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Key Concepts of the INCAS Multicomputer Project
JURGEN NEHMER, DIETER HABAN, FRIEDEMANN MATTERN, DIETER WYBRANIETZ,

AND H. DIETER ROMBACH

Abstract-This paper gives an overview of the INCAS (INCremental
Architecture for distributed Systems) multicomputer project, which
aims at the development of a comprehensive methodology for the de-
sign and implementation of locally distributed systems. A structuring
concept for distributed operating systems has been developed and in-
tegrated into the system implementation language LADY. The concur-
rent high-level programming language CSSA, based on the actor model,
has been designed for the implementation of distributed applications.
A substantial effort in the INCAS project is directed towards the de-
velopment of a distributed test methodology. An experimental system
has been implemented on a network of ten MC68000 microcomputers.
Preliminary experience with the methodology has been gained from a
small number of prototype applications.

Index Terms-Distributed operating systems, distributed program-
ming languages, distributed systems, distributed testing, message
passing, multicast communication, multicomputer.

I. INTRODUCTION
THE INCAS project belongs to the wide class of re-
I search projects which investigate the potential bene-

fits (and drawbacks) of multicomputer architectures as an
alternative to traditional single processor systems. A mul-
ticomputer is a locally concentrated set of loosely coupled
autonomous processing nodes of identical structure each
with its own private memory. Each single node itself may
consist of a tightly coupled multiprocessor system as de-
picted in Fig. 1.
The nodes do not share global memory and communi-

cate solely by exchanging messages over a high band-
width interconnection network. Multicomputers with
hundreds of nodes such as BBN's Butterfly machine and
systems based on the hypercube interconnection scheme
(e.g., the T-series from Floating Point Systems [13] and
Intel's iPSC [31]), are now commercially available and
can serve as advanced testbeds for research projects.

In contrast to projects on workstation networks such as
Accent [25], V-system [7], and Eden [1], the INCAS
project puts its emphasis on the development of a com-
prehensive methodology for the design of locally distrib-
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Fig. 1. General structure of a multicomputer system.

uted systems, supporting applications with large grain
parallelism at the process level. Related multicomputer
projects are Cm* [32], Zmob [39], CONIC [17], Micros
[37], Chorus [41], and Crystal [10]. The INCAS project
addresses the entire spectrum of multicomputer-related
software aspects such as distributed operating systems,
distributed programming languages and environments,
distributed applications, and a distributed test methodol-
ogy. Most other projects on parallel and distributed com-
puting specialize in particular topics such as programming
methodology [1], [2], [21], [35].
The project name INCAS reflects one of the most im-

portant features of our approach: the ability to incremen-
tally configure systems of any size and desired degree of
fault tolerance, according to particular application re-
quirements.
Two distributed languages have been developed in the

course of this project: the language LADY for the design
and implementation of distributed operating systems and
the high-level application language CSSA. The underly-
ing philosophies of both languages date back to earlier
research projects and take different approaches to struc-
turing distributed software. Since any distributed operat-
ing system should be able to support different distributed
application languages efficiently, we considered the im-
plementation of a CSSA run-time environment in LADY
as a challenge for the applicability of our design meth-
odology.

This paper presents an overview of the INCAS project
with special emphasis on both languages involved. In
Section II the overall system architecture of INCAS is
outlined. Section III is devoted to an in-depth discussion
of our distributed operating system methodology includ-
ing the language LADY. In Section IV we will focus on
the distributed application language CSSA and its com-
munication concept. We also show how run-time support
for CSSA was implemented in LADY. The distributed test
facilities are described in Section V. The lessons we have
learned so far are summarized in Section VI. Section VII
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gives an overview of the current project status and out-
lines areas of future research.

II. OVERALL SYSTEM ARCHITECTURE
From a global point of view, our distributed system is

structured into four logical layers as shown in Fig. 2.
The physical network layer consists of ten MC68000-

based four-processor nodes interconnected by a logical
communication ring. A separate ring is used for test and
measurement purposes. The present approach to the in-
terconnection network is, based on the COM-chip used in
the ARCNET [33]. The moderate transmission speed of
the token-bus protocol of the COM-chip is sufficient for
the development and test phase of our distributed system.
In a medium term range, we intend to extend the testbed
by a larger number of nodes and to replace the intercon-
nection network by a- faster system.
The LADY Support System provides mechanisms for

process creation and deletion, local process synchroniza-
tion, interprocess communication, storage management,
local I/O, exception handling, etc. The distributed oper-
ating system layer is represented by a physically dispersed
set of communicating distribution units, called teams.
Each team usually consists of a cluster of tightly coupled
processes which share common working space. Special
teams, called agent servers, implement the run-time en-
vironment for the CSSA language.
The distributed application layer is formed by com-

municating agents, the independent execution units of
CSSA.
Program development is done under UNIX@ on differ-

ent machines, which have access to the communication
ring of the distribution testbed.

III. THE DISTRIBUTED OPERATING SYSTEM DESIGN
METHODOLOGY

A. The LADY Language and Its Underlying Structural
Concepts
The LADY language reflects our view of an adequate

structuring model for distributed operating systems. Ex-
periences with early versions of LADY [23], [29] induced
several iterations of -the early concepts until the present
design has been reached [40], [38]. The development of
LADY has been motivated by the lack of expressive power
with respect to higher level structures in present system
implentation languages.
The structuring concepts of LADY are expressed in

terms of three language levels as illustrated in Fig. 3.
Process and monitor modules constitute a team.-Several

teams and systems form a system. This system definition
is recursive and allows nested system structures of any
depth.
LADY is a strongly typed language. Each description

of a module, team and system type, is divided into a spec-
ification part and an implementation part, called the body

®UNIX is a registered trademark of AT&T Bell Laboratories.

distributed C SA

application agent C
layer

................ ........ .... ... .

dlistributed
operating LADY-
system team
laye-r
................................. ..........................................

LADY communication
Support subsystem

System ~~.. .. .. .. ....... ..... .. .. .. .. . ..... .. .. .. .. .. .. ..

layer kemel

........................... .............. ..........................................

physical | node 1 node 2 ... node n
network
layer

interconnection network

Fig. 2. The overall system architecture.

module

tamn

system

Fig. 3. Language levels of LADY.

of the respective type. The specification part describes the
interface a type exports to its environment.
These features promote the decomposition of programs

into well-structured-building blocks. Due to narrow inter-
face specifications, these building blocks can be easily ex-
changed between different environments. This greatly
supports the customizing of distributed operating systems
using predefined building blocks,
The fundamental structuring unit of LADY is the team.

A team consists of a collection of tightly coupled pro-
cesses which cooperatively perform a specific function.
Processes within a team solely communicate via shared
memory. Synchronization is achieved by using monitor
modules or lower level primitives such as semaphores.
Teams are distribution units, i.e., they have to be placed
as a whole at one node. Different teams may be placed at
the same node or at distinct nodes.
Teams interact with other teams solely via message

passing. The internal structure of teams is hidden by the
encapsulation of teams by a port interface. The port con-
cept in INCAS is symmetric: input ports define the mes-
sage interface exported by a team, while output ports de-
fine the message interface imported by a team from its
environment. A process can send a message through an
output port to a destination input port, only if a connec-
tion between the output and the input port has been estab-
lished beforehand. A similar approach has been taken in
the language NIL [35].
Two types of connections between input and output

ports can be defined:
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1) logical channels, which provide for a one-to-one
link between an output and an input port;

2) logical buses, which provide for a many-to-many
link between output and input ports, thereby offering a
multicast communication capability.
Teams and systems as well as their interconnections can

be dynamically generated and deleted. Teams are mobile;
communication between teams does not depend on their
location. The internal structure of a team is fixed at com-
pile time and cannot be changed at run time.

B. Communication Concepts
The semantics of the message passing mechanisms in

LADY can be characterized by the following properties:
* one way communication
* reliable one-to-one communication via logical chan-

nels
* unreliable communication via logical buses allowing

the user to define the success of a communication.
Input and output ports as well as communication paths

are typed, i.e., the communication paths can only trans-
port messages of one specific type, and the connected
ports must have been associated with the same type at
declaration time. However, strong typing can be bypassed
for special applications. Ports can be assigned a timeout
value. Send and receive operations will be canceled, if
they cannot complete within the time limit specified by
the timeout value of the respective port. Input ports can
be associated with a buffer of fixed length at declaration
time. A parameter determines the maximum number of
messages the buffer can store. A zero value indicates that
no buffer is supplied.
The semantics of one-to-one communications via logi-

cal channels can be described as follows. A process which
attempts to send a message to a receiver suspends exe-
cution until there is buffer space available at the receiving
input port, or in case no buffer was associated with the
input port, the receiving process is ready to accept the
message; symmetrically the receiving process is sus-
pended until the message it is waiting for is available from
the buffer or directly from the sending process.

This scheme works also in the case of many output ports
connected to one input port.

If no buffer has been associated with an input port, the
one-to-one communication is semantically equivalent to
the synchronization send [20]. There seems to be no gen-
eral consensus on how to define synchronous communi-
cation, especially when buffers are involved (cf. [3], [20],
[22]). We regard our particular approach to one-to-one
communication more closely related to synchronous com-
munication as defined in [3] or [20], than to asynchronous
communication. The reason for this judgement is that in
our approach only a fixed number of messages can be
buffered at the receiver's side; after this buffer limit has
been reached the sender gets suspended.
The multicast communiction based on logical buses has

required some modifications to the semantics as defined

for the one-to-one communications above. An arbitrary
number of input and output ports can be connected to a
logical bus. Logical buses offer three distinct transmission
modes, which differ in their addressing selectivity:

1) a multicast message sent over a logical bus is poten-
tially received by all input ports connected to this bus.

2) a subset of input ports connected to the same bus
can be defined as a multicast group; a message sent to a
multicast group is potentially received by all members of
the multicast group; logical buses and multicast groups
within buses form a two-stage multicast communication
capability.

3) a message can be sent to one single input port con-
nected to the bus.
The transmission modes are selected by different send

statements. Furthermore, LADY encompasses built-in
types and operations, enabling creation and deletion of
buses and groups, manipulation of bus and group names,
dynamic reformation of multicast groups, and connection
and disconnection of ports at run time. All operations are
performed locally thus avoiding a significant implemen-
tation overhead. These operations are discussed in more
detail in [40].
A major problem in the design of a multicast mecha-

nism consists in the definition of the semantics of a mul-
ticast send with special regard to reliability aspects. Our
solution to a flexible multicast protocol allows a process
to dynamically define the success of a multicast opera-
tion. The introduction of an additional port operation

< output port> .demandack(< no of acks >)

enables a process to specify the number of acknowledg-
ments it expects as a result of a multicast. This operation
changes the value of an internal port variable DEMAND-
ACK to < no of acks >. The default value ofDEMAND-
ACK is zero. Each message carries a 1-bit information
whether an acknowledgment is requested or not. In the
latter case the receiving port generates no acknowledg-
ment message. The send operation terminates if:

1) a timeout occurred at the sending output port (in this
case an undefined number of receivers might have re-
ceived the message), or

2) the expected number of acknowledgments was re-
ceived at the output port, indicating that the message was
either copied into the input port buffers or was received
by the expected number of processes.

Additionally, the transparent sending of acknowledg-
ments can be controlled explicitly by the operations

<input port> .enableack

<input port> .disableack

By default, acknowledgments are enabled. The operations
demandack, enableack, and disableack, are only relevant
to logical bus communications; they have no effect in one-
to-one communications via logical channels. Their pur-
pose is to provide a basis for a wide class of multicast
protocols at the system programming level.
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Fig. 4. The system type "file system."

C. An Example
We use the system illustrated in Fig. 4 as an example

to discuss the structuring means of LADY in more detail.
The system "file system" consists of two system ob-

jects of type "fault tolerant file server," and a team object
"manager" of type "file system manager." The team
"file system manager" is responsible for assigning cer-
tain requests to a specific file server. The file system ex-
ports the logical buses "fbus" and "ebus" to its environ-
ment by the two respective bus interfaces. The system
type "file system" is described at the LADY language
level as follows:

{specification part}
SYSTEM file system =
BUS fbus type = file system message type;
BUS ebus type = file system error message type;

fbus: fbus type;
ebus: ebus type;

END SYSTEM file system;

{implementation part}
SYSTEM BODY file system =

{library part}
SYSTEM fault tolerant file server;
TEAM file system manager;

{declaration part}
ftfsl: fault tolerant file server;
ftfs2: fault tolerant file server;
manager: file system manager;

{connection part}
CONNECT ftfsl.filebus TO fbus,

ftfsl .error outi TO ebus,
ftfsl.error out2 TO ebus,
ftfs2.filebus TO fbus,
ftfs2.error outl TO ebus,
ftfs2.error out2 TO ebus,
manager.in TO fbus;
manager.out TO fbus;

END SYSTEM BODY file system;

Each fault tolerant file server (ftfsl and ftfs2 in Fig. 4) is
refined by the system type "fault tolerant file server" of
Fig. 5.
The fault tolerant file server consists of two team ob-

jects of type "file server." Only one team is active, while
the other operates in a hot-standby mode. The fault tol-

Fig. 5. The system type "fault tolerant file server."

erant file server receives client requests and sends replies
via the bus interface "filebus." Error messages and ab-
normal conditions are reported via the ports "error outi"
and "error out2."

Finally, the internal structure of the team "manager"
is shown in Fig. 6. It is defined by two processes, which
communicate via a monitor. The language representations
of Figs. 5 and 6 are omitted here. The interested reader
is referred to [40], [38].

D. Design Rationale
After having reviewed the essentials of our structuring

model for distributed operating systems, we summarize
the technical arguments which guided our specific design:

1) Connection-Oriented Communication Model: The
decision for a connection-oriented communication model
(logical channels and buses) is motivated by our experi-
ence that distributed systems are easier to understand if
connection information is provided explicitly. This inter-
connection information can be used for more efficient
routing mechanisms.

2) One-Way Communication: In our opinion, it is
mandatory for an implementation language to support
various distributed applications encompassing a broad va-
riety of communication philosophies. For this reason, we
chose a lower level one-way communication mechanism
over an RPC-like mechanism as used in Eden [1], Argus
[21], and the V-system [7].

3) Logical Buses: Multicast communications have
been recognized as a very useful means in distributed sys-
tems. We consider logical buses as an adequate concept
to describe multicast structures at the language level.
Their implementation is greatly simplified in case the
physical transportation medium has a broadcast or multi-
cast capability. The logical bus concept in combination
with a dynamically definable success of a multicast op-
eration serves as a basis for application-oriented multicast
protocols.

4) Ports: The symmetric port approach in LADY (in-
put and output ports) provides for a high degree of struc-
tural transparency. The adjustable buffer capacity of input
ports at compile time requires no extensive buffer man-
agement by the LADY Support System. In the case of
one-to-one communication via logical channels, the buffer
size determines the degree of synchronization between
sender and receiver. In addition, buffers are used to allow
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Fig. 6. The team type "file system manager."

the successful completion of multiple parallel multicast
operations initiated by multiple senders on the same bus.

5) Recursive System Definitions: The introduction of
recursively definable system types greatly enhances the
structuring facilities for distributed systems and allows the
description of hierarchical, layered, and recursive struc-
tures.

6) Teams: The choice of process clusters over single
processes has the following advantages:

* typical operating system functions are more easily
described by multithread control structures

* tightly coupled processes within a team can com-

municate more efficiently via shared memory

* performance can be increased by exploiting the po-

tential power of multiprocessor nodes
Process clusters can also be found in languages such as

SR [2], EPL [1], Argus [21], and in the V-system [7].

E. Experiences with LADY
The first version of LADY was available in the begin-

ning of 1983. In 1983 and 1984 some applications includ-
ing small batch and time sharing operating systems, a

simple multiuser distributed operating system, and a pro-
cess control system for distributing parcels by ZIP code,
were implemented in LADY and run on a testbed of eight
TI 990 microcomputers. Our primary concern with the
first series of experiments was to measure the effects of a

high-level, well-structured, distributed programming lan-

guage on quality attributes of the resulting software such
as reliability, performance, and maintainability.

In this paper the results with respect to maintainability
will be briefly discussed. A series of maintenance exper-
iments was conducted involving twelve software systems
(operating systems of about 12K lines of source code each
and process control systems of about 2K lines of source

code each). Six of these systems were implemented in
LADY, the rest was implemented in a Pascal-like lan-

guage. The maintenance experiments included corrective
(detecting and correcting seeded faults) as well as adap-
tive and perfective maintenance tasks. The reader is re-

ferred to [30] for a more detailed description of the ex-

perimental design, including the maintained software
systems and the individual maintenance tasks.
The analysis results indicate that LADY's structural

concepts have a positive impact on maintainability, es-

pecially on comprehending the structural complexity of a

software system and the locality behavior of changes [30].
As an example, we want to mention the results concerning

maintainability defined as the average effort in staff-hours
per maintenance task. An individual maintenance task as
1) identifying and designing necessary changes (isolation
phase), and 2) actually implementing the changes in each
individual module (correction phase). No significant dif-
ferences between LADY and Pascal systems could be de-
tected as far as correction effort is concerned. However,
the isolation effort is significantly lower for LADY sys-
tems across all three types of maintenance experiments
(33 percent for corrective, 17 percent for adaptive, and 29
percent for perfective maintenance tasks). The ability to
understand the complexity of LADY systems in three sep-
arate steps according to the three structural language lev-
els is asssumed to be mainly responsible for the detected
difference.
We could not only show the benefits of the structural

LADY concepts compared to traditional ones exemplified
by a Pascal-like language; in addition, we were able to
capture the impact of structural LADY features on main-
tainability in a formal and quantitative way, as metrics
[27], [30]. The practical importance of these metrics is
particularly high due to the fact that they can already be
applied during the design phase of software projects [28].
The experience gained from these experiments led to an

improved version of LADY. In 1983 we started to build
up a new and more powerful experimental environment
based on MC68000 microcomputers. Since the summer
of 1985 a first distributed operating system prototype has
been operational supporting a run-time environment for
the distributed application language CSSA. In this first
prototype, we used a simple strategy for statically assign-
ing team objects to physical nodes.

Presently, we are working on more sophisticated dis-
tribution strategies supporting the dynamic distribution of
team objects at load time. These strategies are imple-
mented via cooperating node managers [34].

IV. THE DISTRIBUTED APPLICATION LANGUAGE CSSA

CSSA (Computing System for Societies of Agents) [4]
is an experimental high-level programming language for
expressing distributed application algorithms which in-
volve many loosely coupled cooperating tasks. In contrast
to LADY, CSSA is a more abstract language where most
details of synchronization and communication tasks are
hidden from the programmer. Its underlying model of dis-
tributed computation is based on the notion of actors orig-
inally developed by Hewitt [16]. The object-oriented
message-passing philosophy of the actor-model provides
clean mechanisms for exploiting parallelism and is espe-
cially well suited to distributed computing at a higher level
of abstraction.

In CSSA, computations are performed by agents, which
are active objects that communicate with other agents
solely by message passing. There is no sharing of data
among agents. An agent is an autonomous entity consist-
ing of a cluster of operations that can be activated by
sending messages to the agent. Each agent processes only

spooler distiuo
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one message at a time without interruption. Messages ar-

riving at an agent while it is executing an operation are

collected in a mailbox. Execution of an operation may

result in any number of messages being concurrently
transmitted to other agents with which the agent is ac-

quainted.
Agents can be created dynamically, and acquaintances

with other agents may be transmitted via messages.

Therefore, the agent-net, which illustrates the potential
flow of information, may change dynamically during a

computation. Many agents may be sending or receiving
messages at the same time.
The behavior of an agent is determined by its pro-

grammed script, which is an agent-schema containing op-

erations. An agent may provide several clusters of oper-

ations. Such a cluster together with local variable
declarations is called a facet. At any instance of time the
behavior of an agent is uniquely determined by exactly
one facet, the current facet. Facetting is accomplished by
replacing the current facet by another facet. The new facet
may provide some other operations or the same operations
with different semantics. Therefore, facets allow the dy-
namic behavior of an agent to be structured.
CSSA provides a powerful set of language features for

expressing communication and parallelism. Its sequential
structures and data types are similar to those of Pascal.
Concepts of modularization and data-abstraction have
been combined in a homogeneous way to allow a struc-
tured implementation of distributed'applications.
The programmer is only aware of the logical structure

of the distributed system, and has no influence on the as-

signment of agents to processors. The physical network
is made completely transparent by the underlying distrib-
uted operating system written in LADY.

During a computation the user is part of the agent-net:
he resides with a multiwindow terminal or other I/O de-
vices on a designated processor which is conceptually a

specific agent, the so-called interface agent. It consists of
a CSSA interpreter and is "programmed" dynamically by
the user during the computation. In common with all other
agents, the interface agent can send and receive messages

from acquainted agents and create new agents. Beyond
that, it comprises various features for debugging and test-
ing distributed application programs.

A. The Communication Concept
In CSSA, communication and interactions between

agents are solely performed by asynchronous message

passing. Each agent can send a message to another ac-

quainted agent. It is assumed that message transmission
times are undefined but finite and that messages do not
necessarily arrive in the same order as they were sent.
Hence, all messages eventually arrive, i.e., there is no

possibility of their being lost.
Data values of each type (except pointer values), in-

cluding those of recursively defined complex types (ar-
rays, records, sets) and structures built up by dynamic
records and pointers, can be transmitted in messages. To
provide for type checking across agents and scripts, which

may be separately compiled, types as well as constants,
operations, functions and procedures, may be declared in
a global system library.
The basic communication construct is the asynchronous

send-statement

send < op-name> < message> to < target-agent>

which does not cause the sender to wait. Multicast is pos-
sible by specifying a set of agents as the target.
A sender can request a reply by specifying

send ... reply to < op-name >

The receiving agent responds to such a reply-obligation
by "reply <message> ," where the target-agent and the
operation name are taken implicitly from the reply-obli-
gation. An agent which receives a message it cannot an-
swer on the basis of its own local knowledge, can consult
another agent or pass on its reply-obligation to another
agent.
Messages can be explicitly received in operations, or

their arrival automatically triggers the execution of an op-
eration. This implicit message receipt is the normal case
for agents acting as servers and is explained first.
An agent basically consists of a set of variable decla-

rations and several clusters of named operations:

< var-decl>
operation < name> < pattern> < assertion >

is . . . endoperation
operation .

The global variables constitute the global state of an agent.
The agent, when not executing an operation, scans the

mailbox for an executable message. A necessary condi-
tion for a message to trigger the execution of an operation
is the matching of the particular operation's name and the
operation name contained in the message. By the pattern
and assertion, an operation describes the message it wants
to receive. Using pattern-matching it specifies what the
message should look like; this is used to test the message
for structural equality with a certain pattern or data type
and to break up composite data structures to extract pieces
of the message and bind them to local variables. The as-
sertion allows the use of an arbitrary predicate on the val-
ues of the message and the variables of the agent. The
selection of a specific message from several eligible mes-
sages is assumed to be fair.

If the pattern-match succeeds and the assertion evalu-
ates to true, the operation is executed with the actual vari-
able-bindings, similar to the execution of a procedure.
Otherwise the message remains in the mailbox without
any side effects and its match is retried at a later time or
tried against other operations.

Explicit message receipt, which is usually done when
expecting a reply to a message sent earlier in the same
operation, can be programmed using the receive-state-
ment:

receive
when < op-name> < pattern> < assertion> do .
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when .

otherwise <assertion> do ..

endreceive

When the otherwise-option is not present, the statement
blocks the agent until a suitable message is received. A
simple nonblocking receive can be programmed by spec-
ifying "otherwise do null." A message can be selected
by the same mechanisms (pattern-matching, assertion) as
the implicit message receipt which triggers an operation.

B. An Example

The following small program demonstrates how a dis-
tributed algorithm, the so-called echo algorithm [6], can
be programmed in CSSA. The purpose of the program is
to construct a graph and then to visit and mark each node.

1 script NODE is
2 defines KNOW, MARK, ECHO;
3 uses MARK, ECHO;
4 type AGENT-LIST is set of agent;
5 var AGENT-LIST: NEIGHBORS;
6 var agent: ACTIVATOR;
7 facet NOT-MARKED is
8 operation KNOW (int: I; array [1 . . I]
9 of agent: N) assert I > =1 is
10 loop for J in 1.. I do
11 put N[J] into NEIGHBORS,
12 endloop;
13 endoperation;
14 operation MARK(--> ACTIVATOR)
15 assert not empty(NEIGHBORS) is
16 send MARK(self) to NEIGHBORS;
17 replace by MARKED;
18 endoperation;
19 operation MARK(agent: SENDER)
20 assert empty(NEIGHBORS) is
21 send ECHO(self) to SENDER;
22 replace by MARKED;
23 endoperation;
24 endfacet;
25 facet MARKED is
26 operation MARK(agent: SENDER) is
27 send ECHO(self) to SENDER;
28 endoperation;
29 operation ECHO(agent: A) is
30 remove A from NEIGHBORS;
31 if empty(NEIGHBORS)
32 then send ECHO(self) to ACTIVATOR;
33 endif;
34 endoperation;
35 endfacet;
36 initial NOT-MARKED;
37 endscript

When starting a CSSA computation, a single agent, the
interface agent, already exists. All other agents must be
created dynamically. At the terminal connected to the in-
terface agent, the user interactively writes the following
CSSA statements:

var agent: ROOT : = new NODE;
var agent: N2, N3, N4, N5, N6, N7;
N2 := new NODE; ... ; N7 := new NODE;

Now seven nodes have been declared and created. To
build a graph, the user sends every node a list of its neigh-
bors:

uses KNOW, MARK;
send KNOW (2, N2, N3) to ROOT;
send KNOW (1, N4) to N2;
send KNOW (2, N4, N5) to N3;
send KNOW (1, N6) to N5;
send KNOW (3, N3, N5, N7) to N6;
send KNOW (2, N2, ROOT) to N7;

Because the node-agents are initially in the facet NOT-
MARKED (line 36 and lines 7 to 24) they will eventually
receive the KNOW-messages and put their acquaintances
with their neighbors in the set NEIGHBORS (line 11).
The user starts computation of the echo algorithm by

writing "send MARK (self ) to ROOT;" where "self"
holds as a value an acquaintance with the issuing agent.
The facet NOT-MARKED contains two definitions of
the operation MARK, i.e., it is overloaded. The selection
is made by the assertion. If the node has no neighbors, it
immediately sends an ECHO (line 21) to the sender of the
MARK-message, otherwise the MARK-message is prop-
agated to all neighbors (line 16) and an acquaintance with
the invocator is stored in the global variable ACTIVA-
TOR (lines 6, 14). In either case the agent replaces the
current facet by the facet MARKED (lines 17, 22). In this
facet the operation acts differently: further MARK-mes-
sages are acknowledged immediately by an echo (line 27),
whereas the echo to the activator is only sent after all
neighboring agents have sent their echoes (line 32).

C. Implementation of CSSA
The first ideas of a sequential version of CSSA origi-

nated in 1977 [5]; a concurrent version [12] was first im-
plemented for a multicomputer simulation system which
served as a testbed for some small programs [36]. Early
experiments and careful examination of other high-level
distributed programming languages such as SR [2], Star-
mod [8], PLITS [11], AMPL [9], Argus [21], NIL [35],
and Actl [19] resulted in some revisions of the CSSA lan-
guage. As part of the INCAS project, a compiler running
under UNIX and generating code for a virtual stack ma-
chine was realized. The run-time environment which con-
sists of the virtual machine and an elaborated set of spe-
cific operating system functions is realized in LADY.
These functions are provided by encapsulating each single
agent in a separate team object of type agent server.

Fig. 7 sketches the principal structure of such a team.
One process is responsible for providing the virtual ma-
chine (realizing the run-time environment) and executing
the compiled code of the agent. Buffering of incoming and
outgoing messages is performed by dedicated processes
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Fig. 7. A team of type "agent-server."

and two monitors. A CSSA message is packed into fixed-
length LADY messages and the agent server processes

take care of synchronization and flow control to guarantee
reliable communication of CSSA messages. Other pro-

cesses and monitors not shown in the figure are respon-

sible for local I/O, memory management, debugging ca-

pabilities, pattern-matching, and administration of the
mailbox.
The port interfaces are used to connect the agent server

team to other agent servers, the interface agent, and var-

ious LADY teams realizing other functions of the distrib-
uted operating system (e.g., window management, con-

figuration management, and file administration). Cor-
responding to the creation and deletion of CSSA agents,
agent servers can be created or deleted. Depending on the
operating system's management strategy, unused agent
servers can also be preserved for subsequent agent crea-

tions. A comparison to a recently completed implemen-
tation of CSSA on a network of UNIX systems shows that
our scheme of agent creation is several times more effi-
cient than process creation under UNIX.

D. Applications and Experience with CSSA
At present, few distributed programming languages are

implemented, and little experience of their use has been
acquired. In order to evaluate the language, its underlying
model, and the induced programming methodology, sev-

eral trial problems have been implemented:
* A concurrent scene labeling system with a distrib-

uted constraint propagation algorithm [26].
* A distributed system for the solution of word puzzles

(e.g., DONALD + GERALD = ROBERT) according to
an idea by Kornfeld [18]. This problem gave rise to the
development and analysis of several algorithms for solu-
tions to the distributed termination problem [24].

* A master-mind game playing system. A game play-

ing agent has several advisor-agents with different stra-
tegic behavior. The problem is to guarantee a coherent
behavior in a loosely coupled system of concurrently ac-

tive agents.
* A distributed calendar and appointment system. The

calendar agents negotiate the appointments and try to fix
the schedules.
According to the actor methodology, the applications

have been organized as a society of communicating prob-

lem-solving experts, which cooperate to achieve their
common goal. The experiments have been conducted to
investigate the following questions: What classes of prob-
lems are suitable for execution in a distributed environ-
ment? What patterns of communication are most appro-
priate? Which organizational structures of processes are
appropriate (e.g., hierarchies, heterarchies, client-server
relations)? How can autonomous processes be coordi-
nated in a decentralized way to ensure coherent behavior?
Although it is still too early for an exhaustive discussion
and more experience is needed, we try to give some pre-
liminary answers in Section VI.

V. MONITORING, TESTING, AND DEBUGGING
Existing concepts and methodologies for distributed

computer systems generally demonstrate a substantial lack
of methods and tools for monitoring, testing, and debug-
ging these systems. Since distributed systems include
asynchronous parallel processes, they show a nondeter-
ministic and nonreproducible behavior. In many cases,
subtle and sporadic errors are caused by improper syn-
chronization among processes or race conditions. Since
communication among processes introduces significant
delays, and since processes run on different processors,
there is a lack of adequate central control, precise global
time and accurate global scale. Therefore, it is difficult to
detect abnormal program behavior and to localize the er-
roneous processes.
We have designed a distributed test methodology DTM

[14] which is integrated into the INCAS system. During
implementation, the test tools allow users to monitor and
control the tested system at different problem-oriented
levels. During operation, the test system permanently
monitors system behavior and measures system perfor-
mance. The immense amount of information is condensed
in easy-to-read charts and graphs on a high resolution
graphic screen. The actual team network which can dy-
namically change during the system's lifetime is depicted
graphically. To gain permanent insights into the running
system, the test system provides statistical information
about the monitored system (e.g., number of messages
received or sent by each port, process elapsed and blocked
times, communication system and operating system
elapsed times and procedure running times).
The realization of these concepts is accomplished by a

test and measurement processor TMP [15] which is part
of each node of our multicomputer system. The TMP is
able to run the local parts of the test and measurement
software both independently and concurrently with the
execution of the measured system. Each TMP consists of
a local processor, a local memory, a local I/O unit, and a
component which collects test and measurement events.
The TMP's -are connected to a central test station via a
separate local network. The main idea of efficient execu-
tion time monitoring is that software in the measured sys-
tem marks significant events but these events are catego-
rized, processed, and displayed by dedicated hardware.
(Fig. 8). With the aid of compiler information, the test
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Fig. 8. The test and measurement principles.

software is able to interpret events and present them in an

application-oriented manner.

Preliminary analysis results show that the overhead to
be expected will be lower than 0.1 percent for typical
monitoring and performance measuring tasks. Since the
overhead is negligible and the test and measurement
events are permanent in the system, our test hardware and
software do not change system behavior and do not sig-
nificantly slow down system performance. The system al-
ways behaves the same whether the TMP is actively mon-
itoring or not. That justifies our underlying philosophy to
view testing and performance measurements in the oper-
ational state not as an occasional activity, but as an on-

going process that is inseparable from the system. The
test hardware represents only about one tenth of the cost
of our distributed testbed.

VI. DISCUSSION AND LESSONs LEARNED
After six years of conceptual work, design, and imple-

mentation, which resulted in an operational prototype sys-
tem, it seems worthwhile to summarize our experiences.
The INCAS project puts its emphasis on structuring as-

pects and design methodologies. Although, the implemen-
tation and development of languages is expensive as far
as the development of compilers and run-time environ-
ments is concerned, we consider it a mandatory prereq-
uisite for the experimentation based development of good
structuring concepts. The ad hoc extension of existing
languages with additional constructs would have prohib-
ited the adequate integration of structuring mechanisms
such as facets and operations in CSSA or typed ports,
buses, teams, and systems in LADY. The extensive use

of these languages in various prototype applications has
greatly improved our understanding about how to struc-
ture distributed systems.

Since the application layer and the operating system
layer of distributed systems have rather different charac-
teristics, we decided to implement two different lan-
guages. Both languages had already been used in previous
projects and substantial experience had been gained.
However, several modifications to the languages were

necessary. Experience has indicated that our decision to

support two languages which are well suited for their spe-
cific purposes but differ substantially in their underlying
computational and communication models was appropri-
ate and feasible.
Two general goals guided our design decisions con-

cerning the language features:
* to provide a flexible basis for the implementation of

arbitrary operating systems using high level structuring
means, but to avoid any language constructs which re-
quire extensive support by lower layers of the system.

* to free users at the application level from having to
consider system details by providing an application lan-
guage which supports a very abstract view of a distributed
system, but to accept the implementation cost associated
with this abstraction.
Our experience has shown that no general preference to

synchronous or asynchronous communication or implicit
or explicit message receipt can be given. The appropriate
communication scheme is highly dependent on the appli-
cation. Message driven activation of operations and reli-
able asynchronous communication is very attractive for a
high-level abstract programming language, but it requires
extensive buffer management and flow control mecha-
nisms. For system implementation languages such as
LADY, a synchronous communication scheme is there-
fore more appropriate.
The multicast mechanisms in LADY and CSSA differ

in their support of reliability and their capabilities of man-
aging multicast groups. In CSSA, the sending agent has
to be acquainted with all agents it wants to address by a
multicast message. For this reason, CSSA can only take
advantage of one feature of multicasts: the multiple send-
ing of the same message to several distinct receivers is
avoided. In LADY, the sending team needs no informa-,
tion about the teams which are members of the multicast
group. Any team may autonomously leave or join a mul-
ticast group without informing the other group members:
the multicast message is potentially received by all teams
which belong to the specified group. This distributed
management of multcast groups in LADY is more ade-
quate for distributed systems than the approach in CSSA.
As a result, we intend to enhance the multicast capabili-
ties of CSSA by supporting the receipt of a message by
an unknown number of receivers.

In our operating system, multicast communication pat-
terns range from completely unreliable to highly reliable
multicasts, although for many cases an unreliable multi-
cast is sufficient. The reliable multicast communication
has been implemented in LADY by protocols based on
the logical bus concept. This communication mechanism
has proven to be extremely useful for the programming of
distributed systems; in our projects it is currently used at
least as frequently as the one-to-one communication
mechanism.
The availability of recursively definable system types

and nested process clusters distinguishes our design
methodology from most other approaches. First versions
of LADY did not offer recursive system types. Their in-
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troduction was promoted by students who were using
LADY and complained about missing language features
to impose higher level structures on a flat team net. LADY
systems and teams contribute very much to the decrease
in the complexity of distributed operating systems. The
positive impact of the structuring means of LADY on
dealing with the structural software complexity during de-
sign and maintenance is documented in [30].

In order to have a first prototype available early in the
project, efficiency was not our primary concern when
building the run-time environments and the compilers.
Our current LADY Support System is an adapted version
having been used in the previous project on a distinct
hardware. For this reason, up to now we cannot present
any. significant results about the efficiency of our system.
During the last year we have designed a completely new
LADY Support System and improved the code generation
of the LADY compiler. The new system is currently un-
der test and we expect substantial performance improve-
ments. We plan extensive experiments using our mea-
surement tools to gain detailed insights into the system
behavior and to derive quantitative and qualitative assess-
ments about the performance of the new system.
The availability of adequate debugging and measure-

ment tools has proven to be crucial. This field is currently
receiving much more attention than was originally anti-
cipated. The concept of the CSSA interface agent seems
to be particularly useful since it provides an integrated set
of high-level debugging tools at the application level and
facilitates an incremental development of distributed sys-
tems. Messages sent to agents not yet programmed can be
handled interactively by the user.
Only a complete programming environment with test

facilities and languages tailored to the specific application
needs will convince software developers to use distributed
systems. We conclude that without suitable methodol-
ogies for the design and programming of distributed
systems, the potential benefits of large parallel and dis-
tributed systems cannot be fully exploited. The imple-
mentation of a prototype multicomputer system as an ex-
perimental testbed for research in distributed computing
was a major step towards gaining more experience.

VII. PROJECT STATUS AND FUTURE WORK
A first prototype of a complete system including com-

pilers for LADY and CSSA, the LADY Support System,
a distributed operating system for CSSA, and a set of small
application programs, has been available since the sum-
mer of 1985. Parts of a programming environment such
as a library system have been realized. Currently our
hardware-based monitoring tool is being tested; it will en-
able us to measure performance and other characteristics
of our prototype.
The LADY programming methodology is presently ap-

plied in a joint research project between our group and the
data base group in our department aiming at the design of
a distributed database system for nonstandard applica-
tions.

Future work in the operating systems area will be de-
voted to:

* Automated mapping and load balancing mechanisms
* Dynamic system reconfiguration strategies
* Exploration of fault tolerant structures
In the application area, a comfortable interactive pro-

gramming interface for CSSA using the concept of inter-
face agents is being developed. Furthermore, our interest
will shift from problems concerning programming lan-
guages for distributed systems to general methods and
frameworks for distributed application programming and
problem solving. In order to gain further experiences with
distributed programming methodologies, more challeng-
ing applications will be considered.
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