
SOA-based Integration of the Internet of Things in Enterprise Services

Patrik Spiess1, Stamatis Karnouskos1, Dominique Guinard1,2, Domnic Savio1,
Oliver Baecker1,3, Luciana Moreira Sá de Souza1, and Vlad Trifa1,2

1SAP Research,2ETH Zurich,3University of St. Gallen
Email: patrik.spiess@sap.com

Abstract

Advances in the areas of embedded systems, computing,
and networking are leading to an infrastructure composed
of millions of heterogeneous devices. These devices will not
simply convey information but process it in transit, connect
peer to peer, and form advanced collaborations. This “In-
ternet of Things” infrastructure will be strongly integrated
with the environment, and its integration with the enterprise
systems will not only further blur the line between business
IT systems and the real world, but will change the way we
design, deploy, and use services. New opportunities can
emerge for businesses, which can now closely collaborate
with the real world. The work presented here proposes an
architecture for an effective integration of the Internet of
Things in enterprise services.

1 Motivation and Vision

Traditionally, the systems of an enterprise controlling
physical processes (like manufacturing, logistics execution,
energy monitoring, building automation, etc.) use differ-
ent standards for data and communication than its business
software systems. We see a paradigm change as the for-
mer breed of systems increasingly adopt the standards of
the latter. It is expected that this trend will continue, while
in parallel the number of connected devices will explode.

As we are moving towards the ”Internet of Things” as
depicted by [3], millions of devices will be interconnected,
providing and consuming information available on the net-
work and cooperate. As these devices need to interoperate,
the service-oriented approach seems to be a promising so-
lution, i.e. each device should offer its functionality as stan-
dard services, while in parallel it is possible to discover and
invoke new functionality from other services on-demand.

As depicted in Figure 1, future infrastructures will be
service-oriented. As such, new functionality will be intro-
duced by combining services in a cross-layer form, i.e. ser-

Service

M
id

dl
ew

ar
e

Service

Service

Service

Service

?

Service

Business Process supported by a cross-layer service

Service
Service

Direct access to
web service enabled

devices

Indirect access to
(web service enabled)

devices via middleware

ERP

WS(A)N
Legacy

(non-WS)

Service
Mediator

Gateway

Service

Dynamic Discovery of Devices / Services & P2P Communication

Service

Figure 1. Vision of Web Service Mash-Ups

vices relying on the enterprise system, on the network it-
self and at device level will be combined. New integration
scenarios can be applied by orchestrating the services in
scenario-specific ways. In addition, sophisticated services
can be created at any layer (even at device layer) taking
into account and based only on the provided functionality
of other entities that can be provided as a service [5]. In
parallel, dynamic discovery [2] and peer-to-peer communi-
cation will allow to optimally exploit the functionality of a
given device. It is clear that we move away from isolated
stand-alone hardware and software solutions towards more
cooperative models.

The convergence of solutions and products towards the
SOA paradigm adopted for smart embedded devices con-
tributes to the improvement of the reactivity and perfor-
mance of industrial processes, such as manufacturing, logis-
tics, and others. This will lead to information being avail-
able in near real-time based on asynchronous events, and
to business-level applications that are able to use high-level
information for various purposes, such as diagnostics, per-
formance indicators, traceability, etc. SOA-based vertical

1

integration will also help to reduce the cost and effort re-
quired to realize a given business scenario as it will not re-
quire any device drivers or third-party solutions.

2 SOCRADES Integration Architecture

To realize an effective integration of the capabilities of-
fered by the Internet of Things, we have designed an archi-
tecture (depicted in Figure 2) that exposes real-world de-
vices with embedded software to standard IT systems by
making them accessible in a service-oriented way. The re-
quirements we want to cover as well as the functionality
to be realized is analyzed in [6],[1]. The architecture im-
plemented hides the heterogeneity of hardware, software,
data formats and communication protocols that is present in
today’s embedded systems. The specifications foster open
and standardized communication via web services at all lay-
ers. The following layers can be distinguished: Application
Interface, Service Management, Device Management, Se-
curity, Platform Abstraction and Devices.

Application Interface: The SOCRADES Integration
Architecture (SIA) enables enterprise-level applications to
interact with and consume data from a wide range of net-
worked devices using a high-level, abstract interface that
features web services standards. Those standards already
constitute the standard communication method used by the
components of enterprise-level applications. Web services
are the technology canonically used to implement business
processes, which are frequently modeled as orchestrations
of available web services. This allows networked devices
that are connected via the middleware presented here to di-
rectly participate in business processes while neither requir-
ing the process modeler nor the process execution engine to
know about the details of the underlying hardware.

The integration architecture features a messaging sys-
tem, because the application should be able to consume any
events whenever it is ready to and not when a low-level ser-
vice happens to send them. It also allows the application to
interact with devices that are only intermittently connected,
receiving notifications when a certain device becomes avail-
able again or have the system cache the message and deliver
it when the device is ready to receive it. Finally there is
a service catalog that users and applications can query. It
finds and delivers service descriptions and pointers to run-
ning service instances. Both atomic services hosted by the
devices and higher-level composed services are listed here.

Service Management: All functionality offered by net-
worked devices is abstracted by services. Either devices
offer services directly or their functionality is wrapped into
a service representation. On this layer of the integration
architecture and on all layers above, the notion of devices
is abstracted from and the only visible assets are services.
An important insight into the service landscape is to have a

SOCRADES Integration Architecture

Ap
pl

ic
at

io
n

In
te

rf
ac

e

Eventing Invocation
Handler

Application
Service Catalogue

Se
rv

ic
e

M
an

ag
em

en
t

Composed Services
Runtime Service Monitor

D
ev

ic
e

M
an

ag
em

en
t

Pl
at

fo
rm

Ab
st

ra
ct

io
n

D
ev

ic
es

Monitoring and Inventory Service Lifecycle Management
Device

Repository
Device
Monitor

Middleware
Historian Discovery Service

Mapper
Service Implementation

Repository

Enterprise Services Proxy Factory

Platform Plugins

Device Service Injector

Platform Plugins

Device Service Proxy

Platform Plugins
Messaging /
Discovery

DPWS Devices
Native / Gateway WS(A)N RFID OPC-UA Legacy Devices …

Security

© SAP 2008 / Page 2

Figure 2. SOCRADES Integration Architec-
ture

repository of all currently connected service instances. This
layer also provides a runtime for the execution of composed
services. We support the composition of business processes
primarily by offering an execution service for underspec-
ified BPEL processes, meaning that service compositions
can be modeled as business processes where the involved
partners do not need to be explicitly specified at design time.
This flexibility is needed since the set of services offered at
the device level is dynamic; as (potentially mobile) devices
connect and disconnect or are re-configured, the available
service set changes frequently. Traditional business process
execution languages like BPEL are not built to support such
dynamics. With some proposed extensions to BPEL and the
execution support for the extended processes, the process
modeler has unprecedented flexibility.

Device Management: All devices are dynamically dis-
covered, monitored and their status is available to the en-
terprise services. Furthermore, it is possible to remotely
deploy new services during run-time, in order to satisfy ap-
plication needs.

Security: Both devices and back-end services may only
be accessed by clients that have a certain role and provide
correct credentials that authenticate themselves. This layer
implements the correct handling of security towards the de-
vices and the enterprise-level applications.

Platform Abstraction: As stated before, devices either
offer services directly or their functionality is wrapped into
a service representation. This wrapping is actually carried
out on the platform abstraction layer. In the best case,
a device offers discoverable web services on an IP net-
work. In this case no wrapping is needed because services
are available already. If the device type however does not
have the notion of a service (it might use a message-based
or data-centric communication mechanism), the abstraction
into services that offer operations and emit events can be a
complex task. In addition to service-enabling the communi-
cation with devices, this layer also provides a unified view
on remotely installing or updating the software that runs on

2

Figure 3. Eventing

devices and enables the devices to communicate natively,
i.e. in their own protocol with back-end devices.

Devices: Heterogeneous Devices are expected to con-
nect to the architecture. These include industrial devices,
home devices, or IT systems such as mobile phones, PDAs,
production machines, robots, building automation systems,
cars, sensors and actuators, RFID readers, barcode scan-
ners, or power meters. We used several of the listed types of
devices during prototype implementations as shown in the
Demonstration section.

3 Architecture Design

The architecture components presented in the following
subsections have all have been implemented based on open
WS-* standards in Java EE 5 on SAP NetWeaver platform,
using EJB 3.0 and JPA.

3.1 Eventing

This component is an implementation of the WS-
Brokered Notification standard, implementing publish and
subscribe functionality, to distribute information about
events of interest. Both Push or Pull type delivery are sup-
ported and both involve the role of ”Consumer” and ”Pro-
ducer”. Figure 3 shows a high-level view on the Eventing
component.

The Eventing component acts as an intermediary be-
tween a Producer and the entity that has interest in the gen-
erated events. For example, a shop floor device could prop-
agate sensor data through the Eventing component acting as
a Producer.

The WS-Notification standard consists of 3 specifica-
tions: WS-Notification, WS-Brokered Notification, and WS-
Topic.

WS-Notification defines consumer and producer roles
and the interfaces both have to provide. This allows for
a point to point event subscription and delivery. The pro-
ducer needs to provide the notification interface where the
producer sends the notifications to and the producer has to
provide the subscription interface so that the consumer can
subscribe.

Figure 4. Invocation Handler

WS-Brokered Notification builds on top of WS-
Notification and specifies an intermediary called notifica-
tion broker, which is exactly what we have implemented in
the Eventing component. It provides the subscription in-
terface on behalf of the producer and the notification inter-
face on behalf of the consumer. This drastically reduces the
complexity of consumers and producers and allows flexi-
ble relationships, that can involve producers/consumers un-
known at design and deployment time. Additionally, the
broker offers pull point functionality, i.e. it can collect no-
tification for a consumer until it retrieves them, further re-
ducing the complexity of the consumer.

WS-Topics defines hierarchical topic trees that can be
specified and used to declare event types when producing
and event filters when subscribing to events. The event-
ing component implements basic topic expressions, the sim-
plest form of topics specified.

3.2 Invocation Handler

The Invocation Handler (Figure 4) implements function-
ality to act as an intermediary for service invocations. It is
capable of buffering an invocation in case an endpoint is not
available. Furthermore, it supports two different types of
delivery (Direct Service Response and Push) and provides
interfaces for the invoker to query for an invocation request
status and canceling a pending invocation.

When using the Direct Service Response delivery, the
invoker has to supply an endpoint which supports retriev-
ing the service invocation response directly. This endpoint
can be the invoker itself or any other supporting entity. The
Invocation Handler passes the given endpoint as the return
endpoint when invoking the service. The delivery mecha-
nism Direct Service Response is depicted in Figure 4.

When using the Push delivery, the Invocation Handler
receives the service invocation response and publishes it to
the Eventing component. The invoker has to supply the
description of the event that should be used when the re-
sponse is propagated to the Eventing component. Using the
Push delivery implies that the invoker has previously regis-
tered interest for the supplied event description, using one

3

Figure 5. Application Service Catalogue

of the Eventing subscription types (Push/Pull). Therefore
the Eventing component is used as an intermediary for de-
livery of the service invocation response.

The component implements functionality to retrieve the
current status of a request for invocation. This is one of
”Pending” and ”Not Pending”. ”Pending” implies that the
service invocation was not processed, possibly because the
service was not yet available. ”Not Pending” implies that
the service invocation was executed, if the given request
for invocation was registered previously. This functionality
is used by the invoker to know whether a service invoca-
tion happened within a given time or whether there was a
conflict that prevented the service to be executed properly.
The component implements functionality to remove a re-
quest for invocation. The invoker can decide to remove a
request in case a response or the invocation of the service
would result in unwanted consequences or be of no interest.

3.3 Application Service Catalogue

One of our main targets and justification for wanting
WS everywhere is the fact that they enable more flexibil-
ity. Once every service is exposed using the same interfaces
one can really think about combining the services and creat-
ing new behaviors for the application. Yet, composition and
service consumption does not really make sense if services
cannot be searched for. This is the goal of the Application
Service Catalogue. Figure 5 depicts its subcomponents. It
is the search engine of the architecture that enables the ap-
plications to look for services based on queries.

The catalogue is composed of three subcomponents:
QueryEngine: The QueryEngine is the core of the search;
it consumes a simple text query and returns an ordered list
of matching Service Types. In order to go beyond the sim-
ple query matching of a service name or description it first
uses a concrete instance of a pluggable component called
QueryStrategy with the goal to define how the simple query
should be extended before processing. The use of a Query-
Strategy component prevents from locking the architecture

Figure 6. Composed Services Runtime (CSR)

with a search method that is not appropriate.
BestEffortComponent: This is responsible for selecting

the best possible device running the selected service. ”Best”
is here meant in terms of QoS (Quality of Service). It takes
into account the information held by the Device Monitor
namely, status, battery life, etc.

OnDemandDiscoveryAndDeployment: This compo-
nent is responsible for initializing the dynamic search for
services. When a service type corresponding to the query is
found but the Best Effort component does not find a running
instance, the On Demand Discovery and Deployment com-
ponent will try: (i) to force a discovery for such a service,
using the Discovery component, and (ii) to inject the ser-
vice on a device, using the Service Mapper and the Device
Service Injector.

3.4 Composed Services Runtime

Composed services are described in BPEL, which com-
municates with service partners over partner links. At de-
sign time, all partner links must be bound to concrete ser-
vice types. Only the actual endpoints can be unknown at
design time. CSR can host several composed services, de-
pending on the device capacity, e.g. RAM or CPU power.
Moreover, as we need a JVM to run CSR, the performance
of CSR also depends on the garbage collector and the Java
heap size of that JVM. CSR (depicted in Figure 6) basi-
cally provides two interfaces for web service consumers:
the interface for deploying/undeploying composed services
and the interface for using composed services. For deploy-
ing new composed services, CSR hosts a service called De-
ployment Service. Deploying a composed service on CSR
means that a SOAP message is sent to the Deployment Ser-
vice, containing the URL location of the BPEL description
of the new composed service and also the URL location of
the deployment descriptor of that service. A new composed
service instance is created, hosted on CSR, and represented
in the Service Monitor. During the execution of a composed
service runtime, CSR asks the Service Monitor for the cost

4

Figure 7. Service Monitor

information of each sub-service invocation, in order to cal-
culate the total cost of the whole composed service execu-
tion. CSR stores this total cost into the Service Monitor,
indicating the performance of the composed service. CSR
has also the functionality to log the response time of each
individual sub-service invocation and size of the SOAP re-
quest/response. From this information, CSR can update the
cost information of each individual service instance in the
Service Monitor.

3.5 Service Monitor

The service monitor (depicted in Figure 7 is storing fast-
changing, live and up-to-date data about the currently us-
able service instances. The storage is realized as a in-
memory data structure rather than a database structure for
fast access and to allow performing easy updates. Examples
of usage include: a service detects that it is malfunctioning
and self-reports that fact to the service monitor which gen-
erates an alert. Similarly when a device joins the network,
the Service Monitor picks up the events from the Discovery
component and stores the fact that the services are there.

3.6 Monitoring and Inventory

The Monitoring and Inventory is composed of several
components: Device Repository, Device Monitor, Middle-
ware Historian, and Discovery.

The Device Repository component is responsible for
storing static information about the devices available in the
system. To facilitate the registration of numerous devices
that have common characteristics, the Device Repository
supports the concept of Device Type. The Device Type
contains Properties and Features which describes common
characteristics of a class of devices. For example, a wireless
sensor node such as a SunSPOT (www.sunspotworld.
com)can be registered as a Device Type with tempera-
ture and acceleration sensors as features. Numerous sen-
sor nodes can be registered using the same device type as
reference.

Figure 8. Monitoring and Inventory

Figure 9. Device Discovery

The Device Monitor monitors devices and detects
events like failures. When a malfunction is detected, the
component triggers a Fault Event which is propagated to
interested parties. As each device has different character-
istics and behavior, a set of fault detection techniques is
required to monitor devices. These techniques can make
use of events generated by the devices, for instance to iden-
tify if unexpected value readings were generated. Another
possibility is to invoke specific methods on the devices, for
instance to ping the device in order to verify if it is still ac-
tive. New techniques can be used by implementing another
monitoring method.

The Middleware Historian acts as an event archive for
the architecture. Data from the devices (due to events or in-
vocation), middleware system information, debugging mes-
sages, etc. can be stored there and are accessible for corre-
lation of events.

The Discovery component is able to find devices present
on a network, and retrieve information about them and their
hosted services to be used by other components from the ar-
chitecture. Two distinct functional modes are implemented
by the discovery unit. The first is referred to as ”passive
discovery”, whose role is to listen to the network for an-
nouncements from new, unknown devices that connect to
the network, dynamically retrieve their metadata and use the
eventing mechanism to notify the systems about the devices
and their hosted services. The second mode, called ”active
discovery”, is responsible for dynamic search of specific de-
vices or services, and particularly suited for contexts where

5

www.sunspotworld.com
www.sunspotworld.com

Figure 10. Service Lifecycle Management

new devices with unknown capabilities continuously con-
nect to the system.

3.7 Service Lifecycle Manager

The service lifecycle management [4] (depicted in Fig-
ure 10) component consists of two main sub-components:
the Service Mapper and the Service Implementation Repos-
itory. The Service Mapper (SM) performs deployment
planning and deployment execution within the SOCRADES
middleware. Whenever a business process is created it de-
cides how this process can be represented by the middle-
ware respectively by the services hosted on devices within
the device layer of the middleware. The SM therefore gen-
erates desired service mappings that describe which ser-
vices on which devices may be used during execution of
a business process (while the actual decision about the used
service instance is made by the Service Monitor at run-
time). Desired mappings are then transformed into deploy-
ment lists, which describe actions to be performed in order
to establish a desired mapping. Actions included in a de-
ployment list may be (un)deployment, (de)activation, mi-
gration, or configuration of services. The decisions of the
SM therefore tremendously influence the reliability of the
SOCRADES middleware and thus the reliability of all busi-
ness processes based on it.

The Service Implementation Repository (SIR) saves all
services which are available for composition of new ser-
vices, orchestration of business process or deployment
within the SOCRADES middleware. Saving a service
means saving its metadata as wells as associated arbitrary
content like service implementations. The SIR is therefore
a registry repository rather than only a repository as indi-
cated by its name. The SIR generally offers two kinds of
operations related to services which together make up the
service lifecycle management of the SIA: management and
query. Management refers to the publication of new ser-
vices, updating existing services (incl. versioning), creation
of configurations and deprecation of services. Querying a
service may be done using different query languages and

Figure 11. Device Service Injector

constructs and may search for service metadata or associ-
ated implementations. All operations may be approved be-
fore execution according to rules and guidelines thus en-
forcing a governance process.

3.8 Device Service Proxy

The device service proxy eases the integration of several
categories of heterogeneous devices. Plugins can be writ-
ten that uniformly address devices based on their capabili-
ties. As an example, we have implemented a Devices Pro-
file for Web Services (DPWS) plug-in that can dynamically
discover and integrate any DPWS device (such as the ones
described in the Demonstration section). Similarly other de-
vices based on OPC-UA, specific RFID or legacy protocols
can be integrated provided that a platform plug-in is written
for their category.

3.9 Device Service Injector

The Device Service Injector (DSI) is responsible for the
execution of deployment levels and steps during the pro-
cessing of a deployment list by the Service Mapper. The
DSI utilizes various injectors. For each deployment plat-
form supported by the SOCRADES middleware one injec-
tor implementation exists of which various instances dur-
ing runtime may be started. Each instance registers itself
during start up with the DSI and may thus be used for the
deployment execution. Injector implementations may ei-
ther run locally as a subcomponent of the DSI or as remote
components possibly on different subnets/locations. This
allows the DSI to always choose the most suitable injec-
tor currently available for each specific deployment step.
Incoming deployment steps are saved within a command
queue and are executed either sequentially or in parallel.
Delivery of execution results to the Service Mapper may be
performed asynchronously. In case errors occur during ex-
ecution of deployment steps, all steps of the same job are

6

Figure 12. Enterprise Services Proxy Factory

either canceled if they are still in the command queue or
compensated if they were already executed.

3.10 Enterprise Services Proxy Factory

The Enterprise Services Proxy Factory provides inter-
faces for the creation of virtual devices that act as inter-
mediaries between the device level and enterprise services.
Such proxies might contain a definable set of adapters for
enterprise services and provide their respective device in-
terfaces on a target platform. The component defines a set
of requirements that need to be fulfilled in order to deploy
such virtual devices on a target platform. This includes the
installation of platform support on the one hand and one
the other hand the formal description of a mapping between
device level and enterprise service messages. The Enter-
prise Services Proxy Factory includes subcomponents that
facilitate the process of mapping a device level invocation
message to a target enterprise service request and support a
customizable set of rules that are applied when converting
messages.

4 Demonstration

To demonstrate that the aforementioned ideas can be re-
alized, we have used state of the art technologies to im-
plement prototypes. Several prototypes have been imple-
mented as proof of concept.

The systems described have common characteristics
where we focus on smart devices like sensors, PLCs or
IT devices that offer web service interfaces, either di-
rectly or through the use of gateways or service mediators.
Through these interfaces they offer functional services (e.g.
start/stop, swap to manual/automatic mode) or status infor-
mation (e.g. power consumption, mode of operation, usage
statistics). In our prototypes, the business logic services are
supported by a service composition engine and visualized
using a visualization toolkit. An operator can use existing
tools like SAP Manufacturing Integration and Intelligence
(SAP MII) to create the business rules. The SIA enables
sophisticated business software such as ERP or PLM sys-
tems to interact with the real world. By making web service
mash-ups of services running on the enterprise, middleware,

Figure 13. Heterogeneous Web-Service en-
abled Devices in an Event-based Infrastruc-
ture

and device layer, we can provide users with a rich visualiza-
tion of the real-world status.

The integration of heterogeneous devices is clearly de-
picted in our latest prototype that successfully shows how
several devices supporting web services (or being wrapped
by them) can be integrated via the proposed architecture.
We have taken several IP devices and wrapped their func-
tionality with web services. More specifically as depicted
in Figure 13 we used the following devices: An RFID
reader: Appearing RFID tags are read by the reader which
raises events showing info with respect to the tag. Each tag
is considered to be integrated with a product and serves as a
token that links it with business information (e.g. order de-
tails). A robotic arm: The functionality (grab, move, etc.)
of the robotic arm controller has been wrapped. An elec-
tricity IP switch: An alarm lamp has been attached in an
electricity IP switch, which offers the on/off functionality as
a web service. Wireless sensors: One sensor controls the
emergency button. The emergency button has been attached
to the IO pins of the SunSPOT wireless sensor. Pressing or
releasing the button is captured by the SunSPOT, and an
WS-event is generated. Another wireless sensor is used for
vibration monitoring. The capability of SunSPOTs to mea-
sure acceleration is used for vibration monitoring via the
sensor mounted on the robotic arm. This sensor monitors
the transportation conditions of the product to make sure it
adheres to the product-specific quality guidelines.

Composing application scenarios is dynamically done by
orchestrating the available services. The dynamicity also
comes from the fact that the SIA is an event-based infras-
tructure. A typical scenario is the following: As production
parts arrive at the factory shop floor they are equipped with
an RFID tag. As they reach the processing point, the tag
is read by the RFID reader. An event is generated by the
reader with all the necessary data like the RFID number and
stored on the network. The robot gets notified by this event

7

Figure 14. Real time reporting via Enterprise
reporting tools

(as it has subscribed to the service) and picks up the pro-
duction part. By matching data from the enterprise system
and the RFID tag, it knows how to further process the part.
In parallel the SunSPOT sensor mounted on the robot mon-
itors the vibration and if it exceeds a specific threshold an
event is raised to immediately stop the process (quality con-
trol). The same holds true for the emergency switch, if an
operator at the shop floor for any reason wants to immedi-
ately stop the process (e.g. due to an accident) s/he presses
this switch, which is controlled by a SunSPOT that again
generates an event.

Once such an emergency event is propagated, devices
that consume it react accordingly. The robot receives the
emergency shutdown event and immediately stops its op-
eration. Also the IP electricity switch, once it receives the
event, turns on the emergency light. At business layer, there
is an enterprise application such as shop-floor reporting re-
alized by the SAP product Business Objects. There, we
have a real-time monitoring of the shop-floor status as the
application also subscribes to all events raised. The plant
manager can immediately see the status of the ERP orders
(Figure 14), the production progress, the device status, as
well as a global view on all factories and the possible side-
effects of a production line delay due to shop-floor device
malfunctions.

All of the communication is done via web service tech-
nologies and the realization of this specific scenario became
possible by having a composition of the available function-
ality that all devices and applications expose as a service. In
legacy systems, integration of a new device or reassignment
of its role would result in reconsidering how the device inte-
grates with other devices and how they control it. However
with the SOA approach described, the implementation of a
new scenario is possible by modifying the orchestration of
the services already available.

An online demo of the Integration Architecture is avail-
able at http://socrades.dyndns.org:50000/SIA_
demo_web/demo-intro.html.

5 Conclusion and Future Work

We have presented the design of an architecture that can
strongly couple the envisioned Internet of Things infrastructure
with enterprise services. The majority of the specified functional-
ity has been implemented and trialed.

The approach is event-based and its interaction with external
entities as well as internal communication is based on web ser-
vices. Theoretically each component could be hosted in different
locations. As an example, parts of the architecture could be run-
ning in the cloud offering high-performance services, while parts
interacting locally with the devices could run even on embedded
systems located at the device layer.

The design and implementation was done with scalability in
mind. However, we plan to conduct extended scalability and per-
formance tests in the future. A special focus will be on perfor-
mance tests when running DPWS on resource-constrained devices.
Future work will also include the extension of the architecture
to support additional devices using OPC-UA and REST plug-ins.
Validation trials with real-world devices are planned in the au-
tomation and energy domain.

Acknowledgments

The authors would like to thank the European Commission and
the partners of the European IST FP6 project Service-Oriented
Cross-layer infRAstructure for Distributed smart Embedded de-
vices SOCRADES (www.socrades.eu), for their support.

References

[1] L. M. S. de Souza, P. Spiess, D. Guinard, M. Koehler,
S. Karnouskos, and D. Savio. Socrades: A web service based
shop floor integration infrastructure. In Proc. of the Internet
of Things (IOT 2008). Springer, 2008.

[2] W. K. Edwards. Discovery systems in ubiquitous computing.
IEEE Pervasive Computing, 5(2):7077, 2006.

[3] E. Fleisch and F. Mattern. Das Internet der Dinge. Springer,
1 edition, July 2005.

[4] T. Frenken, P. Spiess, and J. Anke. A Flexible and Extensible
Architecture for Device-Level Service Deployment, volume
5377 of LNCS, pages 230–241. Springer, December 2008.

[5] F. Jammes and H. Smit. Service-oriented paradigms in indus-
trial automation. IEEE Transactions on Industrial Informat-
ics, 1(1):62–70, Feb. 2005.

[6] S. Karnouskos, O. Baecker, L. M. S. de Souza, and P. Spiess.
Integration of soa-ready networked embedded devices in en-
terprise systems via a cross-layered web service infrastruc-
ture. In Proc. of the 12th International Conference on Emerg-
ing Technologies & Factory Automation (ETFA), pages 293–
300, 25–28 Sept. 2007.

8

http://socrades.dyndns.org:50000/SIA_demo_web/demo-intro.html
http://socrades.dyndns.org:50000/SIA_demo_web/demo-intro.html
www.socrades.eu

	Motivation and Vision
	SOCRADES Integration Architecture
	Architecture Design
	Eventing
	Invocation Handler
	Application Service Catalogue
	Composed Services Runtime
	Service Monitor
	Monitoring and Inventory
	Service Lifecycle Manager
	Device Service Proxy
	Device Service Injector
	Enterprise Services Proxy Factory

	Demonstration
	Conclusion and Future Work

