
Gerard Tel, Friedemann Mattern:
Comments on "Ring Based Termination Detection Algorithm for Distributed Computations".
Information Processing Letters 31. pp. 127-128, 1989

Information Processing
North-Holland

Letters 31 (1989) 127-128 8 May 1989

6. TEL

Department of Computer Science, University of Utrecht, P-0. Box 80.089, NL 3508 TB Utrecht, The Netherlands

F. MATTERN

Department of Computer Science, Universit’y of Kaiserslautern, P.O. Box 3049, D-6750 Kaisersiautern, Fed. Rep. Germany

Communicated by R. Wilhehn
Received 28 November 1988

Keywords: Distributed termination, false termination detection, distributed program, dkribukd algorithm, message-based
algorithm, decentralized control

In a recent paper, Haldar and Subramanian [4]
have presented a distributed termination detection
algorithm. We like to inform you that the al-
gorithm is not correct: it can lead some processes
to conclude termination in situations in which
there is not (a so-called “false termination”). In-
deed, the correctness argument (Proof of assertion
(2), page 153) is incomplete and contains a serious
error, which is commonly made in reasoning about
distributed systems. Therefore, we elaborate on
this proof here. First it is remarked that the return
of an unfalsified detection message to its origina-
tor implies that it passed all processes in a passive
state. Subsequently, it is erroneously concluded
that all processes are passive. But a view af a
distributed system obtained in this way is close to
meaningless, because the processes were observed
at different time instants. The observation that all
processes were passive at some moment does not
imply that at some moment all processes were
passive. The proof mentions the control sections
of processes, Zut fouls to indicate how these pre-
vent t,he algorithm from detecting a false termina-
tion.

For a concrete counterexample to the al-
gorithm, consider a network with processes A and

(see Fig. 1). All processes other than A and B

remain passive throug!lout the example, hence they
have empty control sections all the time and for-
ward every detection message (DM) in our coun-
terexample. Initially, only process A is active, and
the following sequence of steps takes place.

(1)

(2)

(3)

(4)

A initiates a basic communication and thus
activates B (now B is in the control section of
A and Farthest(A) = B).
A becomes passive and sends DM(A, B, 0) to
succ(A).
B reactives A (now A is in the control section
of B and Farthest(B) = A).
B b&comes passive and sends DM(B, A, 0) to
succ(B).

Fig. 1.

12;

Volume 31, Number 3 INFORMATION PROCESSING LETTERS 8 May 1989

(59

(69

(79

(89

(99

B receives A ‘s DM(A, B, 0) (from step (2))
and executes lines 6-9 of page 152. After
removing A from ID(B), ID(B) is empty
and, because B is passive, B forwards
DM(A, B, 0).
A reactivates B (now B is in the control
section of A and Farthest(A) = B).
A becomes passive and sends DM(A, B, 0) to
succ(A).
A receives B’s DM(B, A, 0) (fro1 7 step (4))
and forwards it.
A receives DM(A, B, 09, as forwarded by B
in step 5, and enters the termination phase,
while B is active.

The delays that a detection message suffers on its
way from a to B and vice versa can be arbitrarily
long if a sufficient number of processes between
A and B is assumed. In any case the delays can be
SO long that the above scenario is feasible. The
cl;unterexample relies on the possibility of re-
activation of a passive process by a message from
an active process. Without this possibility, which
is usually assumed [2,3,6,7,8,9,10], the problem
becomes trivial and is solved with an algorithm far
simpler than proposed in [43.

We further remark the algorithm is not repaired
by simply interchanging (on page 152) line 6 with
lines 7-9 (and so with corresponding lines in other
parts of the algorithm). After such a modification,
the counterexample is modified as follows. Steps
(1) to (4) are repeated, so that two DMs are
underway from A to B. The first one is purged,
but clears the control section, so that the second
one is forwarded. Again A enters the termination
phase while B is active. In general we feel that
there is no way to “repair” a faulty algorithm. A
counterexample suffices to show that an algorithm
is incorrect, but this does not imply that avoiding
this execution [l] yields a correct algorithm.

Unfortunately, more incorrect termination de-
tection algorithms have been published in Infor-
mation Processing Letter9 in the past [2,5], see also
[9,10]. These examples clearly show the impor-
tance of a thorough, mathematically tight cor-
rectness proof for even the simplest distt”buted
algorithm. xamples of such proofs, based on
invariants, are found in [3,&l.

128

We would like to point out that there exist a
large number of distributed termination detection
algorithms, in&ding symmetric ones [8], with dif-
fering merits. An inventory and some new al-
gorithms were given in [7,8]. The publication of
over sixty papers on the subject in the past few
years (see [71) should make authors, referees, and
editors sceptical. Before considering the publica-
tion of a new algorithm, it must be ascertained
that the new paper contributes to the knowledge
of the scientific community. Not only must the
algorithm be correct and clearly presented, it
should also be an improvement over existing solu-
tions to the problem. In our opinion, the al-
gorithm of [4], even if it were correct, is not.

eferences

VI

I21

t31

PI

151

Fl

171

PI

PI

w

R.K. Arora and M.N. Gupta, More comments on “Dis-
tributed termination detection algorithm for distributed
computations”, Inform. Process. L.ett. 29 (1988) 53-55.
R.K. Arora, S.P. Rana and M.N. Gupta, Distributed
termination detection algorithm for distributed computa-
tions, Inform. Process. Lett. 22 (1986) 311-314.
E.W. Dijkstra, W.H.3 Feijen and A.J.M. van Gasteren,
Derivation of a termination detection algorithm for dis-
tributed computations. Inform. Process. Lett. 16 (1983)
217-219.
S. Haldar and D.K. Subramanian, Ring based termination
detection algorithm for distributed computations, Inform.
Process. Lett. 29 (1988) 149-143.
C. Hazari and H. Zedan, A distributed algorithm for
distributed termination, Inform. Process. Lett. 24 (1987)
293-297.
F. Mattern, Global quiescence detection based on credit
distribution and recovery, Inform. Process. Lett. 30 (1989)
195-200.
F. Mattem, Algorithms for distributed termination detec-
tion, Distributed Comput. 2 (1987) 161-175.
R.B. Tan and J. van Leeuwen, General Symmetric Distrib-
uted Termination Detection, Tech. Rept. RUU-CS-86-2,
University of Utrecht, Utrecht, 1986.
R.B. Tan, G. Tel and J. van Leeuwen, Comments on
“Distributed termination detection algorithm for distrib-
uted computations”, Inform. Process. Lett. 23 (1986) 163.
G. Tel and J. van Leeuwen, Comments on “A distributed
algorithm for distributed termination, Inform. Process.
Lett. 25 (1987) 343.

