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Figure 1: A simple trip example consisting of two trip legs, and a classification window size of 30 seconds.

ABSTRACT
Understanding the mobility patterns of large groups of peo-
ple is essential in transport planning. Today’s assessments
rely on questionnaires or self-reported data, which are cum-
bersome, expensive, and prone to errors. With recent devel-
opments in mobile and ubiquitous computing, it has become
feasible to automate this process and classify transportation
modes using data collected by users’ smartphones. Previ-
ous work has mainly considered GPS and accelerometers;
however, the achieved accuracies were often insufficient. We
propose a novel method which also considers the proximity
patterns of WiFi and Bluetooth (BT) devices in the environ-
ment, which are expected to be quite specific to the different
transportation modes. In this poster, we present the promis-
ing results of a preliminary study in Zurich.

CCS CONCEPTS
• Applied computing→ Transportation; • Computing
methodologies → Supervised learning; Classification and
regression trees.
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1 INTRODUCTION
Nowadays, the assessment of transportation practices relies
on either questionnaires or self-reported data [6]. Both meth-
ods are cumbersome, expensive, prone to errors, and their
data quickly becomes outdated. Given this situation, a grow-
ing body of literature examines how smartphone sensors can
be used to automatically infer the transportation mode. Such
an approach could potentially yield large-scale and yet fine-
grained data across regions, groups of users, and means of
transportation. Previous work has considered several sensors
such as GPS or inertial measurement units (e.g., accelerome-
ters) for this task. Although promising, this approach could
so far only be explored in academic or industrial research.
The main challenge to date was the insufficient accuracy in
distinguishing among modes with similar speeds, acceler-
ation, or routes. While high accuracies could be achieved
in classifying distinct modes such as walking, cycling, or
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driving, previous work has not been able to satisfyingly dis-
tinguish cars from buses in urban environments or among
different types of public transportation such as buses and
trams.

Our project explores a newmethod that exploits proximity
patterns of WiFi and BT devices in the environment. By
regularly scanning the environment for WiFi and BT devices,
it was expected to uncover distinctive proximity patterns,
which could be quite specific to the different transportation
modes. In urban public transportation, for example, every
couple of minutes (i.e., at each stop) some BT devices could
disappear, and others appear. In cars, by contrast, one or
two BT devices might be constantly reachable over longer
periods of time, e.g. the BT car stereo or the phone of another
passenger. We present the preliminary results of a study
with data collected around the city of Zurich. The study
considered 7 different transportation modes among which
four vehicle modes car, bus, tram, and train.

2 BACKGROUND
While not yet deployed in real applications, a growing body
of academic literature investigates the use of data from mo-
bile phone sensors in transportation planning. Early studies
using sensor data from mobile devices for transport mode
classification used mainly GPS data from the GeoLife dataset.
Geolife is a GPS trajectory dataset collected by Microsoft
Research Asia over 4.5 years between 2007 and 2011 [5]. Its
more than 17,000 trajectories collected by 178 users com-
prise a total distance of over 1.2 million kilometers and span
more than 48,000 hours. The first study to use the GeoLife
dataset for transportation mode classification was [8]. Via
rigid boundaries for the average speed, it first classifies the
data as walk or non-walk, and postulates that walking seg-
ments must always exist between the other transportation
modes. The study then uses features such as heading change
rate or stop rate to distinguish between three further modes:
drive, bus, or bike, reaching an overall accuracy among all
four modes of 76%. Building on the same Geolife dataset,
[9] first partitions trips into uni-modal segments. Assuming
a correct partition, and deploying a deep neural network
(DNN) with a stacked auto-encoder, the study then reaches
a precision of 93.5% among five modes: walking, cycling,
bus, subway, and driving; however, the needed segmenta-
tion prerequisite is notoriously error-prone, and cannot be
realistically assumed.
Further frequently deployed sensors, either alone or in

conjunction with GPS, are inertial measurement units such
as accelerometers or gyroscopes. A dataset comprising data
from 224 volunteers who jointly collected over 8000 hours of
readings was released by HTC research [7]. The dataset com-
prises data from three sensors: accelerometer, gyroscope,
and magnetometer; however, no GPS data. The manually

recorded ground truth includes many more types of trans-
portation than previous datasets: next to still, walk, run, bike,
there are six vehicle modes: motorcycle, car, bus, metro, train,
and high speed rail. Investigating the appropriateness of a
variety of machine learning techniques using this data set,
[2] reaches accuracies from around 60% and up to 86%. The
analysis, however, does either distinguish between still, walk,
run, bike, and a generic vehiclemode, or only between vehicle
modes for data already known (from the ground truth) to be
some type of vehicle. It does not address the far more difficult
topic of classifying vehicle and non-vehicle transportation
modes in one step without a-priori knowledge. Consequently,
in a later work the authors no longer aimed at classifying
individual vehicle modes, but only classified between still,
walk, run, bike, and the generic vehicle mode [1].

Finally, some of the literature employed either WiFi or BT
for transportation mode determination. An early study [4]
used the rate of change of both the GSM cell a phone is
connected to, and the WiFi base stations in reach, to infer
the approximate speed of the user, and subsequently distin-
guish between dwelling, walking, and driving. By contrast,
we do not want to infer the user’s speed, but are interested
in proximity patterns (e.g., the share of WiFis that stay in
range for longer periods of time, their rate of change, etc). A
single study took an approach similar to ours, and informed
many of our design choices. To classify between the walk,
bike, vehicle, and rail modes, [3] uses data from several sen-
sors: GPS, accelerometer, WiFi, and BT. For the latter two, it
defines the recurrent address count feature, i.e. the share of de-
vices in range for two consecutive scans, hypothesizing that
this share is greater for specific transportation modes (e.g.,
for public transportation) than for others. We expand this
concept with several further features reflecting proximity
patterns.

3 METHOD
An Android application was developed to collect both sensor
and ground truth data. The app periodically reads a variety
of sensors, i.e., gyroscope, accelerometer, gravity, GPS, Blue-
tooth and WiFi. Table 1 gives an overview of the sampling
period for each sensor. Depending on the system resources
available, the actual sampling frequency may be lower than
the values shown in the table. A minimum of 30 seconds
between WiFi scans is imposed by the Android system.

Training: As shown in Fig. 2, the user interface (UI) is
fairly basic, allowing users to choose one of the seven dif-
ferent transportation modes to collect the ground truth, and
cancel or finish a trip. The application starts recording sensor
data as soon as the first transportation mode is chosen and
records until a trip is either finished or cancelled. A mode
change is reflected by selecting a new transportation mode,
which automatically deselects the previous one. The wait
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Table 1: Sampling period for each sensor

Sensor Sampling Period

Gyroscope
Accelerometer 50 Hz

Gravity
GPS 1 Hz

Bluetooth For 12 seconds every 30 seconds
Wi-Fi For 15 seconds every 30 seconds

mode is used to indicate periods of inactivity between trans-
portation modes during a trip. Users were asked to select this
mode when e.g. waiting for a vehicle to arrive. To guarantee
the accuracy of the ground truth, we asked the volunteers
to cancel a trip if any inaccuracies appeared while recording
it, e.g., if they forgot to indicate a mode change.

Figure 2: The UI of the data gathering app.

Classification: Based on the analysis of results from pre-
vious studies, Random Forest was chosen for the classifica-
tion of transportation modes. Random Forest has several
advantages: i) it makes few statistical assumptions about the
dataset, ii) it has few hyperparameters and does not need ex-
haustive parameter tuning, iii) it reveals how well the model
generalizes without the need for cross-validation or a sep-
arate test set thanks to the built-in out-of-bag (OOB) error
calculation, iv) it runs efficiently on large datasets, v) it yields
probabilities of belonging to different classes, vi) it supports
changing the weight of prediction errors individually for
each class, vii) it measures the relative importance of each
feature easily, and viii) it supports randomization, such as

searching for the best features among a random subset of
features while splitting a node, thus allowing diversity.

4 DATA
The app was installed on Nexus 5X devices that were handed
out to volunteers who recorded their everyday commutes
for a couple of days each. A total of 20 volunteers gathered
jointly over 150 hours of data in and around Zurich. There
were 385 trips comprising 1111 trip legs, i.e., continuous
periods of the same transportation mode within a trip. Ta-
ble 2 shows the distribution of the individual transportation
modes in the data. As seen in the table, transportation modes
were not evenly distributed among the recordings, train, bi-
cycle, and tram dominating the data. We thus deployed two
oversampling techniques: Synthetic Minority Oversampling
Technique (SMOTE) and Adaptive Synthetic Sampling Ap-
proach (ADASYN ). From the recorded trips, 70% (269 trips)
were used for training and the remaining 30% (116 trips) for
testing.

Table 2: Duration andmode distribution of the collected data
in the Zurich metropolitan area.

Number of trip legs Duration

Tram 150 31h:15m
Bus 49 10h:07m
Walk 298 28h:17m
Train 78 31h:55m
Car 43 13h:56m
Bicycle 126 24h:55m
Wait 367 12h:11m

TOTAL 1111 152h:39m

5 EVALUATION
For classification, the window length is one of the key param-
eters, and entails the following trade-off: too short a window
is unlikely to provide enough useful information. Too long a
window, as also shown in Figure 1, is likely to include two
or more different modes, thus confuse the classification.

In our analysis, for each window we extracted 87 features
from the available sensors (28 for GPS, 16 for accelerometer,
28 for BT proximity, and 15 for WiFi proximity). As soon as
it started to be meaningful, we started to extract these fea-
tures also for longer window sizes: prevMinute, prev2Minutes,
prev4Minutes, and wholeTrip. In a longer trip with 10-second
windows, for example, we would extract the features for
each 10-second window, but after one minute into the trip,
also for the last minute, after two minutes into the trip for
the last 2 minutes, and so on. The ‘short’ windows are not
overlapping, while the ‘long’ ones are sliding, always with
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the increment of the short ones. Thus, a maximum of 5 ∗ 87
features were used for classification.

Figure 3: Classification precision of individual transporta-
tion modes, for different window sizes, and including the
consideration of past windows.

Through this combination of short and long windows, we
aimed at solving the aforementioned trade-off, capturing the
mode changes better reflected by short windows as well as
the continuity and information richness provided by longer
ones. Figure 3 shows the precision scores for short window
sizes varying between 5 and 120 seconds. Each analysis also
deployed the appropriate longer sliding windows, i.e., those
longer than the respective short window size (e.g., 1, 2, 4
minutes and entire trip for a 5 or 30 seconds short window,
but only 4 minutes and entire trip for a 120 seconds short
window). The variation between different window sizes is rel-
atively small. Perhaps counter-intuitively, smaller windows
yield slightly better results.

The confusion matrix (not shown due to space constraints)
shows precision values of 88.1% tram, 64.9% bus, 83.1% walk,
95.8% train, 98.1% car, and 96.6% bicycle. Recall values are
similar, 87.1% tram, 67.5% bus, 88.7% walk, 89.8% train, 97.3%
car, and 92.7% bicycle, and the OOB score is 99.2%. Most
confusions are between tram and bus. When merging them
into a public transport mode, precision values are all between
82.6 and 98.7% and recall values between 88.4 and 95.2%.

6 DISCUSSION
Achieved accuracies using features based on the GPS and in-
ertial sensors were on par with previous work using similar
study conditions (e.g., not confining users to hold the smart-
phone still while en route). Additionally deploying features
based on BT and WiFI proximity increased the accuracy for
all transportation modes studied. Figure 4 shows the classifi-
cation precision for BT andWiFi only, GPS and accelerometer
only, and all combined. For trains with a relatively stable
collection of BT devices in proximity and not so stable GPS
signal, a classification based just on BT and WiFi proxim-
ity even outperforms a more traditional one based on GPS
and accelerometer. By improving the average precision from

80% to 87%, BT and WiFi proximity appear a promising path
for further investigation in order to improve the automatic
classification of transportation modes based on smartphone
sensor data.

Figure 4: Contribution of BT andWiFi proximity to the clas-
sification.
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