
The Sensor Internet at Work:
Locating Everyday Items Using Mobile Phones

Christian Frank, Philipp Bolliger, Friedemann Mattern
Institute for Pervasive Computing

ETH Zurich, Switzerland

Wolfgang Kellerer
DoCoMo Communications Laboratories Europe

Munich, Germany

Abstract
We present a system for monitoring and locating everyday items using mobile

phones. The system is based on phones which are enhanced with the capability to
detect electronically tagged objects in their vicinity. It supports various functional-
ities: On the one hand, phones can store the context in which users leave registered
items and thus help to locate them later on. On the other hand, object owners can
search for their objects using the infrastructure of mobile phones carried by other
users. We describe the design of our object location system and provide an al-
gorithm which can be used to search for lost or misplaced items efficiently by
selecting the most suitable sensors based on arbitrary domain knowledge. Further-
more, we demonstrate the practicability of such wide-area searching by means of
user-held sensors in a series of simulations complemented by a real-world experi-
ment.

1 Introduction
Inexpensive sensing devices are expected to play a major role in future computing
systems that aim to make the daily life of their users easier by monitoring everyday
physical processes and providing novel features based on the acquired data.

What currently hinders most of the conceived systems from becoming commercial
applications, however, is a lack of adequate infrastructure of various types: First, a
sensing infrastructure must be installed to perform the sensing task. Second, a com-
munication infrastructure is required to distribute and aggregate sensor readings from
multiple sensors. Finally, a commercial infrastructure is needed to manufacture and
deploy sensing devices, and to generate revenue from the system.

The mobile phone system provides a unique opportunity to overcome these diffi-
culties. Sensing technologies can be embedded into mobile handset devices or accessed
from the handset via short-range wireless communication. Wide-area communication
is a core property of the cellular network. It enables the integration of data from many

1

sensors and the support of applications with backend services such as data storage and
dissemination. Finally, cellular network operators control an important commercial
infrastructure as they can promote the large-scale production of sensor-enhanced de-
vices and deploy such devices to a large subscriber base through their established sales
channels (as we have already seen with camera phones).

With new devices and an adequate communication infrastructure connecting sen-
sors to form a global Sensor Internet, the commercial deployment of powerful appli-
cations becomes a real possibility. Mobile phones can provide a unique sensing in-
frastructure for such applications: A single mobile phone, enhanced with appropriate
sensors, can already provide almost full “coverage” of its owner’s activities, the routes
he follows, and the places he visits. Moreover, given the prevalence of mobile phones,
multiple phones can achieve virtually ubiquitous geographic coverage: at any given
moment, data could be retrieved from any place where there are phone users.

Making use of these unique properties of mobile phones and the cellular network,
we present a system which is concerned with monitoring and locating everyday items
by means of mobile phones. Mobile phones, with integral hardware that allows them to
detect the presence of electronically tagged objects in their vicinity, fulfill the dual role
of object sensors and of a user interface for managing personal items at the same time.
Furthermore, data from many user-held object sensors can be aggregated to locate an
arbitrary missing item.

This system allowed us to identify two particular challenges that are common to
many applications which make use of the large people-centric infrastructure provided
by mobile phones and the cellular network. The first is to define the scope of a sensing
task: due to the large scale of the network, it would be inefficient to query all available
object sensors or, alternatively, to store all sensor readings in a centralized database
for any subsequent queries. Rather, it is sensible to involve only a small subset of
all available sensors which are likely to cover the phenomenon one is interested in.
To address this issue, we present in Section 3 an algorithm that incorporates arbitrary
application-specific knowledge to select a subset of sensors for a given object search
query.

The second challenge is to answer the question of whether a system based on sen-
sors carried by people can provide sufficient sensor coverage in a relatively short period
of time. In an extensive evaluation, which includes a real-world experiment with our
object localization prototype, we therefore analyzed the properties of the coverage ob-
tained given a wide range of different operational parameters such as the density of
participants, their mobility, the range of the sensors used, and the time intervals within
which a sensing task is performed. In addition to confirming the feasibility of object
localization based on mobile phones, the study can provide valuable guidelines for the
design of future people-centric sensing systems in general.

1.1 Object Sensors
Our application requires the integration into mobile phones of object sensors, which are
able to detect the nearby presence of an electronically tagged item. Various technolo-
gies could be employed for this purpose. For example, passive RFID tags are expected
to be attached to many consumer products in the near future, as they may realize signif-

2

icant cost savings in stock and supply chain management. In particular, passive UHF
RFID technology [25] or active tags with a small autonomous power source [21] can
provide reading ranges of a couple of meters even with small reader modules. If im-
proved variants of today’s handheld RFID readers were integrated into mobile phones,
a ubiquitous system could be deployed within a few years using the short innovation cy-
cle established through mobile phone sales. In addition to RFID, other upcoming radio
communication technologies such as Zigbee, some even compatible with the Bluetooth
capability of today’s phones, could be used to identify objects in the phone’s proximity
in a similar way. If small, inexpensive Bluetooth-discoverable tags can be built (e.g.,
based on Wibree [29] or “Ultra Low Power (ULP) Bluetooth” [27]), this would mean
that a ubiquitous object-sensing infrastructure is already in place today.

For each tagging technology, there is a certain trade-off between tag costs and size,
the identification range achievable, and the costs of reader hardware. Irrespective of
the technology used, we assume for our scenario that suitable object sensors can be
integrated into mobile phones, as is already the case today with Bluetooth and NFC.
Our current system prototype requires battery-powered tags (BTnodes [3]) on objects
and uses the phones’ built-in Bluetooth discovery for object sensing. While we also
evaluate the benefit of an increased sensing range of possible future technology in this
paper, the final choice of technology is based on costs versus range trade-offs, which
remain to be explored in a concrete product’s business plan.

1.2 The Object Localization Application
Our object localization application involves various use cases concerned with manag-
ing everyday items by means of mobile phones.
Remember. The remember use case allows users to set up their mobile phone to store
the context in which an object leaves the phone’s local sensing range. This includes
a trace of the user’s location before and after the loss event and other people present
or other personal objects carried at the time the object was left behind. As there will
be numerous managed objects that users leave behind on a regular basis (for example
when leaving their home), users will find it unpleasant to receive notifications each
time objects go out of range. Instead, the relevant data is silently stored and can be
used at a later time to help the user recall the circumstances of the loss or as a clue to
the whereabouts of a lost object.
Find. In the find use case, the user can query the system for an item from the list
of objects that have previously been associated with the user (Figures 1(a) and 1(b)).
The system will then forward the query to a set of object sensors which, based on
user preferences and system settings, are presumed good candidates to find the object.
Object search strategies can be based on various heuristics, such as querying sensors
near the location where the object was last within range of the user’s device. Once a
remote sensor has located the object, the user will receive a notification containing the
object’s location as shown in Figure 1(c).
Delegate. Our system also allows users to locally delegate care of a personal item
from the personal mobile device to other object sensors installed in the environment.

3

(a) (b) (c)

Figure 1: User issues an object search query

For instance, a smart coat hanger in a restaurant can be tasked with guarding a coat and
sending an alarm if it is removed.
Gate. Finally, users may add object sensors in places where these provide a particular
benefit. As an example of such functionality, we support the gate use case, which in-
volves installing an object sensing device to the door of a facility (such as an equipment
room or industry lab) in order to record which objects leave with whom. Such function-
ality provides unobtrusive check-in and check-out management for the equipment used
in the facility – and, like the remember use case, may contribute useful information for
dealing with subsequent find queries.

In the remainder of this paper we present a system that can be flexibly adapted to im-
plement each of the above use cases, while particularly focusing on the challenging
find scenario. We first overview the system architecture in Section 2 and then detail
our query services, which can be used to set up each use case, together with the meth-
ods developed for defining the scope of a find query in Section 3. We then discuss the
privacy implications of the system in Section 4. In Section 5, we evaluate the practica-
bility of mobile-phone-based object localization by means of a real-world experiment
complemented by a series of simulations. We survey related work in Section 6 and
provide conclusions on people-centered sensing in Section 7.

2 System Architecture
Figure 2 shows an overview of the system architecture. As mentioned above, mo-
bile phones are used to link sensing functionality to users and the back-end infrastruc-
ture. Sensing functionality on mobile phones includes sensing the presence of tagged
items, the phone’s location, and other information relevant for remembering the con-
text of an object’s loss, as detailed in Section 2.1. Furthermore, our architecture in-
volves application-specific services, such as associating objects and their owners, a
user database, and profiling services that can be used to deduct heuristics for wide-area
object searches. These services will be discussed in Section 2.2. All of the above are
integrated using query services that support the implementation of the application’s use
cases. These include the local query service, used to set up individual mobile phones,
the global query service, used to route queries on a global scale, and the query scoping

4

Global Query
Service

Query Scoping
Service

User
Agent

User Database

Association Registry

Cellular
Network

Cellular
Network

User Location ProfileUser Location Profile

Tagged
Object

Object
Sensors

Event
Sources

Local Query
ServiceReports

Figure 2: System architecture

service, which supports the latter in determining suitable receivers for a query (that are
likely to produce a result) based on all kinds of history data stored by the application.
These three query services will be detailed in Section 3.

2.1 Sensing Functionality
Apart from object sensors, which are integrated into each mobile phone, we presume
that mobile devices have access to a variety of additional sensor information, in partic-
ular to sensors for determining the location of the user carrying the device.
Event Sources. All sensor information is encapsulated in application-specific software
components which we name event sources. An event source generates events of a pre-
determined type, either in a periodic manner or when a certain condition is met. Our
system uses event sources that generate an event whenever a tagged object comes in
range or goes out of range of the device or when the device’s location changes. It also
uses an event source for persons who are within short wireless range of the user device.

In our prototype implementation, the location event source generates an event ev-
ery time the mobile phone cell id changes. Object tagging is implemented using BT-
nodes [3], tiny devices equipped with a Bluetooth radio, and object sensing is realized
using Bluetooth discovery. The in range and out of range event sources generate an
event every time a new object is discovered by Bluetooth or a previously seen object
fails to respond to a connection attempt. Similarly, the person event source generates
periodic events which contain a list of nearby users based on the Bluetooth names of
their phones.
Sensor Authentication. Both object tags and devices representing people can restrict
their visibility and allow only authenticated sensors to detect their presence. Such
authentication is based on a shared secret that is exchanged between the actor initiating
sensing and the sensed entity at an earlier time (the association service described below

5

is used for this purpose). After the initial key exchange, protected entities can be sensed
only by sending an authenticated message. We discuss details of this concept, which is
suited to tags of a small form factor [8], in Section 4.

Our Bluetooth-based prototype uses a simpler authentication principle. Protected
people and objects are emulated by turning off visibility to Bluetooth discovery, while
the MAC address takes on the role of a shared secret: sensing polls (for people or
objects) consist of an attempt to connect to the correct address.

2.2 Application Specific Services
In our architecture, three system services have been designed to take on specific func-
tionality mentioned in the object management application.
Association. The association service serves three main purposes. First, it keeps track of
associations between users and objects (Figure 1(a) shows the list of Alice’s associated
objects). While objects can be detected by any object sensor in their initial state, once
they have been associated they are detectable only within queries initiated by the object
owner’s device. Second, user to object sensor association allows users to maintain a
set of object sensors that are particularly relevant for them (e.g., object sensors that
have been installed by the user at home or at work; Bob’s mobile device has previously
been associated with Alice in the scenario depicted in Figure 1). Third, user-to-user
association enables group access rights to certain objects, but is also used as a basis
for disclosing the identity of associated users to each other (in Figure 1(c), Alice is
shown the identity of Bob based on a previous association between them, otherwise
the notification would only contain the location of the object). Similarly, users may
choose to be visible only to persons event sources set up by associated users.
Location Profile. This optional service produces statistics on the locations (such as
the physical location or the observed network cells) in which users spend most of their
time. This makes it possible to implement a search strategy which gives preference
to sensors at these locations, assuming that they represent places that contain personal
belongings, such as a user’s workplace or home.

Our prototype includes a rudimentary adaptation of a network-cell-based profil-
ing system [16] enhanced with functionality for naming certain network cells that are
particularly relevant (such as “Office” in Figure 1(c)).
User Database. We assume that the mobile network operator provides users with a
database service in which application data such as previous reports of certain objects
can be stored. The service can be used, for example, to record a log of objects reported
by an object sensor that has been installed at a facility door – as mentioned in the gate
use case above – for subsequent querying. Similarly, it can be employed to store details
of the circumstances of an out-of-range event as required by the remember use case.

3 Query Services
The query services form the integrating element of our system, wiring the distributed
components for the required application task. The back-end infrastructure hosts the

6

global query service, which exports a query interface allowing the desired application
behavior to be set up according to the use cases remember, find, delegate, and gate.
Each use case also contains some functionality that should be performed at the level of
the individual mobile devices. Thus, each mobile device executes a local query service
dealing with data requests at its local level.

To address the challenging find use case, the query scoping service supports the
global query service by determining which sensors should be involved in a wide-area
query, integrating information held within various application-specific services. For
example, a query can be disseminated to a subset of associated users (based on in-
formation stored in the association registry), to locations that are particularly relevant
for the user (based on location profile data), or locations near where the object was
previously observed (based on the user database).

These query services are supported by a set of middleware services which are not
detailed here. For instance, storage services are available both on the mobile device
and in the back-end infrastructure – and are also used to implement the user database
and the association service. Their implementations, including transparent serialization
and database interaction for resource-constrained devices, are described in [1]. Fur-
thermore, the means for local event forwarding, wide-area point-to-point messaging,
and OSGi-based component execution platforms for both the mobile device and the
back-end infrastructure have been implemented in our prototype. For details of these
services, please refer to [12].

3.1 Query Service Interface
The interface of the query service we have developed consists of two parts. First, a local
part specifies how an individual mobile device is to use its sensors when processing a
query. Second, a global part specifies aspects related to query dissemination such as
the mobile devices involved, and any time and cost constraints. Table 1 shows how the
four use cases remember, find, delegate, and gate (introduced in Section 1.2) can be
implemented using typical settings for the local and global parameters of a query.

Local Remember Find Delegate Gate
Trigger OutOfRange(obj) InRange(obj) OutOfRange(obj) InRange(any)
Report Location (−120s, 60s) Location (−5, 0) Location (−1, 0) Persons (−20s, 20s)

Persons (−3, 3) InRange (−20s, 20s)
Labels (−2, 0)

Global Remember Find Delegate Gate
Scope local device scope provider delegate device gate device
Sinks local database user interface user interface user database
cmax ∞ 10 0.5 50
emax ∞ 5 1 ∞
qmax 1 100 1 1
tmax ∞ 30 min ∞ ∞

Table 1: Parameter settings for the four use cases

The local part consists of two parameters. The first one is used to define when a
query should produce a result. The programmer can specify such a trigger condition

7

by providing an event source (this way, custom-implemented event source components
can encapsulate event detection functionality). In our use cases, the trigger condition
is based on properly parameterized in range and out of range event sources. These
event sources can be parameterized to trigger when an arbitrary object comes within
range, as in the gate example, or to trigger only with a certain object (as in the other
examples).

The second local parameter defines the report that a query should generate. The
report definition consists of event sources with annotated intervals (a, b) stating the
desired range of events relative to the time of the triggering event. Ranges can be
based on time or on numbers of events. For example, the remember query specification
is defined to report the user’s location observed during the three minutes either side
of the trigger event, the user’s friends that were present at that time (a maximum of
6 events from the persons source), and the last two labels that have been observed
(such labels, implemented by a technology similar to object tagging, may be attached
to environments whose geographic location is irrelevant, for example, to identify the
user’s car or certain trains or busses). Similar examples are given for the remaining
use cases. Event-based intervals are further annotated with an expiration timeout that
enables reports to be generated even if not enough events arrive after the trigger.

The global part of the interface specifies who is to receive the query (its scope)
and the resulting reports (the query’s sinks), and also specifies the various limits on the
query. The scope can either consist of a single mobile device (in the remember scenario
the targeted device is simply the user’s phone) or a custom-implemented scope provider
component (as in the find use case). Scope providers, required to return a list of object
sensors sorted by relevance, may be used to pass on a variety of search strategies to the
global query service. For example, an association-based scope provider may simply
return a list of previously associated object sensors. We discuss a more sophisticated
scope provider component that can combine various search strategies in Section 3.2.
The reports generated by the query, in turn, will be delivered to the specified sinks.
Various system services may be wired as sinks: in the remember use case, reports will
be delivered to the local database on the user’s phone; in the find and delegate use
cases, reports cause a direct notification on the user interface; and in the gate example,
reports are collected in the backend user database.

Finally, different effort limits can be specified for a query: cmax limits the monetary
costs billed to the user, qmax the number of object sensors that are involved in the query,
emax the total number of reports generated by the query, and, finally, tmax the total
query time. In the remember scenario, the limits cmax, emax, and tmax are irrelevant
as the infrastructure involved is owned by the user. In the gate example, the user may
employ cmax to cap costs incurred by data transmission to the backend database. In the
delegate example, at most one object sensor should be queried (qmax = 1) and at most
one event, a notification, should be delivered (emax = 1). Moreover, monetary costs
should be low.

The limits qmax and tmax are particularly relevant for the find example. Here,
the global query service will distribute the query to the first qmax sensors returned
by the scope provider. The term qmax is equivalent to the number of messages sent
by the global query service in the dissemination phase and can be used to limit the
communication costs. The parameter tmax may be used to specify the time that is

8

location
profile

object
sensor
registry

object
sensor

association

user
assoc.

object
association

user
history

usrcell

object
history

neigh-
borhood loc usr

obj.
sensor

obj

(a) Data model

sought obj.

loc2loc1

loc3

…

object
history

object
sensor
registry

neigh-
borhood

loc4 …

…

…

o

obj. sensors

(b) Search tree implementing heuristics I

Figure 3: Data model and example algorithm execution

usually required for an adequate search strategy to find an object, and thus limits the
search effort of inadequate strategies. Moreover, it allows for an iteration of different
search strategies of increasing cost, where the next (more comprehensive) strategy is
initiated after an unsuccessful timeout of the previous one. We will discuss suitable
values for tmax in Section 5.

3.2 Query Scoping Service
To obtain suitable search strategies for wide-area queries of the find scenario is a chal-
lenge. Various heuristics can be used to distribute a query to a relevant subset of object
sensors. Typically, sensible heuristics will be based on some kind of history data avail-
able in the system. For example, a query may be distributed to sensors near the location
where the object was last observed.
Data Model. To elaborate on this, we show a simple data model of our application
in Figure 3(a): Objects are associated with users (object owners) by the association
service and also with locations (e.g., cells) where an object has previously been ob-
served. Users may choose to record a history of their location on their mobile device
(user history) or to enable the location profile service, which computes locations that
a user visits frequently. In this simple model, locations are related to other locations
via the neighborhood relation. Moreover, users can be associated with object sensors
they often use (e.g., those they have installed in their office or car) and with other users
who are family, friends, or colleagues. Finally, the mobile network operator maintains
a database (object sensor registry) that stores the current location (e.g., the current net-
work cell) of object sensors (including certain mobile phones that can be used as object
sensors as well as stationary sensors).

For ease of description, we have omitted some details in the data model (in particu-
lar, a more refined location model). However, it is sufficient to demonstrate that typical
search heuristics correspond to paths in Figure 3(a) from an entity of type object at the
top to entities of type object sensor at the bottom, the latter representing those sensors
that should be queried for the object. For example, we can query object sensors which:

I) Are near the location where the object was last seen.

9

II) Are near locations recently visited by the user.
III) Are near locations where the user spends a large amount of time.
IV) Are associated with the object owner (as in Figure 1).
V) Match the above strategies III and IV for a different (associated) user, such as a

family member, or even for a friend of a friend, etc.

While, intuitively, none of these heuristics can guarantee success, they all incor-
porate sensible assumptions on where users keep personal belongings and where these
are generally left. Note how each heuristic represents a path in the data model of Fig-
ure 3(a): Heuristic I corresponds to the path (obj-loc-object sensor) on the left, while
heuristic V corresponds to the path obj-usr-usr-loc-object sensor.

Based on these considerations, a data model is a suitable means of expressing the
real-world links between various types of data stored by the system, and can be used
to generate a variety of search strategies – including all of the above. In particular, the
system designer may assign weights w(r) to each edge in the model, representing an
estimate of whether exploring entities according to the relation type r will be useful in
the search, on a scale from 1 (very useful) to ∞ (not useful, hence very costly). For
example, to implement heuristic I, the object history, neighborhood, and object sensor
registry relation types would have a weight of 1, and all others a weight of ∞.
Scoping Algorithm. Parameterized with a weighted data model, a source entity o (i.e.,
the sought object) and a destination type (i.e., object sensors), the scoping algorithm
will “unfold” the data model into a search tree that contains entities stored by system
services which are somehow related to the source entity o. The algorithm traverses
the entities in the tree in order of decreasing (estimated) relatedness, essentially imple-
menting a variant of the uniform cost search [22].

More concretely, the algorithm works as follows: It maintains a set of entities vis-
ited V and a result list Q. Each entity t ∈ V will be assigned a relevance measure c(t),
denoting how related t is to the source entity o given the data currently known to the
system. Initially (line 1), V = {o} and c(o) = 0, moreover Q = ∅.

Algorithm 1: Scoping algorithm based on uniform cost search.
Input: Data model M = (E, R) with entity types E and relation types R, weights w(r)

for relation types r ∈ R, source entity o (of type ∈ E), destination type d ∈ E,
entity limit qmax.

Output: Result set Q consisting of entities of type d
set V = {o}, c(o) = 0, Q = ∅1
while |Q| ≤ qmax do2

pick relation (u, v) between entity u ∈ V and v /∈ V with smallest c(u) + c(u, v)3
or exit loop if no such relation (u, v) exists

add v to V , set c(v) = c(u) + c(u, v)4
if v of type d then add v to Q5

return Q6

Based on the data referenced by the given data model, the algorithm in its core
step (line 3) considers relations {(u, v)} between entities u ∈ V and v /∈ V . If such

10

relations exist, the algorithm picks the relation (u, v) with the smallest c(u) + c(u, v).
The costs c(u, v) estimate the relevance of the relation (u, v) based on two factors:
c(u, v) = w(r) × g(u, v). The first factor, w(r), is the relevance estimate which
the system designer has assigned to the relation type r corresponding to the relation
(u, v). Using the second factor, g(u, v), the service that stores the relation may estimate
the relevance of different v for a given u. For example, the location profile could
estimate g(user , loc) for different locations using statistics on the amount of time the
user spends at them. For the object history relation, it is intuitive that the latest location
where the object was observed is the most relevant.

In the remainder of the loop, the algorithm adds v to the set of visited entities V ,
updates the relevance estimate c(v) of v (line 4), and adds v to the result set if it is of
type destination type (line 5). The algorithm repeats these steps until up to entity limit
related entities have been found, and then returns Q (if the chosen destination type is
object sensor, the entity limit corresponds to the limit on queried sensors qmax).

Note that as w(r) and g(u, v) are issued on the same scale ranging from 1 (for
very related) to ∞ (for unrelated), the computed relation costs c(u, v) and the entity
relevance measures c(t) maintain the same semantics. Based on the costs c(u, v), the
algorithm explores the most relevant relations first, and the result list Q contains entities
t of type destination type in order of increasing c(t), that is, in order of decreasing
relatedness to the start entity o. A sample execution implementing heuristic I (where
w(r) = 1 for the object history, neighborhood, and object sensor registry relation types
but w(r) = ∞ for all other types) is shown in Figure 3(b).

While based on the well-known uniform cost search method, the present approach
lends itself well to distributed data sources: each system service that implements a re-
lation type accessed by the algorithm is required to provide a single interface method
next(u), which allows an iteration through the entities v related to u in the order of in-
creasing “unrelatedness” g(u, v). Note that both the runtime and the space complexity
of the algorithm depend on the data referenced in the given data model. For details of
the scoping algorithm and its execution please refer to [13].

3.3 Global Query Service
We now discuss how the above scoping algorithm is used by the global query service to
implement search strategies I-V in practice. For this, note that strategies I-III employ
the object sensor registry relation, which associates a set of locations L to a set of object
sensors near them. Due to user mobility, however, the object sensors near set L will
change with time. Therefore query scoping is decoupled from the actual movements of
users and their object sensors. That is, when heuristics I-III are implemented, location
will be the destination type parameter passed to the scoping algorithm. The returned
set of locations L, for example a set of cells, is then passed on to the global query
service, which will distribute the query to sensors at these locations. The global query
service is then concerned with maintaining a computed query scope over time while
observing the cost control parameters (qmax, tmax, emax, and cmax) specified in the
query interface.

11

If search strategy IV is chosen, a set of object sensors is determined by the scoping
algorithm. Here, a query will be distributed to the first qmax sensors returned by the
scoping algorithm and be active for at most tmax time.

If search strategies I-III are chosen, the scoping algorithm will not directly return
a set of object sensors, but a set of locations, as mentioned above. In the basic loca-
tion model we employ, these can either be a set of cells (the most basic localization
already available on the phone) or a set of geographic points (if phone localization is
more precise) together with an associated measurement error. Because the set of object
sensors associated with these locations may change over time, our system installs (or
un-installs) a query at sensors which come close to (or depart from) these locations.
Whether a sensor s is close to the returned locations is defined by the implementation
of a predicate f (which maps s to either true or false).

Depending on the way locations are modeled, we use two different implementa-
tions of f(s). Given a set of cells C, f(s) will be true if the mobile phone (with its
object sensor s) is currently served by any of the cells in C. Note that this information
is already available from the mobile network operator, that is, it can be accessed at the
server end of our infrastructure without incurring additional communication costs.

If the mobile devices are equipped with a more accurate means of positioning, the
locations returned by query scoping will instead be a set of geographic points P . Here,
f(s) will be true if the current position measured by a mobile phone’s object sensor s
is less than a certain distance d away from the points P . This distance d will depend
on the error incurred at the positioning sensor when the points in P were measured
(we will discuss a concrete implementation in Section 5). Note that such additional
positioning information will only improve the efficiency of query dissemination if the
positioning information of all object sensors is already known in a database on the
server. Otherwise, it would be inefficient to propagate all object sensor positions to the
server before query dissemination, and therefore a different approach is chosen. The
query is distributed to object sensors in a set of cells C which “cover” the whole area
surrounding the points P (the actual object sensor will be turned on only later, once
the predicate f(s) evaluates to true). Note that the total number of distributed queries
is now the same as if locations were a set of cells C.

When installing queries for such location-based strategies I-III, the total number
of object sensors at which a query will be installed (qtotal) is made up of two parts,
qtotal = qinit + qmob. Here, qinit denotes the number of users queried initially at the
time the query is issued – chosen from the initial query scope Sinit = {s|f(s) = true}.
In addition to qinit, the query will be installed at a second set of sensors qmob for which
f(s) becomes true while the query is active.

After a query is installed on an object sensor s, object sensing will be performed
continuously until tmax expires. The mobile device associated with s un-installs the
query autonomously either when f(s) becomes false or when tmax expires.

A query is declared successful if some object sensor s reports having found o at
time treply with treply ≤ tmax. The current position of s represents the location at
which the object was found and will be included in the reply issued to the user. A
query is terminated without success once the query timeout tmax is reached.

12

4 Privacy Considerations
The query service, presented in the previous sections, makes use of a wide variety of
personal data. It is therefore important to keep these data private and secure. In the
following, we describe some of the privacy-enhancing features of our system.

Most prominently, tagged objects and persons can be protected from being sensed
by unauthorized users with the help of a zero-knowledge authentication scheme as pro-
posed in [8]. This protection is based on a shared secret x, which is known by an autho-
rized user device U and also by the sensed entity (i.e., the tagged object o). With query
initiation, U may issue a zero-knowledge authentication message (ZAM) in which the
shared secret x is made oblivious by means of a random session key r and a current time
stamp d. A ZAM m has three parts: m = (d; r xor hash(d xor x); hash(r xor x)).
A tagged object o that receives m can recover r as it knows x (using d and part two, o
can compute r). Moreover, o is provided with authentication proof that U truly knows
x (using r, o can check part three, which confirms that the sender truly knew the secret
x). Note that for implementing this approach, tags or sensed objects are only required
to evaluate xor operations and a simple hash function, capabilities which could even be
implemented on passive tags [19]. For details on zero-knowledge authentication please
refer to [8].

Based on this feature, if authentication fails, o simply does not reply. Moreover,
o will only reply the first time it receives m. Therefore, an adversary A cannot easily
make use of forwarded queries to locate objects which have been lost by other users
in public spaces. To be effective, A must not only have been forwarded the find query
containing m but also be the first to sense o using m. To achieve this, A needs to
control an infrastructure of object sensors that finds objects faster than the infrastructure
provided by regular system users – in most cases an unrealistic assumption.

As noted, a ZAM represents a permit for sensing once only. For use cases in which
sensing of an object or person o must be performed multiple times within a given query
(e.g., delegate or gate), there are three options. The first is to let an authorized user
device U re-issue a proper ZAM every time, which requires repeated end-to-end com-
munication between o and U . The second is to entrust the shared secret to the global
query service (run by the mobile network operator on the back-end server), which may
then issue authentication messages on its own. The third is to propagate the shared
secret even further to the remote sensor R (such as the object sensor employed in the
gate scenario) for the time of query execution. The latter two options lower the com-
munication overhead (the overhead of the third option is lowest) but require that the
user is confident that the entrusted entity (e.g., the remote sensor R) does not leak the
shared secret during the time of the query. After query termination, the shared secret x
may be changed – such a change could be propagated to multiple users U previously
associated with o using the same authentication protocol.

A second privacy-enhancing feature of our system is the component deployment
infrastructure, which permits a reconfiguration of the execution platform of services
containing sensitive information within the application. That is, the association reg-
istry or the location profile, which should enhance object search functionality, could be
executed on the user’s mobile device instead of the server back-end, giving users full

13

physical control over their data. Similarly, deployment of the location profile service
could be completely omitted – based on user preferences.

However, some potential privacy threats remain. One threat is shared by any sys-
tem providing wide-area object localization – namely, that an adversary may attach a
properly associated object to some person he or she wishes to track. Avoiding such
threats is hard as they are related to the core functionality of the envisioned system.
Possible approaches would be to limit the frequency of user queries, or make repeated
consecutive queries for an object expensive. Alternatively, adversaries may leave an
object at a known location, and then check whether associated users arrive at this loca-
tion. Here, the required transparency can be obtained by making association services
symmetrical, such that an object sensor carrier is allowed to see which associated users
have sent queries to his or her device – while un-associated users are kept oblivious of
each other by the mobile network operator.

Several extensions of these concepts are conceivable. For example, users could be
offered a feature to protect private spaces [30], such as their home, from queries issued
by unauthorized users. While dependent on accurate and verifiable location sensors
for user devices, such protection of spaces could be enforced by the mobile network
operator, which exerts the role of a gatekeeper in both directions, when forwarding user
queries and when forwarding replies. This is similar to the way, in the present system,
the network operator will ensure that a user’s identity is only disclosed to associated
users.

5 Evaluation
In the following, we examine whether our object search system can perform well
enough to be a useful application. To achieve this, we evaluate the coverage of the
system and the reply time for search queries in a real-world experiment and in simula-
tions.

5.1 Real-world Experiment
In this section, we return to the scenario introduced in Figure 1, where the user is at
home and is trying to verify the whereabouts of a given object that was left at the
office. The mobile phones of the user’s officemates (e.g., Bob) are registered with the
association service and thus are considered relevant object sensors.

Our experiment was performed with four users working on the same floor. The
users were given mobile phones running the object search prototype already tasked to
perform continuous object sensing for all objects (using repeated Bluetooth discovery)
and to report their findings at regular intervals to the back-end database. Similarly, 10
BTnodes1 representing tagged objects were distributed in various rooms on the same
floor. Figure 4 shows the experimental setup (tagged objects are shown as numbered
circles while the offices of the four participating users are shaded).

1BTnodes [3] are class 2 Bluetooth devices which can be detected by regular phones over distances of a
few meters.

14

10

C

B

D

1225 1244 544 444 558 629

623 529 372 363

1 2 3

9

8 7

4 5 6

Figure 4: Experiment setup: Average reply times (in seconds) for the 10 tagged objects
in different rooms

Note that Bluetooth may be too expensive and battery-intensive to be used as an ob-
ject tagging technology in a practical system. Nevertheless, it allows us to test whether,
given a better-suited future technology with similar radio characteristics, the mobility
of a few office colleagues suffices to detect a given object within a reasonable time.

Over four consecutive days, all sensor readings entered the database as (user, time,
obj id) tuples. We considered only core office hours, that is, readings reported after
the fourth user arrived in the morning and before the first left at night. This resulted
in 30 hours of data. Based on these data, the reply time for a search query for a given
object o issued at an arbitrary time tq to the four office colleagues can be computed as
tr = tDB − tq, where tDB is the time of the next database entry on the object o. This
allows us to compute the average reply time for each object, assuming that queries for
an object were distributed uniformly. In order to save messaging costs, user devices
cached seen objects and only re-reported them to the database 10 minutes after their
last report on the same object. This way, even if an object sensor has seen the object
continuously, the resulting reports will yield an average query reply time of 5 minutes
instead of zero.

For each object, Figure 4 shows the average reply time in seconds. Intuitively,
we expect to obtain low values for objects with a participating user in the same room
(objects 3, 5, 8, 9). Furthermore, note that the best results were obtained for objects
close to the printer and the coffee machine (objects 7 and 8), while the worst results are
for objects in rooms that were not visited by the participants during the experiment.

We show a cumulative density curve of the reply times observed for object 2 (with
worst results), object 7 (with best results), and the average over all objects in Figure 7(a)
later in this paper. In all cases, reasonable success rates (about 80%) could be obtained
with a maximum query time tmax of 30 minutes. Note that results are satisfactory
in spite of the latency commonly involved in Bluetooth discovery: as the discovery
procedure involves a relatively long frequency-hopping sequence (in our experiments,
roughly 8 seconds), a phone could theoretically “miss” objects if it is moved past them
too quickly while scanning the wrong frequency band. However, this case rarely oc-
curred in our experiments – while carried along the hallway past a room, phones would
almost always detect objects located inside it.

15

5.2 Simulation Model
In the experiments described above, we focused on a small and confined search area
and query scope. Here and in Section 5.3, we use simulations to investigate the char-
acteristics of an object search system operating in a wide area with a larger user base,
to provide design guidelines for a future realistic system.

Note that adequate models of a large-scale execution environment are difficult to
obtain, as these must consider many aspects of daily life. To provide an accurate basis
for system design, models must include the number of participating users, the fre-
quency at which these users lose or search for certain objects, the number of tagged
objects owned by each user, and particular scenarios determining when and where ob-
jects are lost. Intuitively, such a model contains many parameters which cannot be
influenced by the system designer. We refer to such parameters as environmental pa-
rameters. Our approach to these parameters, of which there are vast numbers, is to
investigate a significant proportion of them.

In addition to this, there are some design parameters that determine the system’s
performance and can be set and varied more or less directly by the system developer.
These include the size of the search scope (the number of users participating in the
search for an object), the range of an object sensor (which can be influenced by us-
ing more expensive tag and object sensing hardware), and the timeout period used for
queries. For these design parameters we aim to find the most appropriate values, i.e.,
the parameter settings that can implement object searches with the lowest communica-
tion overhead for a given success rate.
Scenario. In the evaluated scenario, a user misplaces an object o and later issues
a search query to the global query service. We assume that at the time the object
left the range of the object sensor, the user’s mobile device recorded its location p.
This location p is used as a clue in the search (implementing heuristic I presented in
Section 3.2). We evaluate two versions, a cell-based version in which p is a cell, and a
position-based version in which p is a geographic point measured with a certain error.
Note that if a user’s local object sensor is not operated continuously but instead with a
certain sampling frequency, the absence of an object could be detected late. This may
increase the error of p (to consider this in our simulations, we use high positioning
errors, see “Sensor Model” below). In both versions, query scoping is performed as
described in Section 3.3.
Metrics. It is the success rate of our system that we are most interested in. This cor-
responds to the proportion of queries for which a notification from some object sensor
is received within the query timeout tmax. Furthermore, we examine the overhead for
query distribution qtotal including the part qmob which is caused by user mobility.

In our simulations, we do not examine object sensing costs explicitly, as we ex-
pect wide-area query dissemination to dominate the total cost due to the object sen-
sor’s shorter wireless range and the potential energy-efficient implementations of ob-
ject sensing (e.g., it is usually sufficient to briefly activate an object sensor every time
it is moved).
Environment Model. We assume that the object is left in a densely populated urban
environment. In this setting, we study how an object can be found by pedestrians

16

47,000 to 130,000
30,000 to 47,000
20,000 to 30,000
16,000 to 20,000
13,000 to 16,000
10,000 to 13,000

6,000 to 10,000
2,000 to 6,000

0 to 2,000

(a) Population distribution per km2 during
the day of a 10 km2 square area of down-
town Lisbon [10]

(b) Simulation on the same area: Cell cov-
erage model [6] and users (dots) distributed
according to the hotspot mobility model

Figure 5: Environment models

moving within a square area. In the default case, the size of the simulation area is
1 km2. The choice of the user density ud is derived from the total daytime population
as estimated by the Momentum project [10] (a downtown Lisbon example which we
cite from [10] is shown in Figure 5(a)). In our experiments, we only model those users
who are pedestrians (for details of this rationale, see “Mobility Model” below) and
are associated with a single mobile provider. Making a conservative estimate based on
these factors, the user density range ud is 100-2000 users/km2, values which represent
only a small fraction of the estimated daytime population shown in Figure 5(a). Our
default participant density of ud=500 users/km2, for example, corresponds to only one
pedestrian user per 2000 m2 of office space.

As mentioned, in some settings we rely on cell identifiers for positioning. To study
such scenarios, we use actual position and orientation data from UMTS antennas to-
gether with a detailed model of land use types (e.g., buildings, highways, open, water)
to compute the strongest-signal cell for each point in the simulation area [6, 18]. In
Figure 5(b), we show an example of a resulting cell-coverage map computed for a
UMTS network of downtown Lisbon. For cell-based scenarios, the simulation area is
enlarged to 10 km2 to let it contain a significant number of cells. While we are aware
that in reality several cells may be observed at a given location at different points in
time, we assume for our study that the object can be found in the cell where it was last
seen. Results for scenarios in which several cells need to be searched to cover a certain
location could be extrapolated from the results we provide.
Mobility Models. In our experiments, we assume that an object will not move once
its owner has left it somewhere. In contrast, user mobility is a crucial aspect of our
evaluation, as it has a high impact on the performance of the system in question. It
is therefore particularly important that we make only conservative assumptions about
user mobility. In this regard, we model only the slowly moving “pedestrian” proportion
of the total population. This is based on the assumption that typical usage scenarios

17

involve locating objects inside buildings (e.g., at home, at work, in malls, or on campus)
where users tend to follow pedestrian mobility patterns. Note that we consider far
fewer users than the 50%-70% proportion of pedestrians mentioned in [10, p. 37], thus
taking into consideration users who have not yet made their object sensors available to
other users, are associated with a different cellular operator, are stationary, or are not
moving on foot. Adding these users would improve coverage results, but only slightly:
stationary users contribute less to coverage than mobile users, and fast users such as
drivers would only help in the infrequent case where objects are left on the street.

In the most basic setting, we use a random waypoint mobility model parameterized
for pedestrians. Users pick a random destination and start moving towards it at a speed
drawn uniformly from the interval (2,4) km/h. (The average speed of 3 km/h is chosen
according to the ETSI guidelines [9].) We choose trip destinations within 200 m of
the user’s current position and include pause times of 2 to 5 minutes in-between trips.
We assume that such short trips and subsequent pauses capture the envisioned usage
scenarios (e.g., in offices or malls) more realistically than the standard version of the
model according to which users would follow straight paths for several kilometers.
Moreover, such short trips result in a higher ratio of pausing users, and can therefore
be considered a conservative assumption.

We also use a second mobility model which was derived from WLAN traces from
the Dartmouth campus [15]. The model includes hotspot regions that represent central
points on the campus (for example, a hotel, a library, and a cafeteria), which tend to
contain many users and also represent popular destinations chosen by the campus pop-
ulation. In our adaptation, we model a typical campus environment using five hotspot
regions, one in the middle and four shifted to each side of our simulation area. The
size of each hotspot region is one hundredth of the simulation area. Half of the trips
by a given user are made inside the current hotspot and half are directed to another
arbitrary hotspot on the campus. The remaining (non-hotspot) area is called the cold
region. In our simulation, users never choose a destination in the cold region, but only
travel through it. As hotspot regions have a higher density, their positions and sizes
are apparent in Figure 5(b), which shows 5000 users in a 10 km2 area together with a
cell-coverage model derived from downtown Lisbon. The chosen trips include 2 to 5
waypoints. The speed and pause times follow log-normal distributions parameterized
according to [15, table 3]. The pause time distribution has a mean of 0.71 hours with
a high standard deviation of several hours, as [15] found that users tend to stay in a
hotspots for longer periods.

To avoid an initial transient period, we used initializations of user trips according
to the perfect simulation method [17]. In the hotspot mobility model, however, some
distributions had to be estimated, and thus a transient period of 1000 s remains. Object
search queries are issued only after this period.
Sensor Model. A mobile device operates its object sensor (that is, polls for objects
within range) once per time unit (usually a second) as long as a query is installed and
running. This models the fact that some sensing technology (like Bluetooth) could miss
objects if a sensor is only briefly in contact with the object (because, for example, it is
moved too quickly). In the default case, we assume that the object sensor has a sensing

18

range of 5 m. A mobile device therefore sends a “found” notification if its sensor is
active while within 5 m of the object sought.

Moreover, in some simulations we assume that the user has a position sensor avail-
able (e.g, GPS). To model the sensor’s localization error, the position p returned by the
sensor is drawn uniformly from a disk centered around the actual position of the user.
We refer to the radius of this disk as the positioning error ep used in the simulation (ep

is set to 100 m unless otherwise stated; we use conservative values for ep as detecting
the absence of an object late may increase the total error of the last known position of
an object, even if the actual positioning technology is more precise). Note that with
this error distribution, the density of observing an actual error, say e, is proportional to
the circumference of a circle with radius e, and therefore the mean error is (1/

√
2)ep.

Alternatively, we also model a scenario in which the positioning sensor simply
returns the cell to which the mobile phone is currently connected. The benefit of cell-
based positioning is that all information on cell associations is also available at all times
at the server end of our infrastructure, thus permitting the efficient implementation
of query scoping. Using cell information for scoping does not prevent phones from
activating a more advanced positioning technology (such as GPS, or combined signal
strength information from multiple nearby cells) in situations where precise positioning
is particularly important, for example when they have found an object or when they are
storing a loss position p. However, even if p is more exact than a cell identifier, query
scoping is still based on cells – unless more exact sensor positions are available at the
base station (cf. Section 3.3).

5.3 Simulation Results
Using the simple scenario and the environment models described above, we aim to
investigate several aspects of a future object sensing system. Foremost, given some
scope, we want to confirm whether it is possible to find objects with reasonable success
rates and a small enough overhead. Furthermore, we aim to investigate how cell-based
scopes compare to position-based scopes and to a random query dissemination strategy
which queries a certain proportion of all users. Moreover, we aim to gain an insight
into the sensitivity of the system’s performance with regard to parameters such as user
mobility, object sensing range, and chosen query timeouts.
Success rate. In the first set of simulation runs, we investigated the query success
rate observed with position-based scoping and cell-based scoping. These scopes are
implemented according to Section 3.3, based on the location p where the object was
last within range of the user’s device. In the position-based version, the scope Sinit

consists of sensors within a disk around p of radius r = sr + ep where sr denotes
the range of the user’s object sensor and ep the maximum positioning error. In both
versions, if |Sinit| > qmax, then qmax sensors are randomly chosen from Sinit.

Figure 6(a) shows the proportion of successful queries (in which the sensors queried
have located the object within 30 minutes) when the user-imposed limit qmax on the
number of queried sensors is varied. Five different graphs show the results obtained
with different positioning errors ep (from ep=50 m to ep=200 m), cell-based scoping,
and a random strategy where we distributed the query to a fraction of qmax/500 of all

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180 200

S
uc

ce
ss

 r
at

e
w

ith
 t m

ax
=

30
 m

in

qmax

50m
100m
200m

Cell-based
Random

(a) Success rate

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 20 40 60 80 100 120 140 160 180 200

q t
ot

al

qmax

50m
100m
200m

Cell-based

(b) Sent messages

Figure 6: Success rate and overhead with different positioning technologies

users. For all graphs, the success rate obtained can be increased by raising qmax and
reaches acceptable levels with qmax=200.

The communication effort involved in the same runs, determined by the number
of sensors qtotal which were actually queried, is shown in Figure 6(b). As, by the
definition of our protocol, the search area becomes larger with an increased positioning
error, the required effort increases as well. Similarly, searching the whole coverage
area of the cell where the object was left requires more messages to be sent before
reasonable success rates are obtained. Note, however, how in Figure 6(b) the number
of sensors queried qtotal at some point stops growing with the user-imposed limit qmax.
This is because with small enough scopes, the object is found before the limit qmax is
reached. Observe also how the performance of cell-based scoping is comparable to
a 200 m positioning error and even outperforms the latter in terms of communication
effort qtotal. This is because, with position-based scoping and large positioning errors,
many ineffective queries are sent to mobile devices which erroneously measured a
position that was close to the position clue p.

Finally, as Figure 6(a) shows, any scoping performs better than a random strategy.
Even if 40% of all users are queried (i.e, qmax = 200), the success rate of the random
strategy is still only around 60%. Needless to say, its communication effort is worst as
it is proportional to the total number of users (not shown).
Timeout, sensing range, and different mobility models. Apart from scoping, several
other parameters may significantly influence the performance of the system.

The first is the timeout used for queries. Here, the question is whether a more ade-
quate choice of timeout (previously set to tmax=30 min) can be made when waiting for
successful replies. Note that choosing an adequate timeout is particularly relevant when
object sensing itself is considered a significant cost. Particularly since in reality the ob-
ject might be outside the chosen scope, it is important not to continue futile sensing for
too long, but at the same time to issue a confident “not-found” reply. Furthermore, sys-
tem performance is expected to vary with user density. We show the interplay of these
two parameters with position-based scoping in Figure 7(b). Each graph represents the

20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 300 600 900 1200 1500 1800

S
uc

ce
ss

 r
at

e

Reply time [s]

best (node 7)
avg.

worst (node 2)

(a) Real-world measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 300 600 900 1200 1500 1800

S
uc

ce
ss

 r
at

e

Reply time [s]

100 users/km2

200 users/km2

500 users/km2

1000 users/km2

2000 users/km2

(b) Random waypoint simulations

Figure 7: Cumulative density functions of reply times

cumulative density function of the reply time obtained after 5000 repeated simulation
runs (each data point represents the proportion of requests answered within the given
timeout period) in which no limit was set on communication effort qmax. As expected,
the likelihood of finding the object increases with a longer timeout, but for high user
densities, short timeouts (5 to 10 minutes) are sufficient. Moreover, high success rates
can be obtained with tmax=30 min even with user densities as low as 500 users/km2.
For lower densities, longer timeouts must be used.

Observe that the graphs of Figure 7(a) from our office floor experiments (see Sec-
tion 5.1), in which the actual user density was greater than 4000 users/km2, are compa-
rable to user densities of 500 to 200 users/km2 in Figure 7(b). This is compatible with
our earlier conjecture that the random waypoint simulation only models the “pedes-
trian” proportion of all users, and confirms that the approach of looking at user densities
that are smaller than in reality is valid.

A second important parameter, which is expected to have a major impact on per-
formance, is the range of the object sensors used. In the runs shown in Figure 8(a), we
demonstrate the impact of the sensing range on the success rate of position-based scop-
ing. With 2000 users/km2, even a range of 1 m yields acceptable results. As expected,
however, the sensing range has a high impact. When designing a practical system that
is to be robust at low user densities, it seems worthwhile investing in object sensing
technology with a higher range.

Finally, a third important parameter is the mobility of the system’s participants.
Figure 8(b) shows the success rate observed with the hotspot mobility model when
raising the message limit qmax. We show four graphs for the cases in which the object
was left at a hotspot or in the cold region with two different user densities. Because user
pause times in this model are quite long, we extended the query timeout tmax to 2 hours.
Note, however, that the total number of queries remains limited to qmax and therefore
the results remain comparable to simulation runs based on the pure random waypoint
model shown in Figure 6(a). Here, for very low user densities, the success rate cannot
be improved by raising qmax as the timeout remains the predominant constraint. For

21

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

S
uc

ce
ss

 r
at

e
w

ith
 t m

ax
=

30
 m

in

Object sensor range sr in m

100 users/km2

200 users/km2

500 users/km2

1000 users/km2

2000 users/km2

(a) Sensing range

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180 200

S
uc

ce
ss

 r
at

e
w

ith
 t m

ax
=

12
0

m
in

.

qmax

500 users/km2 (hot)
500 users/km2 (cold)
100 users/km2 (hot)

100 users/km2 (cold)

(b) Hotspot mobility

Figure 8: Varying sensing range and mobility

500 users/km2, however, the object can often be found with at most 200 messages, even
if it is located within the cold region.
Effects of increasing user density. Additional insight can be gained when the user
density is varied. Such experiments were performed with cell-based scoping and are
shown in Figure 9. We show the success rate and the query reply time while vary-
ing the user density in Figure 9(a), and similarly the results for the hotspot mobility
model in Figure 9(b). The corresponding overheads are shown in Figures 9(c) and 9(d)
respectively. Note that for these runs no limit qmax was set.

Both overhead figures show the total overhead qtotal and the overhead due to user
mobility qmob included in the total. Observe that qmob does not increase with higher
user densities. One reason for this is that the query reply time decreases with increased
user density and therefore compensates for the expected increase in the mobility-based
overhead. Quite differently, qinit (equal to qtotal − qmob) increases proportionally to
the user density as the number of queries is not limited by a particular qmax.

The main result here is that once the success rate is good, querying additional users
does not improve results apart from lowering the reply time. In other words, waiting for
users to move is more efficient than simply querying more users. As a consequence, if
a higher reply time is acceptable, then the protocol can manage with far fewer queries
by choosing a smaller initial number of queries qinit.
Summary. Summing up, we observed that high success rates can be obtained with a
range of different mobility patterns and scoping variants. Cell-based scoping, which
is free from the additional overhead of propagating object-sensor position information,
proved to be particularly valuable. Finally, in certain circumstances the system may
even work reasonably well with very low participant densities representing a hundredth
of the expected daytime population in an urban area.

22

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000 1000 500 200
 0

 300

 600

 900

 1200

 1500

 1800

 2100

S
uc

ce
ss

 r
at

e
fo

r
t m

ax
=

30
 m

in
.

R
ep

ly
 ti

m
e

User density

Success rate (left)
Reply time (right)

(a) Performance (random waypoint)

1

0
 2000 1000 500 200

 0

 300

 600

 900

 1200

 1500

 1800

 2100

S
uc

ce
ss

 r
at

e
w

ith
 t m

ax
=

12
0

m
in

.

R
ep

ly
 ti

m
e

User density

Success rate (hot)
Success rate (cold)

Reply time (hot)
Reply time (cold)

(b) Performance (hotspot)

 0

 200

 400

 600

 800

 2000 1000 500 200

q t
ot

al

User density

qtotal
qmob

(c) Overhead (random waypoint)

 800

 600

 400

 200

 0
 2000 1000 500 200

q t
ot

al

User density

qtotal(hot)
qtotal(cold)
qmob(hot)

qmob(cold)

(d) Overhead (hotspot)

Figure 9: Cell-based scoping when the user density is varied

6 Related Work
Various research papers argue for the relevance of locating everyday objects, monitor-
ing the presence of items, or avoiding their loss. Many such systems [2, 5, 24, 28, 30],
however, suggest a specific pre-installed object sensing infrastructure, which is costly
to deploy and to maintain. Reminder systems [2, 24] focus on notifying users before
a loss takes place. As mentioned, we generally assume that tagged objects will often
be intentionally left behind and therefore avoid immediate notification. If desired by
users, however, the query service supports immediate notifications as well (as in the
delegate use case, which is similar to [24]).

An object search system could also be implemented by proactively sending all sen-
sor readings to a centralized database (subsequently queried when an object needs to
be located). Such a system would face the formidable scalability challenge of a global
data collection system, such as IrisNet [14] or Hourglass [20]. In contrast to this, we
are using a reactive (query-based) approach, as the number of sensor readings (e.g.,
object X seen by object sensor A) is expected to be much larger than the number of
queries.

23

Some research on distributed sensing systems also advocates the use of mobile
phones and the mobile network infrastructure [4, 7, 23, 26]. Apart from the different
application focus, we address two central challenges of large-scale applications based
on user-held sensors: Query scoping (determining which sensors should be queried
from a large array of sensors) and the properties of the wide-area sensor coverage
obtained by user-held sensors. These challenges are likely to re-appear in other appli-
cations [4, 7] as well.

7 Conclusion
We have presented a comprehensive system for managing and finding everyday objects
relying on mobile phones as omnipresent object-sensing devices. We have discussed
the architecture, design, and expected performance of this system, together with a flex-
ible means of generating object search heuristics from application data. Based on the
ubiquitous mobile network infrastructure which is already in place, wide-area searches
for everyday objects become possible without incurring the high costs involved in
equipping a larger environment with an object-sensing infrastructure.

Our system makes use of an unconventional approach, which relies on the partici-
pants’ mobility in order to cover an essential portion of the search space. We therefore
spent significant effort on modeling and testing the circumstances in which such an
object search system would be used on a large scale. The results are encouraging. In
all our experiments, we were able to observe a high rate of successful queries, that is,
of objects being found. While the time until a reply can be obtained varies with user
mobility and density, our conjecture – that most of the time an object will eventually be
found – was confirmed. Moreover, we could show that even in settings with relatively
high positioning errors or which rely solely on the observed cell identifier for localiza-
tion, the total overhead for distributing an object search query remains acceptably low.
While this does not change the basic fact that objects left in deserted places will not be
found, we have shown that, for objects left within the users’ space, such a system is
feasible.

In a broader context, this paper has analyzed the properties of the coverage obtained
from user-held sensors. By means of the average query reply time (e.g., 30 minutes)
that we observed with a particular sensing range, participant density, and mobility pat-
tern, we quantified the time that must elapse before a point-shaped phenomenon has
been sufficiently covered. Therefore, the query reply time can be interpreted as the
(reciprocal of the) maximum sampling frequency that our user-centric infrastructure
realizes for a particular spot within the area under observation.

In this regard, the results are applicable to other wide-area sensing applications.
For example, recent work has mentioned measuring air quality or average noise levels
in urban areas [4]. In such systems, the trade-offs examined between sensing range,
maximum sampling frequency, and participant density are likely to re-appear. These
observations indicate that studying Sensor Internet applications that make opportunistic
use of mobile phones and their infrastructure from a more general point of view is a
worthwhile research issue.

24

Acknowledgments. The work presented in this paper was supported by DoCoMo
Euro-Labs and partially by NCCR-MICS, a center funded by the Swiss National Sci-
ence Foundation. We would like to thank Michael Fahrmair and Daisuke Ochi for
their thoughtful comments and suggestions on draft versions of this paper, Christof
Roduner and Chie Noda for their contributions to the presented work in earlier phases
of our research collaboration, and Hans-Florian Geerdes for his valuable advice on the
Momentum dataset [18]. Parts of this paper were published earlier in a preliminary
form [11, 12, 13].

References
[1] Philipp Bolliger and Marc Langheinrich. Distributed persistence for limited devices. In

System Support for Ubiquitous Computing Workshop (UbiSys’06) at UbiComp’06, Orange
County, CA, USA, September 2006.

[2] Gaetano Borriello, Waylon Brunette, Matthew Hall, Carl Hartung, and Cameron Tangney.
Reminding about tagged objects using passive RFIDs. In Proceedings of the 6th In-
ternational Conference on Ubiquitous Computing (UbiComp’04), Nottingham, England,
September 2004.

[3] BTnodes. www.btnode.ethz.ch, 2006.
[4] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and M. B. Srivastava.

Participatory sensing. In SENSYS’06 Workshop on World-Sensor-Web: Mobile Device Cen-
tric Sensor Networks and Applications (WSW’06), Boulder, CO, USA, November 2006.

[5] Christian Decker, Uwe Kubach, and Michael Beigl. Revealing the retail black box by
interaction sensing. In 3rd International Workshop on Smart Appliances and Wearable
Computing (SAWC’03) at ICDCS’03, Providence, RI, USA, May 2003.

[6] Andreas Eisenblätter, Hans-Florian Geerdes, and Ulrich Türke. Public UMTS radio net-
work evaluation and planning scenarios. International Journal on Mobile Network Design
and Innovation, 1(1):40–53, 2005.

[7] Shane B. Eisenman, Gahng-Seop Ahn, Nicholas D. Lane, Emiliano Miluzzo, Ronald A.
Peterson, and Andrew T. Campbell. MetroSense project: People-centric sensing at scale.
In SENSYS’06 Workshop on World-Sensor-Web: Mobile Device Centric Sensor Networks
and Applications (WSW’06), Boulder, CO, USA, November 2006.

[8] Stephan J. Engberg, Morten B. Harning, and Christian D. Jensen. Zero-knowledge device
authentication: Privacy & security enhanced RFID preserving business value and consumer
convenience. In Proceedings of the 2nd Annual Conference on Privacy, Security and Trust
(PST’04), October 2004.

[9] ETSI. Selection procedures for the choice of radio transmission technologies of the UMTS.
Technical Report 3.2.0, European Telecommunications Standards Institute, April 1998.

[10] Lucio Ferreira, Luis M. Correia, David Xavier, Allen Vasconcelos, and Erik Fledderus.
Deliverable d1.4: Final report on traffic estimation and services characterisation. Technical
Report IST-2000-28088, Momentum Project, 2003.

[11] Christian Frank, Philipp Bolliger, Christof Roduner, and Wolfgang Kellerer. Objects call-
ing home: Locating objects using mobile phones. In Proceedings of the 5th International
Conference on Pervasive Computing (Pervasive’07), Toronto, ON, Canada, May 2007.

[12] Christian Frank, Christof Roduner, Philipp Bolliger, Chie Noda, and Wolfgang Kellerer.
A service architecture for monitoring physical objects using mobile phones. In Proceed-
ings of the 7th International Workshop on Applications and Services in Wireless Networks
(ASWN’07), Santander, Spain, May 2007.

[13] Christian Frank, Christof Roduner, Chie Noda, and Wolfgang Kellerer. Query scoping for
the Sensor Internet. In Proceedings of the IEEE International Conference on Pervasive
Services (ICPS’06), Lyon, France, June 2006.

25

[14] Phillip B. Gibbons, Brad Karp, Yan Ke, Suman Nath, and Srinivasan Seshan. IrisNet: An
architecture for a worldwide sensor web. IEEE Pervasive Computing, 2(4), 2003.

[15] Minkyong Kim, David Kotz, and Songkuk Kim. Extracting a mobility model from real
user traces. In Proceedings of the 25th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM’06), Barcelona, Spain, April 2006.

[16] Kari Laasonen, Mika Raento, and Hannu Toivonen. Adaptive on-device location recogni-
tion. In Proceedings of the 2nd International Conference on Pervasive Computing (Perva-
sive’04), Vienna, Austria, April 2004.

[17] Jean-Yves Le Boudec and Milan Vojnović. Perfect simulation and stationarity of a class
of mobility models. In Proceedings of the 24th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM’05), Miami, FL, USA, March 2005.

[18] Momentum. Models and simulation for network planning and control of UMTS.
momentum.zib.de/data.php, May 2006.

[19] Miyako Ohkubo, Koutarou Suzuki, and Shingo Kinoshita. RFID privacy issues and tech-
nical challenges. Communications of the ACM, 48(9):66–71, 2005.

[20] Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt Welsh,
and Margo Seltzer. Network-aware operator placement for stream-processing systems.
In Proceedings of the 22nd International Conference on Data Engineering (ICDE’06),
Atlanta, GA, USA, April 2006.

[21] RF Code, Inc. MantisTM active RFID tags 433 MHz data sheet. www.rfcode.com/
data_sheets/433_mantis_tags.pdf, 2006.

[22] Stuart Russell and Peter Norvig. Artificial Intelligence: A modern approach, chapter 3,
pages 75–76. Prentice Hall, 1995.

[23] SensorPlanet. www.sensorplanet.org, 2007.
[24] Hirobumi Shimizu, Osamu Hanzawa, Kenichiro Kanehana, Hiroki Saito, Niwat Thepvilo-

janapong, Kaoru Sezaki, and Yoshito Tobe. Association management between everyday
objects and personal devices for passengers in urban areas. Demonstration Abstract in
Adjunct Proceedings of Pervasive’05, Munich, Germany, May 2005.

[25] SkyeTek. SkyeModule M9 embedded UHF RFID reader data sheet. www.skyetek.
com/Portals/0/Documents/Products/SkyeModule_M9_DataSheet.
pdf, 2007.

[26] Dirk Trossen and Dana Pavel. Building a ubiquitous platform for remote sensing using
smartphones. In Proceedings of the 2nd Annual International Conference on Mobile and
Ubiquitous Systems: Networks and Services (MobiQuitous’05), pages 485–489, July 2005.

[27] Ultra Low Power Bluetooth Technology. bluetooth.com/Bluetooth/Learn/
Technology/lowpower.htm, 2007.

[28] Roy Want, Kenneth P. Fishkin, Anuj Gujar, and Beverly L. Harrison. Bridging Physical
and Virtual Worlds with Electronic Tags. In Proceedings of the ACM SIGCHI Conference
on Human Factors in Computing Systems (CHI’99), pages 370–377, Pittsburgh, PA, USA,
May 1999.

[29] Wibree Technology. www.wibree.com, 2006.
[30] Kok Kiong Yap, Vikram Srinivasan, and Mehul Motani. MAX: Human-centric search

of the physical world. In Proceedings of the 3rd International Conference on Embedded
Networked Sensor Systems (SENSYS’05), San Diego, CA, USA, November 2005.

26

