors and using a scalable and flexible fusion algorithm that is independent of
the number of sensors available at a certain point in time. In this context, however,
integrating our proposed fusion algorithm with the Location Stack model could be an
interesting option.

Data fusion for positioning in wireless networks is discussed in [16] with an em-
phasis on lower levels. Since that work is based on quantities like time of arrival and
time difference of arrival, it is not directly applicable to indoor positioning. However,
such techniques can be incorporated in our system in order to increase the accuracy of
position information drawn from outdoor sensors.

Grid based positioning is a standard technique for robot positioning [4], but more
advanced techniques have been developed more recently [9], requiring less computa-
tional power. While the basic mathematical techniques are applicable also in positioning
for ubiquitous computing, the goal is quite different. In ubiquitous computing, position-
ing of people is prevalent, thus different sensors are used, and many applications don’t
require a high degree of precision (a precision of approx. one meter is often sufficient,
or only symbolic location information is necessary).

6 Conclusion and Future Work

In this paper, we have presented a robust probabilistic positioning system that incorpo-
rates high-level sensor fusion and map knowledge to provide applications with accurate
position information. We have discussed the importance of dependable positioning ser-
vices for ubiquitous computing. As applications increasingly rely on the availability of
accurate location information, it is important that positioning services stay functional in
the presence of (partial) failures and degrade gracefully. We achieve this by the combi-
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nation of heterogeneous sensing technology, based on an existing ubiquitous computing
infrastructure, and by means of a decoupled system architecture.

The positioning service is using a grid model, which allows a straightforward im-
plementation of the fusion process and provides a frame of reference for absolute posi-
tions. While the implemented system has been optimized to support devices the size of a
PDA, the comparably high computational and memory complexity of our approach still
constitutes a drawback for the use with even smaller devices, e.g. Smart-Its [15], that
distinctly have stronger resource limitations. A further, implementation-specific limi-
tation of our system is the use of a fixed cell size for a single map. We are currently
investigating the use of variable cell sizes that would allow a more fine-grained res-
olution for specific areas of a map if needed, while avoiding too many cells in areas
where applications are satisfied with less precise position information. By using vari-
able cell sizes, we could also reduce memory requirements. Last but not least, we are in
the process of conducting a number of experimental evaluations.

Future work on our system includes the integration of a greater variety of sensors
and dedicated localization infrastructures, the latter allowing us to increase accuracy
and precision of location information for specific areas. Another goal is the incorpora-
tion of heuristics for movement prediction. This would allow for further improvements
on the quality of position estimates in the absence of sensor data.
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