
Smart Card Applications and Mobility in a
World of Short Distance Communication

CASTING Project

a cooperation between
ETH Zürich, Distributed Systems Group

and

Swisscom AG Bern, Corporate Technology

Michael Rohs, Harald Vogt
�rohs, vogt�@inf.ethz.ch

January 2001

Abstract

The CASTING project is concerned with the application of smart card technology
in combination with short distance wireless communication. This report focuses on
secure access to Web pages, meaning that the right person has access to his or her
personal Web pages in a manner that respects integrity, authenticity and confiden-
tiality. This requires authentication of users, which is achieved by providing users
with public-key certificates and the corresponding private keys, stored in a mobile
device. The mobile device contains a smart card that stores the user’s certificate
and the user’s private key and executes the necessary operations to convince the
remote Web server about the identity of the local user.

The client application that is adapted for user authentication is Netscape, ver-
sion 4.7x. The Web server used is Apache, extended with the Apache-SSL mod-
ule. The long distance link between Web server and Netscape is secured with the
SSL/TLS protocol. The Web server is configured to ask for user authentication,
which is provided by the user’s mobile security device. This device is accessible
wirelessly via a short distance link that is in turn secured via the SECTUS protocol.
Netscape is adapted with a custom security module that implements the PKCS #11
interface.

The CASTING project is part of a cooperation between the Distributed Sys-
tems Group at ETH Zurich and Swisscom AG Bern, Corporate Technology. This
report describes phase 2 of the CASTING project. Phase 1 was done by researchers
at EPFL and focused on protocols for secure spontaneous connections. The work
described in this report was done at ETH Zurich and funded by Swisscom. Con-
tact persons are Prof. Friedemann Mattern at ETH Zurich, and Karin Busch and
Michael Deichmann at Swisscom.

ii

Contents

1 Introduction 1
1.1 Secure Web Access via Netscape, PKCS #11, and Mobile Phones 1

2 Securing the Long-Distance Link 3
2.1 Transport Layer Security . 3
2.2 SSL/TLS Overview . 3
2.3 TLS Record Protocol . 5

2.3.1 Algorithms . 5
2.3.2 Connection States . 6
2.3.3 Keys and Key Generation 7

2.4 TLS Handshake Protocol . 9
2.4.1 Adapting TLS Client Authentication 13

3 Securing the Short-Distance Link 15
3.1 Splitting Cryptographic Functionality 15
3.2 Ad-hoc Wireless Connection . 16

3.2.1 Possible Attacks on the Wireless Link 17
3.3 The SECTUS Protocol . 17

3.3.1 Establishing the Authentication Key 19
3.3.2 Integration of SECTUS with SSL/TLS 21

4 Protecting Personal Web Pages and Services 23
4.1 Public Key Certificates . 23

4.1.1 X.509 Certificates . 23
4.1.2 Tools for Generating Certificates 24

4.2 Apache-SSL . 28
4.2.1 Apache-SSL Installation 28
4.2.2 Apache-SSL Configuration 29
4.2.3 CGI Scripts . 30

5 Netscape and PKCS #11 33
5.1 Public-Key Cryptography Standards (PKCS) 33
5.2 PKCS #11 Cryptographic Token Interface Standard 33
5.3 PKCS #11 General Model . 34

iii

iv CONTENTS

5.4 PKCS #11 Application Programming Interface 35
5.5 CASTING PKCS #11 Token . 36
5.6 GNU PKCS #11 (gpkcs11) . 36
5.7 Configuring Netscape for the gpkcs11 Module 37

6 Implementation 41
6.1 Implementation Overview . 41
6.2 Development Software . 42
6.3 SECTUS Protocol Implementation 42
6.4 Implementation of the Short-Distance Link 44

6.4.1 IrComm with Windows 9x and NT 44
6.4.2 IrSock with Windows 2000 45
6.4.3 Bluetooth Communication 46

6.5 CASTING PKCS #11 Token . 46
6.5.1 ceay token.c . 46
6.5.2 mobile proxy.c . 47
6.5.3 comIR.c . 49

6.6 Usage, Testing, and Debugging 49
6.6.1 OpenSSL Server Tool 49
6.6.2 CASTING PKCS #11 Token 50
6.6.3 Mobile/SIM Simulator 50
6.6.4 Starting Netscape . 50
6.6.5 Testing, Debugging and Demo Setup 51

Chapter 1

Introduction

1.1 Secure Web Access via Netscape, PKCS #11, and Mo-
bile Phones

The basic usage scenario that we envision within the CASTING project [46, 52,
55, 56] is secure access to personal Web pages from fixed PCs via the Netscape
Internet browser. We assume that there is a pool of fixed PCs that users can choose
from. The PCs do not store any identification information about a single user, so
that they can possibly be employed by any user. The PCs are connected to the
Internet. Further we suppose that users can access personal Web pages and Web
services that are located on some HTTP server on the Internet.

This server is reponsible for maintaining privacy of the personal data that it
contains. It shall only provide this data if it is convinced that the requesting party is
authorized to access it. Authorization requires unforgeable identification of the re-
questing party. Traditionally this has been done using login names and passwords,
but password schemes have some well-known drawbacks. They are, for example,
often poorly chosen and therefore easy to guess. A better approach for identifying
and authenticating users is to use a public key scheme, i.e. providing users with a
public-key certificate and a private key. Once the identity of a requesting party is
proven, standard cryptographic protocols, like Transport Layer Security (TLS) can
be used to transfer the data securely from the HTTP server to the fixed terminal of
the user.

As the fixed PCs do not contain user-specific data, it is assumed that user cer-
tificate and public-key are stored on a mobile device, like a mobile phone, that the
user carries around. More precisely, we assume that user certificate and public key
are stored in the Subscriber Identification Module (SIM) within the mobile phone.
Upon requesting personal data on the fixed terminal, the user certificate that is
needed to identify the user shall be transferred to the fixed PC via a short distance
wireless link and then be sent to the remote HTTP server. The private key never
leaves the SIM card and is used during the authentication procedure as described
below. In effect, the mobile phone is used as a wireless smartcard reader for the

1

2 CHAPTER 1. INTRODUCTION

fixed terminal.
An essential aspect in this setup is the short distance wireless link between

the mobile phone and the terminal. The setup of this connection must happen
spontaneously, i.e. it must not require any configuration by the user. Potential
wireless link technologies are IrDA or Bluetooth. An issue is that the wireless
link is not physically secure. IrDA traffic for example can easily be eavesdropped.
More critical, however, is that the association between the user’s mobile phone and
the terminal is not given in advance. It must be made sure that the right mobile is
connected with the right terminal. Otherwise it might be possible for an attacker to
employ the user’s phone to get access to the user’s personal data.

Web Server
SSL/TLS

SECTUS

PC Server Host
Mobile
+ SIM

User Private Key

User Certificate

Personal Web
Pages and
Services

Web Browser
Security

Functions
(sign hash value)

Short-Distance Wireless Link Long-Distance Link

Internet

Figure 1.1: CASTING Overview

The overall setting is depicted in figure 1.1. There exists a short-distance wire-
less link between the mobile phone and the PC in front of the user. A second link
is established between the PC and the Web server that holds content and services
personalized to the user. The short-distance link is secured with the SECTUS pro-
tocol; the long-distance Internet connection with SSL/TLS. Critical security func-
tions that normally reside inside the Web browser are now performed by the SIM
inside the mobile phone. The SIM contains the necessary user data, such as the
user’s certificate and private key. This is an idealized situation, though, because
performance constraints prohibit the execution of all security-related functions on
the SIM itself. The actual split of security functionality between SIM and PC, as
used in the implementation, is detailed in the following chapters.

We first describe how the long-distance link is secured. In chapter 3 we then
explain the specifics of securing the spontaneously established short-distance link
and the pairing of the user’s mobile phone and PC. Chapter 4 gives a review of
public-key certificates and secure Web servers. The adaptation of Netscape for an
external security module is described in chapter 5. Our implementation is outlined
in chapter 6.

Chapter 2

Securing the Long-Distance Link

2.1 Transport Layer Security

The user’s personal data needs to be sent across the Internet from the HTTP server
to the terminal of the user. To maintain confidentiality, authenticity, and integrity
of this data we chose to use the well-established SSL/TLS protocol.

In the following the SSL/TLS protocol is shortly described. Especially the way
in which the client, i.e. the fixed terminal, proves its identity is investigated. The
points in the protocol at which the user must provide personal data (e.g. the client
certificate) or must perform cryptographic operations are identified.

2.2 SSL/TLS Overview

The goal of the SSL/TLS protocol is to provide communications privacy over the
Internet. It allows two parties to communicate in a way that is designed to prevent
eavesdropping, tampering, or message forgery. The SSL (Secure Sockets Layer)
protocol [11] was originally developed by Netscape Communications and is super-
seded by the TLS (Transport Layer Security) protocol. TLS [2] is based on SSL
and is being standardized by the Internet Ingineering Task Force (IETF). In the
following we will discuss TLS. TLS version 1.0 is nearly identical to SSL version
3.0. For an introduction to SSL/TLS see [51].

TLS is located between the transport layer (TCP) and the application layer (e.g.
HTTP). TLS requires a reliable transport protocol, which is TCP in our case. The
application data it carries will be HTTP requests and responses in our application
scenario. See [43] for a description of HTTP over TLS.

The TLS protocol is based on the client-server principle. Typically servers hold
resources that clients want to access in a secure manner. Therefore TLS allows
mutual authentication between a server and a client. It also allows to establish an
encrypted and authentic channel between both machines.

� TLS server authentication lets a user confirm the identity of the server.

3

4 CHAPTER 2. SECURING THE LONG-DISTANCE LINK

The server needs to be equipped with a public-key certificate that contains
identification information of the server together with the public key of the
server, signed by a certificate authority (CA) that must be trusted by the client
software. See [38, 39, 40, 41, 42, 53] for more information on certificate
authorities and public-key infrastructures.

� TLS client authentication conversely allows a server to confirm the identity
of a user that tries to access resources. The same technique as in server au-
thentication is used: The client needs to posses a certificate that contains
identification information and a public key. This certificate needs to be
signed by a CA known to and trusted by the server. Client authentication
is a very important point in our scenario, because the server’s resources must
only be given to authorized clients.

� A secure channel between client and server is established before the first
byte of application data is exchanged between both parties. Data that is ex-
changed on such a channel is encrypted and therefore can only be deciphered
by client and server. It is also immune against tampering, i.e. unauthorized
modification of the data exchanged. A secure channel is established in a
so-called handshake phase that uses public-key cryptography to establish a
shared secret between both parties. Application data is then encrypted with
symmetric cryptography using the generated shared secret as the encryp-
tion and decryption key. The reason for using a combination of asymmetric
(public key) and symmetric (private key) cryptography lies within their com-
plementing properties. Public key cryptography can be used to distribute
shared secrets, while asymmtric cryptography requires less computing re-
sources and is therefore much faster.

TLS is divided in two layers. At the lower layer the TLS record protocol is
responsible for encrypting, fragmenting, and optionally compressing higher layer
data into records of at most ��� bytes. These records can carry different types of
content. The most important ones are (encrypted) application data and handshake
messages.

The handshake messages belong to the TLS handshake protocol, which is part
of the upper layer of the TLS protocol. The handshake protocol uses the record pro-
tol to exchange a set of handshake messages in order to first negotiate the security
parameters of a TLS connection.

TLS Record Protocol

Change Cipher Spec AlertHandshake Application Data

Figure 2.1: TLS protocol layers

2.3. TLS RECORD PROTOCOL 5

Figure 2.1 shows the various sub-protocols of the TLS protocol. TLS records
of the lower layer carry one or more messages of the upper layer as their payload.
Upper layer messages may even be fragmented into multiple records.

2.3 TLS Record Protocol

Plaintext Fragment

compression
algorithm

Compressed Fragment

(symmetric)

encryption algorithm

write key

Content Type Protocol Version Length Ciphertext Fragment

• Handshake
• Change Cipher Spec
• Application Data
• Alert ≤ 214 Bytes

MAC

hashing
algorithm

write MAC
secret

• sequence number

• content type

• protocol version

• fragment length

C
om

pression
E

ncryption

H
M

A
C

Figure 2.2: Assembling a TLS record

Figure 2.2 gives an overview of how the TLS record layer works. The plain-
text fragment is, potentially a part of, a higher layer message. It can also contain
multiple higher layer messages if they are all of the same type. The type is given
in the content type field of the record. After optional compression1 the fragment is
encrypted. To ensure that the record is not altered in transit, it is protected with a
message authentication code (MAC) that is computed over all fields (i.e. content
type, protocol version, length, and compressed fragment) of the record. The MAC
also contains a sequence number to prevent replay attacks.

2.3.1 Algorithms

TLS can be used with a wide variety of cryptographic algorithms for compres-
sion, encryption, and message authentication. A particular choice of algorithms is
called a cipher suite. The cipher suites of interest in our scenario are those that use
RSA[22] as the algorithm for key exchange, because we assume that the user is
equipped with an RSA public-key certificate and a corresponding private key.

Table 2.1 shows cipher suites that use RSA for key distribution. Initially no
encryption and no message authentication algorithms are negotiated. Therefore
the initial cipher suite is always TLS NULL WITH NULL NULL.

1This feature is seldom used in practice.

6 CHAPTER 2. SECURING THE LONG-DISTANCE LINK

CipherSuite Key Exchange Bulk Cipher Hash

TLS NULL WITH NULL NULL none none none
TLS RSA WITH RC4 128 MD5 RSA RC4 128 MD5
TLS RSA WITH RC4 128 SHA RSA RC4 128 SHA
TLS RSA WITH IDEA CBC SHA RSA IDEA CBC SHA
TLS RSA WITH 3DES EDE CBC SHA RSA 3DES EDE CBC SHA
TLS RSA WITH DES CBC SHA RSA DES CBC SHA

Table 2.1: TLS cipher suites that use RSA for key distribution

2.3.2 Connection States

The TLS record protocol always operates under a specific connection state. The
current connection state specifies how to encrypt, compress, and hash the pay-
load data that is transported in record protocol blocks, however it does not contain
the key distribution and authentication methods. This information belongs to the
handshake protocol as it is only needed during the setup phase of a connection.
The connection state contains the choice of cipher suite and its parameters. It can
be subdivided into four logical connection sub-states.

Connection Substate Description

Current write state Currently effective parameters for writing data
Current read state Currently effective parameters for reading data
Pending write state Parameters for writing, not effective yet,

currently under negotiation
Pending read state Parameters for reading, not effective yet,

currently under negotiation

Table 2.2: Current and pending connection states

Table 2.2 shows that there are different connection states for the two directions
of a connection. There is also a distinction between the current connection state
– the one which is currently effective – and the pending connection state – the
one that is not yet in effect. The parameters of the first cannot be modified any-
more, while the parameters of the second are negotiated between client and server
by means of the handshake protocol as described below. After the negotiation of
parameters for the pending connection state is complete, it can be turned into the
current connection state by a switching operation. This switching operation is the
point in time when the new parameters come into effect. The switching operation
is performed by sending a change cipher spec message, which is the only message
of the change cipher spec protocol.

Each of the four states contains the items shown in figure 2.3.

2.3. TLS RECORD PROTOCOL 7

enum � server, client � ConnectionEnd;
enum � null, rc4, rc2, des, 3des, des40, idea � BulkCipherAlgo-
rithm;
enum � stream, block � CipherType;
enum � true, false � IsExportable;
enum � null, md5, sha � MACAlgorithm;
enum � null(0), (255) � CompressionMethod;

struct �
ConnectionEnd entity;
BulkCipherAlgorithm bulk_cipher_algorithm;
CipherType cipher_type;
uint8 key_size;
uint8 key_material_length;
IsExportable is_exportable;
MACAlgorithm mac_algorithm;
uint8 hash_size;
CompressionMethod compression_algorithm;
opaque master_secret[48];
opaque client_random[32];
opaque server_random[32];

� SecurityParameters;

Figure 2.3: Security parameters of a connection state (for a syntax description,
see [2])

2.3.3 Keys and Key Generation

The symmetric encryption algorithms that are defined for use with TLS are RC4 [26],
RC2, DES [33], 3DES, DES40, and IDEA [28]. Depending on the needs of the
application and on export restrictions different key sizes can be chosen. For our
application we consider a key size of 128 bits as desirable.

The message authentication code of record layer messages is generated using
HMAC [27], which is a keyed cryptographic hash function. In TLS the HMAC
algorithm can be parameterized with either MD5 [44] or SHA [34]. It takes two
inputs: a key – called a MAC secret – and data.

There are different keys for the two directions of a connection as well as for
encryption and message authentication. Therefore, for each connection state the
following keys are defined.

Key / Secret Purpose

MAC write secret Generating a MAC for a record
MAC read secret Verifying a MAC of a received record
write key Encryption of data before sending
read key Decryption of data after reception

Using these keys content is encrypted, decrypted, resp., as follows:

8 CHAPTER 2. SECURING THE LONG-DISTANCE LINK

������� ����	
 ���
����(write encryption key, plaintext)
������� ����	
 ���
����(read encryption key, ciphertext)

Message authentication codes are generated, verified, resp., like this2:

���	��� ���
����(MAC write secret,
sequence number + content type +
protocol version + length + plaintext fragment)

���	��� ���
����(MAC read secret,
sequence number + content type +
protocol version + length + plaintext fragment)

Because we use symmetric encryption algorithms, the key that is the write
key on one side of a connection is equal to the read key on the other side. This
key has to be exchanged between TLS client and TLS server in a secure way. To
achieve this the key is based on a shared secret – called the premaster secret – that
is securely exchanged between client and server during the handshake phase. The
key exchange will be described in the next section. Here we focus on how the keys
for encryption and MAC generation are produced from the premaster secret.

The premaster secret is a sequence of 48 random3 bytes, known only to the
client and the server. The premaster secret and two other (non secret) random
values chosen independently by client and server during the handshake protocol
are used to compute the so called master secret.

master_secret := PRF(pre_master_secret, "master secret",
SecurityParameters.client_random +
SecurityParameters.server_random)[0..47];

The master secret is in turn used to compute a key block that is long enough to
provide all the keys needed. If encryption keys with a length of 128 bits are used
and if no initialization vectors are required, then the generated key block needs to
be 64 bytes in length: length(key block) = length(MAC write secret) + length(MAC
read secret) + length(write key) + length(read key) = 16 + 16 + 16 + 16 = 64 bytes.

key_block := PRF(SecurityParameters.master_secret,
"key expansion",
SecurityParameters.server_random +
SecurityParameters.client_random);

The key block is partitioned as shown in figure 2.4 to obtain the needed keys.
Some encryption algorithms also require initialization vectors (IVs), which are also
obtained from the key block.

The function that computes the master key as well as the key block is called
pseudo random function (PRF). It is defined like follows.

2The + sign denotes the concatenation operation.
3Actually only 46 bytes are supposed to be randomly chosen. The first two bytes contain the

protocol version number.

2.4. TLS HANDSHAKE PROTOCOL 9

client MAC write secret = key_block[0 .. m -1]
server MAC read secret = key_block[m .. 2m -1]
client write key = key_block[2m .. 2m+ n -1]
server write key = key_block[2m+ n .. 2m+2n -1]
client write IV = key_block[2m+2n .. 2m+2n+i -1]

server write IV = key_block[2m+2n+i .. 2m+2n+2i-1]

where m is the length of the MAC key, n is the length of the encryption key and i
is the length of the initialization vector.

Figure 2.4: Partitioning of the key block.

PRF(secret, label, seed) := P MD5(S1, label +4 seed) XOR
P SHA-1(S2, label + seed)

where S1 is the first half and S2 is the second half of secret and where P hash
is defined as

P_hash(secret, seed) :=
HMAC_hash(secret, A(1) + seed) +
HMAC_hash(secret, A(2) + seed) +
HMAC_hash(secret, A(3) + seed) + ...

Function A is defined as

A(0) = seed
A(i) = HMAC_hash(secret, A(i-1))

HMAC_hash(key, data) := hash((key XOR opad) +
hash((key XOR ipad) + data))

2.4 TLS Handshake Protocol

The handshake protocol is responsible for the agreement on a common protocol
version, a common cipher suite, for generating a shared secret and also for mutual
authentication between client and server. All the security parameters that the record
protocol needs are provided to it by the handshake protocol.

The handshake protocol can either work with or without client authentication.
For our usage scenario client authentication is a major concern. Therefore we only
consider this case. Figure 2.5 shows the message flow of the handshake protocol.

It is assumed that the server as well as the client are equipped with public-key
certificates and corresponding private keys to authenticate each other during the
TLS handshake protocol.

The first message is called the client hello message. It is sent from the client
to the server and its most important contents are a 32-byte random value gener-
ated by the client and a list of cipher suites. This list contains the combinations of

4Again, here the + sign denotes the concatenation operation.

10 CHAPTER 2. SECURING THE LONG-DISTANCE LINK

Terminal ServerUser Certificate Server Certificate

Server Priv. Key

Client hello

Server hello

Server Certificate

Certificate request

User Certificate

Certificate verify

Client key exchange

Encrypted
premaster secret

User Private Key

Generate
premaster secret

Encrypt with
server public key

Finished

Change cipher spec

Now client is
authenticated

Now pending
connection state

becomes effective

Now both parties
share a secret

Finished

Change cipher spec

Encrypted application data

List of cipher suites
Random number

Selected cipher suite
Random number

Figure 2.5: Message flow of the TLS handshake protocol

cryptographic algorithms that the client supports in the order of the client’s prefer-
ence. As described in section 2.3.1 a cipher suite defines a particular choice of key
exchange algorithm, bulk cipher algorithm and message authentication algorithm.

The server responds with a server hello message. It contains a server generated
32-byte random value and one of the cipher suites selected from the list provided
by the client. If the server does not find a suitable cipher suite, communication will
be cancelled.

Next the server sends a server certificate message that contains the server’s
public-key certificate. The structure of public-key certificates is described in sec-
tion 4.1.

The certificate request message sent by the server is optional for TLS, but
essential for our application. It tells the client that it needs to provide a certificate
and that it has to authenticate itself. The structure of this message is shown in
figure 2.6. It contains a list of the types of certificates that the client is allowed to
provide and a list of certificate authorities that the server knows of. The second list
might be empty, which indicates that no specific certificate authority is required.
We assume that our client is equipped with an RSA certificate. Therefore the client
can only successfully complete the handshake protocol if the client certificate type
list contains the type rsa sign.

2.4. TLS HANDSHAKE PROTOCOL 11

enum �
rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4), (255)

� ClientCertificateType;

opaque DistinguishedName<1..2ˆ16-1>;

struct �
ClientCertificateType certificate_types<1..2ˆ8-1>;
DistinguishedName certificate_authorities<3..2ˆ16-1>;

� CertificateRequest;

Figure 2.6: Certificate request message

The server ends its turn with a server hello complete message (not shown in
figure 2.5).

The client now sends its certificate as requested by the server. The next message
is called client key exchange. Since we only deal with RSA key exchange this
message looks as follows:

struct �
ProtocolVersion client_version;
opaque random[46];

� PreMasterSecret;

struct �
public-key-encrypted PreMasterSecret pre_master_secret;

� EncryptedPreMasterSecret;

struct �
EncryptedPreMasterSecret exchange_keys;

� ClientKeyExchange;

The client generates a random value – the premaster secret – and encrypts it
with the public key of the server that is contained in the server certificate. After
sending this message client and server have a shared secret. This shared secret
is used as described above to generate the keys for bulk cipher encryption and
message authentication.

Yet one last and most important issue remains: that of client authentication.
The server can be considered as authenticated to the client, because it can decrypt
the client key exchange message and therefore obtain the shared secret only if it
knows the private key corresponding to the server certificate it sent before. But
the client still has to prove its identity to the server. This is achieved by the last
message of the handshake protocol, called certificate verify.

In order to prove its identity the client has to sign a hash value that is generated
over all handshake messages exchanged so far. All handshake message up to, but

12 CHAPTER 2. SECURING THE LONG-DISTANCE LINK

TLS:
md5_hash = MD5(handshake_messages);
sha_hash = SHA(handshake_messages);

SSL:
md5_hash = MD5(master_secret +5 pad_2 +

MD5(handshake_messages + master_secret + pad_1))
sha_hash = SHA(master_secret + pad_2 +

SHA(handshake_messages + master_secret + pad_1))

struct �
opaque md5_hash[16];
opaque sha_hash[20];

� hash;

struct �
digitally-signed hash[36];

� Signature;

struct �
Signature signature;

� CertificateVerify;

Figure 2.7: Certificate verify message

not including, the certificate verify message are concatenated in the chronological
order sent, resp. received, to obtain the handshake messages string as shown
in figure 2.7. Then the MD5 and the SHA hash values are computed from this
string and concatenateed to obtain the hash value. Note that SSL uses a slightly
different scheme to obtain the hash value.

Now the private key of the user comes into play. It is needed to compute the
signature from the hash value that is to be sent to the server. The signature can
only be computed by an entity that knows the private key corresponding to the
certificate. Therefore the server is convinced that the client is really who he claims
to be and authentication is complete.

Fortunately this is the only place in the TLS protocol where the private key of
the user is required. The hash value to be signed is very short (36 bytes) and the
resulting signature is, depending on the size of the private key, also relatively short.

All parameters are now set. Until now, the current connection state remained
untouched, because handshake messages only modify the pending connection state.
The point where the completely negotiated pending connection becomes the new
current connection is achieved with the next message, which is the one an only mes-
sage of the change cipher spec protocol. It is a fixed message that simply signals
the transition between connection states. The new parameters are communicated
to the record protocol and it will process subsequent traffic accordingly.

2.4. TLS HANDSHAKE PROTOCOL 13

To verify that the transition of connection states was successful the client sends
one more handshake message: the finished message. It is the first message that
is sent under the new connection state. It is kind of a “test packet” to check if
encryption works properly.

verify_data = PRF(master_secret, "client finished" 6,
MD5(handshake_messages) +
SHA-1(handshake_messages))[0..11];

struct �
opaque verify_data[12];

� Finished;

The finished message is decrypted and verified by the server and, if successful,
application data can be sent over the connection. For the other direction – server
to client – connection states are switched in the same way. The server also sends
a change cipher spec message to make the negotiated pending connection state
effective and a finished message to let the client verify that the server is able to
do bulk cipher encryption according to the cipher suite and keys negotiated. Now,
finally, application data can be securely exchanged.

2.4.1 Adapting TLS Client Authentication

As described in the introduction we would like to use terminals (client PCs) that
are not configured in advance to hold user-specific data. In particular we would
like not to entrust our private key to these PCs. The solution we envision is to split
the cryptographic functionality of certificate (public-key) and private key and to
leave the private key in the SIM card of the mobile. While the certificate is public
information and can therefore be transferred to the terminal, the private key is very
sensitive and can only adequately be protected by the SIM [8, 9, 10].

This means that all operations in which the private key is involved need to be
executed by the SIM itself. Fortunately it is easy to split TLS functionality in a
way to let the SIM do the private key operations and to let the terminal do the rest.
As pointed out before, the only operation in which the private key is taking part is
signing the 36-byte hash value. And this operation also takes place only once at the
handshake phase of a TLS session. Therefore it is possible to use the combination
of mobile phone and SIM as an authentication device, despite of its low bandwidth
and computing capacity.

The next chapter will describe in detail how the hash value is securely trans-
ferred to the mobile and how the signature operation is performed.

6For the server it is ”server finished.”

14 CHAPTER 2. SECURING THE LONG-DISTANCE LINK

Chapter 3

Securing the Short-Distance Link

3.1 Splitting Cryptographic Functionality

For the reasons described in the previous chapter we divided the cryptographic
functionality that is needed for our usage scenario between the fixed PC and the
mobile device that the user carries. These devices have different properties with
respect to trustworthiness, personalization, computing power, and communication
bandwidth. Table 3.1 summarizes these properties. It shows that both devices are
rather complementary to each other with respect to the properties that are relevant
within our context. The goal is to split the functionality in such a way such that the
strengths of both devices are utilized.

Property Fixed PC Mobile device / SIM

trustworthiness low—middle high
personalization no (a priori) yes
computing power high low
communication bandwidth high low

Table 3.1: Properties of fixed PC versus mobile device/SIM

Taking the results of chapter 2 and the properties just described into account,
the following “implementation axioms” seem to make sense.

� The private key is only known to the SIM.

The private key is a very critical piece of information that should never leave
the SIM inside the mobile phone. Consequently all operations that involve
the private key have to be done by the card. In our case the only operation
that needs the private key is signing the hash code of the SSL/TLS client ver-
ification message. This occurs only once in a SSL/TLS session, i.e. during
the handshake phase. Because the data that is signed and the signature that

15

16 CHAPTER 3. SECURING THE SHORT-DISTANCE LINK

User Private Key

User Certificate

private key operations public key operations

insecure wireless link

Figure 3.1: Split of functionality and wireless link

is produced are short, the low communication bandwidth between fixed PC
and SIM is not an issue.

� The terminal should do as much work as possible, provided that security is
not affected.

The scarce computing resources of the SIM prohibit to do all cryptographic
operations on the card itself. Instead we let the card perform only the critical
operations (signing) and do everything else on the PC. Especially bulk cipher
encryption is done on the PC.

To make the identity of the user known to the Web server that provides the
resources desired, the user certificate is transferred via the wireless link to
the PC and from there to the Web server. Since the user certificate is public
information that is protected against tampering, it can be sent without any
protection. Transferring the certificate to the PC is needed, because the PC
is not personalized to a particular user and does not store any certificates or
other personal information.

� Depending on the needs of the SIM, a minimal number of cryptographic
algorithms is used.

We intend to only provide user certificates of a certain type, i.e. certificates
that adhere to the X.509 standard [1, 12, 32, 50] and that contain RSA [45,
47] public keys. Therefore the method of choice for authenticating users is
by generating signatures with their RSA private key. SSL/TLS is designed
to use other algorithms for user authentication apart from RSA.

3.2 Ad-hoc Wireless Connection

In our scenario it is important that a user who is equipped with a mobile phone is
able to connect to a fixed PC without much effort. The connection should happen
spontaneously and without administration on the user’s side. Wireless connections
are suitable to meet these requirements. The two kinds of short distance wireless

3.3. THE SECTUS PROTOCOL 17

connections that mobile phones offer are infrared [21] and – in the near future –
Bluetooth [4].

It is assumed that the following steps happen when a user approaches a PC and
switches on short-distance wireless connectivity on the mobile phone. First the
physical connection – be it infrared or Bluetooth – is established. Then the user
certificate is transferred to the fixed terminal to “personalize” the PC for that user.
If private key operations need to be performed, the data to sign is transferred to
the mobile phone and executed by the SIM card. Unfortunately, the short distance
link, at least when using IrDA, is physically insecure. Therefore the short distance
link also needs to be protected.

3.2.1 Possible Attacks on the Wireless Link

Common attacks on communication links are eavesdropping, generation of fake
messages, replay of old messages, and interception and modification of messages.
Eavesdropping is not an issue in our case, because we only transfer data (hash
values) to sign and corresponding signatures via the link. The signatures are sent
to the client unprotected and everybody who knows the user’s public key is able to
verify them and therefore to obtain the hash value that was signed.

Instead we need to protect against replay attacks and especially against fake
messages and modified messages. We need to ensure that we only sign data that
comes from the PC in front of the user. Otherwise an attacker might impersonate
us by sending a hash value to our SIM using the signature for authentication in the
SSL/TLS protocol. Such an attack is illustrated in figure 3.2.

Alice
Alice’s mobile

Bob

challenge

signed
response

Figure 3.2: Example for a possible attack: Bob impersonates Alice

3.3 The SECTUS Protocol

The SECTUS [7] protocol is used to ensure that the mobile device only signs data
from the right terminal and conversely that the terminal only accepts data from

18 CHAPTER 3. SECURING THE SHORT-DISTANCE LINK

the right mobile. This protocol makes attacks like the one above impossible, by
signing the data that is transferred between mobile phone and fixed terminal. SEC-
TUS is a custom protocol that was developed especially for the purpose of user
authentication and device pairing over short distance wireless links.

The goal of the SECTUS protocol is to establish a shared secret between mobile
and PC that can be used to sign all data traffic over the wireless link. SECTUS
stands for secret transfer via the user and this is also the main idea behind the
protocol. The protocol assumes that while the wireless link between mobile/SIM
and PC is insecure, there still exists a secure channel between both devices. This
secure channel is the user herself. Figure 3.3 shows the details.

User

Display

Keypad

Short distance
wireless link

Display

Keyboard

Secret

Secret

Figure 3.3: SECTUS: transfer of a secret via the user

Display and keyboard of mobile and terminal are modelled as channels to and
from the user. The channels from mobile to user and from user to terminal are
considered to be secure for the following reasons:

� Channel from mobile to user (display of mobile)

This channel is considered to be authentic, timely, and, at least for a short
amount of time, confidential, because it is assumed that the user can hide the
contents of the display from being observed by attackers for a short time.
Therefore this channel is denoted a short time channel.

� Channel from user to PC (keyboard of terminal)

This channel is also considered authentic, timely, and confidential for a short
period of time, because the assumption is that the user cannot be observed
typing the secret into the terminal and that there is no echo displayed on the
terminal screen. This is also a short time channel.

� Channel from mobile to SIM

3.3. THE SECTUS PROTOCOL 19

It is also assumed that the link between mobile device and SIM is secure,
meaning authentic, timely and confidential for an unlimited amount of time.

The full specification of SECTUS is given in chapter 2 of [7]. The security
properties of the channels listed above are sufficient to transfer a secret from the
SIM and mobile phone via the user to the terminal. This shared secret can then in
principle be used as an authentication key. An issue is the short time confidentiality
of the channels and therefore of the secret. For this reason, in our implementation
the transferred secret is only used as a starting point to create a longer, and hope-
fully more secure, authentication key.

3.3.1 Establishing the Authentication Key

An issue when transferring data via the user is that this data can only have a very
limited size to be convenient to a human user. A desirable length of a secret would
for example be 128 bits. But this results in a printable representation of 22 char-
acters, if capitalization is significant and if digits are used. For usability purposes
the printable representation of the key should be as short as possible. On the other
hand our application requires a certain minimum key length. In [7] a length of
40 bits is suggested. We would like to maintain this estimate, even if our key is
only valid for a short period of time, i.e. less than 30 seconds.

According to [54] random codes that have to be memorized in short term mem-
ory should be either letters or digits, but not both. Also capitalization should not be
significant, meaning that the code should either consist of lower or of upper case
letters, but not of both. Also, the code should not be longer than 4 characters or 6
digits. If longer codes are inevitable, then they should be partitioned into segments
of three letters or characters each.

Therefore, we use upper case letters for our user-transferrable secret. Since
there are 26 upper case letters, at least nine letters are required to achieve a secret-
length of 40 bits: ���
 ��

�
 �
��
 �

��
 ��
�

For usability these nine upper case letters are partitioned into three triples. This
results in more than 42 bits of randomness.

A 128 bit authentication key is derived from the 40 bit user-transferred secret
in the following way. First the user has to activate the SIM applet for the CAST-
ING protocol on her mobile phone. Then, after a physical wireless short-distance
connection is established between the mobile and the fixed terminal, the mobile
displays the one-time secret, called r, that is formatted as described above. The
user reads the secret from the mobile’s display and types it into a dialog box on the
terminal’s screen. As symbolized with the locks in figure 3.4, this secret transfer
operation is considered to be secure. At this point the mobile and the terminal are
associated to each other via the user – they share a secret. All other messages are
sent via the unsecure wireless link between mobile and terminal.

Message m1 is the user certificate. Upon arrival at the terminal it is optionally
verified. This step might be omitted, because the certificate will be verified by the

20 CHAPTER 3. SECURING THE SHORT-DISTANCE LINK

remote HTTP server anyway.
Next the terminal generates a 128 bit authentication key s, that is used for

protecting data and that can potentially be used for a long period of time. The au-
thentication key is encrypted with the public key of the user and the result is sent to
the mobile (message m2). Only the card will be able to decipher the authentication
key, using the private key.

UserMobile/Card Terminal

Connection is established

generate r, show it tell user to read and input r

m1 = cert

test if m4 == MAC(r, cert.sig)

generate s
m2 = RSA-enc(pubKeyUser, s)

test if m3 == MAC(r, m2)

User
Certificate

One-time passwd.
(9 letters)

m4 = MAC(r, cert)

m3 = MAC(r, m2)

verify cert

decrypt s

rr

< 10 sec

< 30 sec

Authentication
key (128 bit)

Figure 3.4: Establishing the authentication key s for the short distance link

Message m3 is the message authentication code for message m2 with r used
as the MAC-key. In the implementation, HMAC [27] with MD5 is used as the
message authentication algorithm. The mobile knows r and m2 and computes the
message authentication code itself. It compares the result with the received mes-
sage m3 and aborts, if they are not equal. If, on the other hand, verification is
successful, then the mobile assumes that the sender knows r, and that the sender is
indeed the terminal in front of the user, since this knowledge was transfered on a
secure way via the user. To convince the terminal about the identity of the mobile,
the SIM has to create a message authentication code of the user certificate and send
it to the terminal (message m4). The terminal will also do a verification and abort
if it fails.

In message m3 secret r is used for the first time. An attacking terminal that
wants to generate unauthorized signatures from the mobile has just one try to guess
r right to generate a correct message m3. This event is extremely unlikely, because
the mobile aborts if verification fails – even if the attacker has unlimited computing
power.

After m3 is sent however, r could be computed from the knowledge of m2 and

3.3. THE SECTUS PROTOCOL 21

m3. If the message authentication algorithm is secure, this requires very much
computing power, because different values for r have to be tried in a brute-force
way. Precomputation is not possible, because m2 is not known in advance. To
prevent an attacking mobile to succeed with a brute force approach, it is very im-
portant to limit the amount of time between sending message m3 and receiving
message m4. A value of at most 10 seconds seems to be a reasonable value here.
An attacking mobile that succeeded in finding r from m2 and m3 could send a fake
certificate to the terminal that is not the user’s original certificate. With the time
constraint this event should not occur. Additionally a timeout value of 30 seconds
is used for the overall authentication key generation algorithm. If any of these
timeouts is reached, the algorithm aborts.

The result of the algorithm is the 128 bit authentication key s that should be
secure for a long period of time. If r is revealed later, that knowledge is worthless
to an attacker, because to find s, message m2 needs to be decrypted.

The authentication key is now used to protect messages that are exchanged be-
tween terminal and mobile from modification. This is achieved by appending a
MAC to each message that is sent across the wireless link. This turns the wireless
link into an authentic channel. As already mentioned, the short distance chan-
nel only needs to be authentic, but is not required to be confidential, because the
SIM only performs signature operations that are later sent across the Internet un-
encrypted anyway.

3.3.2 Integration of SECTUS with SSL/TLS

As described in section 2.4 the client proves its identity by signing a hash value that
is computed from all the handshake messages exchanged between client and server.
The computation of the hash value can be done by the terminal, while signing the
hash value can only be performed by the SIM within the mobile, because the private
key is neccessary for this operation which is only known to the SIM.

After the hash value has been computed by the terminal, it is sent to the mobile
via the wireless link. The hash value is secured by appending the MAC that is
parameterized with the authentication key s that was established before. The SIM
verifies the MAC and continues only if verification succeeds. After the signing
operation is performed, the signature of the hash value is sent back to the terminal.
From there it is passed on to the SSL/TLS server as the content of a certificate
verify message. The integration of SECTUS with SSL/TLS is shown in figure 3.5.

22 CHAPTER 3. SECURING THE SHORT-DISTANCE LINK

Terminal Server

User Certificate

Client hello

Server hello

Server Certificate

Certificate request

User Certificate

Client key exchange

Certificate verify

Mobile/Card

Auth. key s established

User Private Key

verify MAC

sig = sign(privateKey,hash)

sig, MAC(s, sig)

hash, MAC(s, hash)

hash :=
MD5(handshake_messages) +
SHA(handshake_messages)

handshake_m essages :=
client hello + server hello + server
certificate + certificate request + user
certificate + client key exchange

compute hash

...

Figure 3.5: Integration of SECTUS with SSL/TLS

Chapter 4

Protecting Personal Web Pages
and Services

4.1 Public Key Certificates

The purpose of public key certificates is to bind public key values to identities.
Identities unambigously designate persons or systems. The binding is asserted
by trusted third parties, so-called certificate authorities (CAs). A CA signs this
binding and thereby guarantees that a certain public key belongs to a certain iden-
tity. The CA signature also protects the certificate against modification. Therefore
certificates can be sent across unsecure channels and stored in unsecured storage.
Entities can simply check the validity of a certificate by verifying the CA signature.

Certificates typically have a limited lifetime, which is included in the certificate
attributes. Certificate authorites can be organized hierarchically, which means that
a certificate of a CA is signed by its parent-CA. The origin of the hierarchy is called
a root CA. The path from a client certificate up to a root CA is called a certification
path. Root CAs are unique within organizations that act as trusted third parties, like
Swisskey [40], VeriSign [42], Thawte [41], or Entrust [38]. Invalidated certificates
are placed on public certificate revocation lists (CRLs).

4.1.1 X.509 Certificates

The format of certificates used in the Internet is specified in RFC 2459 [12], which
is one part of a family of standards for the ITU-T X.509 (formerly CCITT X.509) or
ISO/IEC/ITU 9594-8 public key infrastructure (PKI) for the Internet. The currently
used version is X.509 version 3, which has extension fields for additional informa-
tion, such as additional identification information, revocation list URLs, certificate
policy URLs, or key usage constraints. Certificate policies are documents that de-
scribe which policies a CA uses to issue client certificates, the security of the CA
infrastructure, and other information concerning the organization that issued the
certificate. Key usage constrains allow to describe the operations that the public

23

24 CHAPTER 4. PROTECTING PERSONAL WEB PAGES AND SERVICES

key that is contained in the certificate might be used for.
The fields of an X.509 certificte are shown in table 4.1.

Field Description

Version v1, v2 or v3
Serial number Assigned by the issuer (which is a CA), unique for CA
Signature algorithm Identifies the algorithm used to sign this certificate
Issuer Identifies the entity that signed and issued the certificate
Validity period Starting date and ending date of certificate validity
Subject Identifies the subject associated with the public key
Subject’s public key Subject’s public key and the algorithm with which it is used
Extensions Standard extensions include additional issuer information,

revocation list information, and certificate path information
Issuer’s signature CA’s signature of the above fields, asserts their validity

Table 4.1: Attributes of X.509 certificates

Each certificate has a serial number that is unique for the CA that issued it. A
certificate is therefore globally uniquely identifiable using the pair (serial number,
issuer). The identifier for the algorithm that the issuer uses to sign the certificate
is also given as a field. The fields for issuer and subject are formatted as so-called
distinguished names (DAs). This is a data type that uniquely identifies or ”distin-
guishes” objects in an X.500 directory. It is defined in X.501. Distinguished names
are sets of attribute-value pairs. Basic attributes for distinguised names are: com-
mon name (CN), country name (C), organization (O), organizational unit (OU), lo-
cation (L). More information about attribute usage can be found in [50]. Table 4.2
shows an example X.509 certificate.

X.509 certificates are described using the abstract syntax notation (ASN.1) [23],
which specifies a notation for defining types and values. Types can be constructed
using other types. Types can be structured (sequences, sets, variants) or simple
(integer, bit string, null, object identifier, octet string, printable string, UTC time,
etc.). There are rules to transform the abstract notation into a binary representa-
tion. These rules are called basic encoding rules (BER) and distinguished encoding
rules. BER describes how to encode values of an ASN.1 type as a string of octets.
There is usually more than one encoding for each given ASN.1 type in BER. The
distinguished encoding rules remove this ambiguity of BER by defining a unique
encoding for each ASN.1 value. This is important if ASN.1 data has to be signed.
The bit representation has to be unique, in order to obtain the same signature. There
is also a privacy enhanced mail (PEM) format, which is the base-64 encoded form
of DER.

4.1.2 Tools for Generating Certificates

OpenSSL [35] provides various tools that help with many aspects of a public-key
infrastructure. These tools are available for Linux as well as for Windows and

4.1. PUBLIC KEY CERTIFICATES 25

Field Description

Version v3
Serial number 01 F1 00 00 0A 63
Signature algorithm SHA1 with RSA
Issuer CN = Swisskey ID Test CA Standard

L = Zuerich
OU = Identities not verified
OU = Test Certificates only
OU = 008510000000500000600
O = Swisskey AG
C = CH

Validity period not before: 10/26/2000, not after: 11/26/2000
Subject E = someone@inf.ethz.ch

CN = apachesslserver.inf.ethz.ch
C = CH
OU = 01.01.1950
OU = 008510001141100000179
O = Private Individual

Subject’s public key RSA (1024 bits): 30 81 89 02 ...
Extensions Key Usage: Digital Signature , Client Authentication

Revocation URL: https://crl.swisskey.ch/prodssl/get status?sid=
Certificate Policy URL: http://www.swisskey.ch/prod/cps

Table 4.2: Example X.509 certificate

take (almost) the same command line arguments.1 For Linux these tools are docu-
mented in a set of man pages.

In the following it will be explained how to generate server and client certifi-
cates with these tools. The Swisskey CA allows to request test certificates via the
Internet. These certificates can be generated without lengthy authentication proce-
dures, which is very convenient for development purposes.

Generating a Server Certificate

The following command generates an (unencrypted) RSA key pair and a certifi-
cate request. The operation of the command is controlled by a configuration file.
Some values can also be entered interactively. See the OpenSSL documentation
for further information. When the tool asks for a common name (CN) the domain
name of the Web server that contains the private Web pages has to be entered (e.g.
apachesslserver.inf.ethz.ch).
openssl req -new -nodes -keyout keypair.pem -out request.pem

The new RSA key pair is stored in keypair.pem, the certificate request is

1There are also MacOS and VMS versions of these tools.

26 CHAPTER 4. PROTECTING PERSONAL WEB PAGES AND SERVICES

stored in request.pem. The key pair consists of the items shown below. The
public key comprises just the modulus (n) and the public exponent (e), whereas the
private key comprises the modulus (n) and the private exponent (d).

Modulus n
Public exponent e
Private exponent d
Prime 1 p
Prime 2 q
Exponent 1 d mod (p-1)
Exponent 2 d mod (q-1)
Coefficient (inverse of q) mod p

Table 4.3: Contents of key-pair file (no encryption)

The certificate request contains the public key information, subject identifica-
tion information and other attributes from the configuration file. This information
is signed with the subject’s private key. The request is then sent to a CA, which has
the ultimate control over the issuance of the requested certificate. It has to decide
how to authenticate the requesting subject and which fields from the certificate
template are to be put in the actual certificate. The CA may also add additional
fields, like information about its issuance policy.

Request ID ID for matching certificate request and reply
Certificate template Desired field values of the certificate to be issued,

the format is the same as for the certificate itself
Issuance controls Specifies, e.g., how the certificate shall be published,

how the requesting entity should be authenticated
Proof of possession Signature of the above fields
Context information Billing information, subscriber contact information

Table 4.4: Contents of certificate request file

Swisskey is a CA that allows to create test certificates that do not require any
kind of authentication. To generate a server certificate the following steps are
necessary:

� Point your Web browser to http://www.swisskey.ch

� Follow link Swisskey ID for individuals

� Follow link Test Swisskey ID

� If your browser does already contain the root certificate for the Swisskey
Test CA, follow link Install test root certificate

� Follow link Then apply for your test Swisskey ID

4.1. PUBLIC KEY CERTIFICATES 27

� Choose Applicant: Private individual

� Choose Purpose of usage: Server (because we want to generate a server
certificate)

� Some information about the subject has to be entered. It should match the
data given in the certificate template. Make sure to choose Directory re-
lease: None, in order not to place this test certificate on any public certificate
servers!

� When an input box is displayed, input the contents of file request.pem (in-
cluding the first2 and last3 line).

� The certificate is now generated by the CA and can be downloaded and stored
in a file.

Generating a Client Certificate

Creating a client certificate with the Swisskey Test CA differs a bit from the pro-
cedure described above.

� Point your Web browser to http://www.swisskey.ch

� Follow link Swisskey ID for individuals

� Follow link Test Swisskey ID

� If your browser does already contain the root certificate for the Swisskey
Test CA, follow link Install test root certificate

� Follow link Then apply for your test Swisskey ID

� Choose Applicant: Private individual

� Choose Purpose of usage: Browser/Client (because we want to generate a
client certificate)

� Some information about the subject has to be entered. It should match the
data given in the certificate template. Make sure to choose Directory re-
lease: None, in order not to place this test certificate on any public certificate
servers!

� An applet now generates the private key and performs the certificate request.

2-----BEGIN CERTIFICATE REQUEST-----
3-----END CERTIFICATE REQUEST-----

28 CHAPTER 4. PROTECTING PERSONAL WEB PAGES AND SERVICES

� The certificate can then be downloaded and is stored locally. For Netscape
and Linux it is stored in .netscape/swisskey/00xxx.p12. For Internet Ex-
plorer and Windows it is stored in C:�winnt�Java�swisskey�00xxxxx.pfx.
The format of these files is identical. It is called PKCS #12 [49] – Per-
sonal Information Exchange Syntax Standard. They contain, in encrypted
and MACed form, the whole certificate path from the root CA to the gener-
ated certificate as well as the the private key.

� The following command generates a printable form of all of these compo-
nents:

openssl pkcs12 -nodes -in c00xxx.p124

-out certpath+key.pem

� With a text editor the output file (certpath+key.pem) can now be edited and
its components can be stored in separate files.

� The following command is useful to convert a base-64 encoded certificate to
its binary (8 bits per byte) form:

openssl x509 -inform PEM -outform DER
-in cert.pem -out cert.der

4.2 Apache-SSL

SSL and its successor TLS are the most widely used cryptographic protocols to
make private Web pages and services securely accessible. Apache-SSL is an ex-
tension to the Apache [3] Web server that enables the delivery of Web content
across SSL/TLS connections. It uses OpenSSL [35] as its cryptographic backend.
Apache-SSL is free for both commercial and non-commercial use, makes available
128 bit encryption, and allows client authentication. Last but not least, its source
code is open for inspection.

4.2.1 Apache-SSL Installation

The installation requires three components. The version numbers reflect the ver-
sions that have actually been used for the implementation. The Apache-SSL README.SSL
file says, which versions of Apache and OpenSSL it requires (see section “Prereq-
uisites“).

� OpenSSL: openssl-0.9.6.tar.gz,
available at http://www.openssl.org/source/

� Apache-SSL extension: apache 1.3.14+ssl 1.42.tar.gz,
available at http://www.apache-ssl.org/

4 .pfx, respectively

4.2. APACHE-SSL 29

� Apache HTTP server: apache 1.3.14.tar.gz,
available at http://httpd.apache.org/

OpenSSL has to be installed first. There are several INSTALL files for different
platforms. The README file gives general information.

Then the Apache-SSL extension patch has to be applied to the unpacked Apache
package. The details are explained in file README.SSL of the Apache-SSL ex-
tension package. After the patch is applied, the standard Apache server installation
procedure can be performed. For details, see the Apache INSTALL file and the
documentation on the Apache Web site: http://httpd.apache.org/docs/.

4.2.2 Apache-SSL Configuration

General information on how to configure Apache is given in various readme files
and on the Apache Web site (http://httpd.apache.org/docs/). The most important
configuration file is httpd.conf, located in apache/conf. The installation produces
a well documented example httpd.conf file. This main configuration file contains
so-called directives, that adjust all aspects of Apache. Some of the Apache-SSL
specific directives will be shortly described here. For a comprehensive description,
see http://www.apache-ssl.org/docs.html.

� The TCP port Apache-SSL listens on is configured with the Port directive.
The standard SSL/TLS port is 443. This port is only accessible if you are
root on the installation machine.

� SSLCertificateFile points to the base-64 encoded certificate of the server.
It seems that the (encrypted) private key has to be combined with the cer-
tificate, although if there is a directive called SSLCertificateKeyFile. The
combined private key and certificate file of the server looks like this:

-----BEGIN RSA PRIVATE KEY-----
<base-64 encoding of (encrypted) private key>
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
<base-64 encoding of certificate>
-----END CERTIFICATE-----

� SSLVerifyClient specifies if client authentication is performed. 0 means no
certificate is requested from the client. 2 means that a valid client certificate
must be presented and verified. The latter value suits our needs.

� SSLVerifyDepth sets an upper limit on the length of the certificate path.

� SSLCACertificatePath is the path to a directory of base-64 encoded CA
certificates. For each CA that appears in the certification path of a client
certificate, there must be a corresponding CA certificate in this directory. If
Swisskey test certificates are used for example, then certificates for “Swisskey

30 CHAPTER 4. PROTECTING PERSONAL WEB PAGES AND SERVICES

Test Root CA” and “Swisskey ID Test CA Standard” have to be present in
this directory. Apache-SSL looks up these certificates using hash values of
their common name. Therefore the individual certificate files need to be
named with this hash value. Alternatively links to the original files may be
established.

Hash values are computed with an OpenSSL tool:
openssl x509 -hash -noout -in SwisskeyTestRootCA.pem

A script that computes hash values and produces links to all certificates in
the CA certificate directory might look like this:

#! /bin/sh
for c in *.pem; do

ln -s $c ‘openssl x509 -hash -noout -in $c‘
done

� Normally Apache-SSL sends a list of acceptable CAs to requesting clients
during the SSL/TLS handshake protocol. This can be disbled, using the
SSLNoCAList directive.

� SSLSessionCacheTimeout determines the period of time (in seconds) that
a session key is valid, once negotiated. If the client makes new requests
after this period is timed out, it will have to perform the whole SSL/TLS
handshake protocol again. This includes client authentication, if enabled.
For testing, it is convenient to set this parameter to a low value, e.g. to
10 seconds.

4.2.3 CGI Scripts

When user authentication is enabled, various SSL/TLS related parameters are made
accessible to CGI scripts via CGI environment variables. These Apache-SSL spe-
cific parameters are shown in table 4.5.

This allows the CGI script to take different courses of action depending on the
distinguished name (DN) of the client, the IP address of the client’s machine5, the
strength of the encryption method and so on. Most importantly for our scenario, it
enables the delivery of personal Web pages to individual users, without the require-
ment that each user has to enter an individual URL. The Web pages and services
for the requesting user can simply be found as a function of the user’s distinguished
name.

It is even possible to export the whole certificate path to a CGI script using the
directive SSLExportClientCertificates. The certificates can then be accessed via
the enironment variables SSL CLIENT CERT and SSL CLIENT CERT CHAIN n,
where n runs from 1 upwards.

There is also a module name KeyNote that allows access to pages based on
client certificate or certificate authority.

5The IP address is given in the standard Apache CGI variable REMOTE ADDR.

4.2. APACHE-SSL 31

CGI Variable Description

HTTPS HTTPS is being used
HTTPS CIPHER SSL/TLS cipherspec
SSL CIPHER The same as HTTPS CIPHER
SSL PROTOCOL VERSION Self explanatory
SSL SSLEAY VERSION Self explanatory
HTTPS KEYSIZE Number of bits in the session key
HTTPS SECRETKEYSIZE Number of bits in the secret key
SSL CLIENT DN DN in client’s certificate
SSL CLIENT �x509
 Component of client’s DN
SSL CLIENT I DN DN of issuer of client’s certificate
SSL CLIENT I �x509
 Component of client’s issuer’s DN
SSL SERVER DN DN in server’s certificate
SSL SERVER �x509
 Component of server’s DN
SSL SERVER I DN DN of issuer of server’s certificate
SSL SERVER I �x509
 Component of server’s issuer’s DN
SSL CLIENT CERT Base-64 encoding of client cert
SSL CLIENT CERT CHAIN n Base-64 encoding of client cert chain

Table 4.5: Apache-SSL CGI environment variables

32 CHAPTER 4. PROTECTING PERSONAL WEB PAGES AND SERVICES

Chapter 5

Netscape and PKCS #11

Having looked at the server side it is now time to consider the client side. Our client
application is the Netscape Web browser. To branch the signing functionality out
of Netscape into to a SIM in a mobile phone, Netscape has to be adapted.

All cryptography-related functionality of Netscape is located in a specific mod-
ule. By default Netscape uses an internal module that handles all cryptographic
functionality in software. This module can be replaced by an external module,
like one that implements signing by external hardware in our case. An external
module must conform to the PKCS #11 specification, which defines the module’s
application programming interface (API) and externally accessible data structures.

This chapter describes the PKCS #11 specification in general, a GNU imple-
mentation by TC TrustCenter GmbH in praticular, and the steps that are necessary
to configure Netscape for an external cryptographic module.

5.1 Public-Key Cryptography Standards (PKCS)

The Public-Key Cryptography Standards (PKCS) [24, 25, 37] are a family of stan-
dards, produced by RSA Laboratories (www.rsalabs.com), to achieve the inter-
operability of different implementations of public-key cryptography. An important
motivation of RSA Laboratories is to accelerate the deployment of public-key cryp-
tography. Rather than waiting for official standards, RSA tries to produce de facto
standards. RSA is rather successful with this approach, as PKCS “standards” are
widely used. Table 5.1 gives an overview of the PKCS standards defined so far.

5.2 PKCS #11 Cryptographic Token Interface Standard

External cryptography modules for Netscape need to conform to the Cryptographic
Token Interface Standard (PKCS #11) [48], also called Cryptoki. PKCS #11 iso-
lates an application from the details of a cryptographic device. It specifies a generic
API to devices which hold cryptographic information and perform cryptographic
functions.

33

34 CHAPTER 5. NETSCAPE AND PKCS #11

PKCS #1 RSA Cryptography Standard
PKCS #3 Diffie-Hellman Key Agreement Standard
PKCS #5 Password-Based Cryptography Standard
PKCS #6 Extended-Certificate Syntax Standard
PKCS #7 Cryptographic Message Syntax Standard
PKCS #8 Private-Key Information Syntax Standard
PKCS #9 Selected Attribute Types
PKCS #10 Certification Request Syntax Standard
PKCS #11 Cryptographic Token Interface Standard
PKCS #12 Personal Information Exchange Syntax Standard
PKCS #13 Elliptic Curve Cryptography Standard
PKCS #15 Cryptographic Token Information Format Standard

Table 5.1: PKCS #i “standards” by RSA Laboratories

PKCS #11 follows an object-based approach, which favors technology inde-
pendence (any kind of device) and resource sharing (multiple applications access-
ing multiple devices). The goal is to present to applications a common logical view
of the device, abstracted as a cryptographic token.

5.3 PKCS #11 General Model

Figure 5.1 shows the general architectural model of PKCS #11 and its concrete in-
stantiation with Netscape. The right part of the figure is just shown as an overview.
It will be explained in detail in sections 5.6 and 5.7.

Application1 Applicationn

Cryptoki

Slot1 Slotm

...

...

...Token1

Crypto.
Device1

Tokenm

Crypto.
Devicem

Netscape

libgpkcs11.dll

Slot

casting_token.dll

Mobile / SIM

Figure 5.1: PKCS #11 general model and instantiation with Netscape

At the highest layer of the architecture are applications that need to perform
cryptographic operations. The cryptographic functionality is implemented in one
or more cryptographic devices. These devices are abstracted as so-called tokens

5.4. PKCS #11 APPLICATION PROGRAMMING INTERFACE 35

that hide the device-specific details. The tokens are inserted in slots, provided
by Cryptoki. Applications connect to tokens that are present in slots. Multiple
applications can access multiple tokens. Therefore, there needs to be some kind of
multiplexing and mutual exclusion. The central Cryptoki component is responsible
for managing access to tokens.

In our configuration, the cryptographic device is the SIM inside the mobile
phone, which is abstracted with our token, called casting token.dll. Netscape
is configured to run with the GNU PKCS #11 library (details below), which is im-
plemented as a dynamically loadable shared library. In our setup there is only one
active application using Cryptoki – namely Netscape – and one filled slot – the one
containing the CASTING token.

5.4 PKCS #11 Application Programming Interface

PKCS #11 provides about 70 functions to applications, which can be classified as
follows:

� General-purpose (initialization, meta information)

� Slot and token management

� Session management

� Object management

� Encryption

� Decryption

� Message digesting

� Signing and MACing

� Verifying signatures and MACs

� Dual-purpose cryptographic functions

� Key management

� Random number generation

� Parallel function management

36 CHAPTER 5. NETSCAPE AND PKCS #11

5.5 CASTING PKCS #11 Token

Our special PKCS #11 token performs all cryptographic operations for Netscape
during an SSL/TLS protocol session. This includes the SSL/TLS handshake phase,
especially the operations needed for user authentication, as well as the encryption
of application data with SSL/TLS, using symmetric bulk cipher encryption.

Most of these operations are executed on the terminal. In particular, the sym-
metric encryption and message authentication during normal operation of SSL/TLS,
i.e. once the security parameters have been established, are completely done by the
terminal. Bulk cipher encryption is performance critical with respect to the appli-
cation. Therefore it is a requirement to execute it on the terminal, given that the
bandwidth to the mobile and the processing capabilities are very limited.

The user has her RSA key pair and her certificate stored on her mobile. The
CASTING token reads the user certificate from the mobile and transfers it to the
terminal. It will be queried by Netscape, just before the SSL/TLS session is estab-
lished. In contrast, the user’s private key never leaves the SIM.

This implies that all operations concerning the private key are executed on the
SIM itself. Fortunately, the only operation on the client’s private key within the
SSL/TLS protocol is the computation of a signature during client authentication.
This has to be done only once for a SSL/TLS session.

This split in functionality serves two goals. One the one hand, the private key
is kept private in the user’s SIM, which is absolutely crucial. On the other hand,
the high performance during normal SSL/TLS operation is preserved.

5.6 GNU PKCS #11 (gpkcs11)

TC TrustCenter GmbH (http://www.trustcenter.de) offer an open source imple-
mentation of PKCS #11, called gpkcs11 [36], that is distributed under the GNU
Lesser General Public License (LGPL). We decided to use this implementation as
a starting poing for the development of the CASTING token. gpkcs11 provides a
software-only token that we adapted to our needs.

gpkcs11 is can be compiled for various platforms, such as Solaris 2.5.1/SPARC,
Linux 2.0.36/i386, and Windows 9x, NT, and 2000. For Windows, workspace and
project files for Microsofts Visual C++ 6.0 are included. As a prerequisite, an
OpenSSL library is needed. The archive file for the sources is called gpkcs11-
0.6.1.tgz. For the following discussion it is assumed that our adapted version
of gpkcs11-0.6.1, i.e. the CASTING token implementation, is used and is un-
packed to C:�. The implementation of the CASTING token is explained in detail
in chapter 6.

The gpkcs11 installation, like Apache-SSL, uses OpenSSL as its cryptographic
backend. This means that LIBEAY32.dll must be accessible via the system path.
The CASTING token also requires the availability of the OpenSSL source code. In
the following it is assumed that the OpenSSL package is installed at C:�.

5.7. CONFIGURING NETSCAPE FOR THE GPKCS11 MODULE 37

For information on installation, compilation, and configuration of gpkcs11 see
the Readme.txt file of the source distribution package.

5.7 Configuring Netscape for the gpkcs11 Module

The client application for our scenario is Netscape Communicator with 128 bit
encryption. We used versions 4.73 and 4.75 for the Windows operating system. For
our purposes Netscape‘s internal cryptographic module needs to be disabled and
replaced by the external gpkcs11 library. As is shown on the right half of figure 5.1,
each token for the gpkcs11 module (libgpkcs11.dll) is a separate library. In our
configuration there is just one token present (casting token.dll in figure 5.1). This
allows gpkcs11 to use different tokens, simply by editing a gpkcs11 configuration
file. Now the necessary configuration steps are explained in detail.

First the internal module needs to be disabled. To achieve this, press the Se-
curity button on Netscape‘s toolbar. After choosing Cryptographic Modules, a
list of all installed cryptographic modules appears. They all have to be disabled as
follows: Select the module in the listbox and press View/Edit (the topmost button
shown in figure 5.2). For all tokens of the module, press Config and select Disable
this token.

Figure 5.2: Netscape configuration with an external PKCS #11 module

Now the CASTING token has to be installed. In the Cryptographic Modules
dialog box choose Add. A new dialog box appears with the caption Create a New
Security Module. In the Module Name input field, type a name, e.g. CASTING
PKCS #11 module. In the Security Module File enter the path to the gpkcs

38 CHAPTER 5. NETSCAPE AND PKCS #11

module file1 e.g. C:�gpkcs11-0.6.1�winnt�libgpkcs11�Debug�libgpkcs11.dll.
The new token appears in the listbox of the Cryptographic Modules dialog box.
Selecting the new module and pressing View/Edit and More Info shows informa-
tion like in figure 5.3.

Figure 5.3: Netscape information about CASTING PKCS #11 token

The cryptographic methods of the token now have to be configured. This can
be achieved by selecting CASTING module in the listbox of the Cryptographic
Modules dialog box and pressing View/Edit. The Edit Security Module dialog
box appears. Selecting the CASTING token in the listbox and pressing Config
makes the Configure Slot dialog box appear. The token has to be enabled and the
checkboxes have to be set exactly as shown in figure 5.4. RSA has to be enabled for
the SSL/TLS handshake phase. RC4 is the bulk cipher algorithm of choice. SHA-1
and MD5 are needed for message authentication and key generation in SSL/TLS.
The token also provides “publicly-readable certs” and a random number generator.

In the Security dialog box SSL/TLS version three has to be enabled: Enable
SSL (Secure Sockets Layer) v3. Also all user certificates should be removed, as
the mobile will provide the user certificate later. To simplify user interaction set
Certificate to identify you to a web site to Select Automatically. The SSL/TLS

1Note: The name of the gpkcs11 module – usually called libgpkcs11.dll – needs to be entered
here, not the name of the token.

5.7. CONFIGURING NETSCAPE FOR THE GPKCS11 MODULE 39

Figure 5.4: Configuration of CASTING PKCS #11 token

cipher suites for the CASTING PKCS #11 token should be set as in figure 5.5.
Having configured Netscape, it is now necessary to configure gpkcs11 to use

the CASTING token. This is done via an initialization file, called gpkcs11.ini.
This file needs to be put into the Windows system directory, i.e. C:�WINNT or
C:�WINDOWS.

[PKCS11-DLL]
TokenList = CASTING-TOKEN
LoggingFile = C:�pkcs11.log
MemLoggingFile = C:�pkcs11mem.log
LoggingLevel = 3

[CASTING-TOKEN]
TokenDLL = C:�gpkcs11-0.6.1�winnt�ceay token IR�Debug�ceay token.dll
InitSym = ceayToken_init
Port = COM4

The section [PKCS11-DLL] contains configuration for the gpkcs11 library.
The TokenList attribute specifies the tokens present in that configuration. Each
token has its own section. Our configuration contains only one token, which is de-
scribed in section [CASTING-TOKEN]. The TokenDLL attribute names the shared
library file for the token. The Port attribute is only relevant for the IrCOMM im-
plementation of the CASTING token (see chapter 6). For more information on

40 CHAPTER 5. NETSCAPE AND PKCS #11

Figure 5.5: Preferred SSL/TLS cipher suites for CASTING PKCS #11 token

the attributes of the configuration file consult the documentation provided with the
gpkcs11 distribution.

The CASTING token shared library (ceay token.dll) depends on a number of
other shared libraries. In particular it depends on WS2 32.dll for Windows sockets
operations, LIBEAY32.dll which provides the cryptographic backend, and libgp-
kcs11.dll in which it is plugged in. These libraries therefore have to be acces-
sible via the PATH environment variable. LIBEAY32.dll should be located in
C:�openssl-0.9.5�out32dll; libgpkcs11.dll in C:�gpkcs11-0.6.1�winnt�libgpkcs11�-
Debug.

Chapter 6

Implementation

This chapter deals with the main points of the CASTING implementation. The
implementation consists of two parts, one running on the fixed terminal, the other
on the SIM inside the mobile. The flow of messages exchanged between terminal
and mobile and some of the issues involved with IrDA and Bluetooth short distance
communication will be discussed. Finally, the demo setup, debugging, and testing
tools are presented.

6.1 Implementation Overview

An overview of all of the components involved in the CASTING implementation
is given in figure 6.1. Most of these components have been discussed before. This
chapter concentrates on the implementation of the CASTING PKCS #11 token, the
CASTING SIM applet resp. its simulation, and the implementation of the SECTUS
protocol.

Internet

Netscape Apache

SSL/TLSSECTUS

S
hortD

istance
W

ireless
Link

Terminal Web ServerMobile

User Private Key

User Certificate

GPKCS11

CASTING Token

OpenSSL Apache-SSL

Personal Web
Pages and
Services

CASTING
Applet or

Mobile/SIM
Simulator

User Certificate

Figure 6.1: Implementation Overview

41

42 CHAPTER 6. IMPLEMENTATION

6.2 Development Software

The following software packages have been used during implementation:

OpenSSL 0.9.5a Cryptographic backend, testing tools
gpkcs11 5.6.1 Included modificatons done by Felix Baessler
Netscape 4.73 With 128 bit encryption (Windows NT 4.0 and 2000)
ApacheSSL apache 1.3.12/1.3.14 + openssl-0.9.5a/0.9.6 (Linux)
Visual C++ 6.0 Microsoft‘s development environment for Windows

These tools have been described before. Visual C++ is Microsoft‘s standard
development environment for the Windows platform. The implementaton of the
CASTING PKCS #11 token is based on a software-only token – called CEAY
token – that comes with the gpkcs11 distribution package.

6.3 SECTUS Protocol Implementation

The simulator acts as a server that provides two operations. One is the execution of
the SECTUS protocol, the other is signing the hash value. Prior to performing the
latter operation there must have been established an authentication key between
terminal and SIM. The operation of the simulator is shown in figure 6.2. The
simulator reads the user certificate and key from files that are given as arguments
on the command line. It waits until it receives an opcode and dispatches to the
appropriate functions.

OPCODE_SIGN

Key

Certificate

OPCODE_DO_SECTUS

Sign failure

Sign success

SECTUS failure

SECTUS success

Read key

Read certificate

opcode

Open link

Recv opcode

Close link

Do SECTUS Sign

Figure 6.2: Control loop of the simulator

Figure 6.3 shows the processing of the SECTUS protocol. The actions of the
mobile/SIM part are shown on the left; the actions of the terminal on the right. The

6.3. SECTUS PROTOCOL IMPLEMENTATION 43

grey area in the middle represents the short distance wireless link. The timeline
runs from top to bottom. SECTUS fails, when the certificate is not accepted by
the terminal, when the user cancels the input dialog (shown in figure 6.4), when a
MAC cannot be verified, or when a communication error occurs.

Send certificate size

Send certificate

Cert. accepted?

Recv E(kpub, s‘)

Recv dialog result

Recv certificate acceptance

Compute x = MAC(r,m2)

Continue?

Generate and show r

Decrypt m2 with kpriv to get s‘

Recv x‘= MAC(r, m2)

x == x‘ ?

Set authenticaton key s to s‘

Do SECTUS

SECTUS failure

SECTUS failure

SECTUS failure SECTUS success

Recv certificate size

Recv certificate

Certificate ok?

Send E(kpub, s‘)

Send dialog result

Send certificate acceptance

Send MAC(r,m2)

Continue?

Start showing input dialog

Do SECTUS

SECTUS failure

SECTUS failure

Process certificate

Generate s‘ randomly

Wait for dialog result

Recv y‘ = MAC(r, cert)

SECTUS success

Compute y = MAC(r, cert)

y == y‘ ?

SECTUS failure

Set authenticaton key s to s‘

m1

m2

m3

m4

Mobile/SIM Wireless Link Terminal

Send 0...0 Send MAC(r, cert)

Figure 6.3: Implementation of the SECTUS protocol

Before the signing operation is performed it is first checked if the authentication
key s is set. If this is not the case the operation is cancelled. The hash value to be
signed as well as the signature are protected by MACs. The signature is computed
using the private key of the user.

44 CHAPTER 6. IMPLEMENTATION

Figure 6.4: Dialog box for entering the one-time password of the SECTUS protocol

6.4 Implementation of the Short-Distance Link

There are several implementations of the CASTING PKCS #11 token that differ
only in the realization of the short distance link. The following variants have been
implemented:

Short distance link Implementation directory

TCP/IP sockets (wired) C:�gpkcs11-0.6.1�winnt�ceay token
IrCOMM and RFCOMM Bluetooth C:�gpkcs11-0.6.1�winnt�ceay token IR
IrSock (Windows 2000) C:�gpkcs11-0.6.1�winnt�ceay token IRSock

The first implementation uses TCP/IP sockets to establish a wired short dis-
tance link. This was a first step to implement the SECTUS protocol. The second
implementation is designed for IrCOMM infrared and Bluetooth RFCOMM. There
are corresponding implementation directories for the mobile simulator, called mo-
bile sim SECTUS, mobile sim SECTUS IR, and mobile sim SECTUS IRSock, re-
spectively.

6.4.1 IrComm with Windows 9x and NT

IrCOMM [13] and also RFCOMM emulate a serial cable connection between two
devices. An issue with this interface is that there is no notification of devices
appearing and disappearing. The appropriate interfaces for device and service dis-
covery, which exist in the IrDA specification, are hidden, because IrDA device
manufacturers only provide the IrCOMM abstraction as an API. Using IrCOMM
makes the implementation more clumsy than it would to be, if the appropriate in-
terfaces were exposed to the API. IrCOMM treats the infrared connection like a
file the can be written to and read from. The file name is “COMx” or “IrCOMMx”,
where x is a virtual serial port (usually x is 4 or 5). The good thing about IrCOMM
is that it can be used with legacy applications that use a serial port for communica-
tion.

The IrCOMM link proved to be unreliable. There were different problems,
depending on the operating system used (Windows 95, 98, or NT 4.0). Sometimes
opening the IrCOMM link failed, sometimes a write would hang for an indefinite
amount of time.

6.4. IMPLEMENTATION OF THE SHORT-DISTANCE LINK 45

Sign

Sign success

Sign

mx == mx‘ ?

Sign failure

Sign success

Mobile/SIM Wireless Link Terminal

Send 1 if s is set else send 0

Recv hash value: h

Send signature x

Check if s is set

Send MAC(s, x)

Is s set?

Sign failure

Recv mh‘ = MAC(s, h)

Compute mh = MAC(s, h)

Send mh == mh‘ ? 1 : 0

mh == mh‘ ?

Sign failure

Compute x = sign(kpriv ,h)

Is s set?

Do SECTUS first

Send hash value: h

Send mh = MAC(s, h)

Recv MAC acceptance

mh accepted?

Sign failure

Recv signature x

Recv mx‘ = MAC(s, x)

Compute mx = MAC(s, x)

yes

no

yes

no

yes

no

Recv s state

yes

no

yes

no

Figure 6.5: Implementation of the signing operation

6.4.2 IrSock with Windows 2000

Microsoft has recognized the problems with IrCOMM and does not support this
interface for Windows 2000 anymore. Instead, infrared communication is based
on the socket interface, familiar from TCP/IP sockets. Infrared support is better
integrated into the operating system services and IrDA device discovery is possible.
IrSock seems to be much more reliable than IrCOMM.

Development using IrSock requires the installation of the Windows 2000 De-
vice Driver Kit (DDK), which is accessible from Microsoft’s developer Web site.

The device that provides a service typically acts as an IrSock server. The ser-
vice is added to the IAS database local to the device on which it is located. The
client can remotely query this database and find the service it wants to connect
with. IrSock exposes TinyTP [16] over IrLMP [14] to the application programmer.

A good overview of IrDA is given [29]. In depth information on IrDA can be

46 CHAPTER 6. IMPLEMENTATION

found in [14, 15, 16, 17, 18, 19, 20].

6.4.3 Bluetooth Communication

Bluetooth [4] is a specification for short-distance (less than 10 m) radio frequency
communication. Bluetooth is not yet integrated into the Windows operating sys-
tem, but there is some activity by Microsoft in this area. There are no standard
Bluetooth APIs for Windows yet. Therefore in our implementation we used RF-
COMM, which has the same shortcomings as IrCOMM, but can be used with the
IrCOMM version of our implementation with almost no modifications.

[30] discusses the Bluetooth protocol architecture. Bluetooth is specified in [5]
and [6]. Bluetooth also considers authentication and confidentiality. This topic is
discussed in [31].

For the project, two PCMCIA Bluetooth cards from Digianswer have been
used.

6.5 CASTING PKCS #11 Token

In each implementation directory there is a Visual C++ workspace (called ceay token.dsw)
and source files. The most important source files are the following:

Source file Functionality

ceay token.c Implementation of the CASTING gpkcs11 token
mobile proxy.c Handles the interaction with the counterpart on the mobile
comIR.c Provides functions for communication with the mobile

6.5.1 ceay token.c

The original software-only token had to be modified at several places to work prop-
erly. First, a longer key block had to be generated, from which clientMAC, server-
MAC, clientKey, and serverKey are derived. For 128-bit encryption 64 bytes of key
material are needed. The original implementation just generated 48 bytes of key
material. To get a larger key block more “salt” and more iteratons while generating
the key material are necessary. The key block is generated like this:

key_block =
MD5(master_secret + SHA(‘A’ + master_secret +

ServerHello.random +
ClientHello.random)) +

MD5(master_secret + SHA(‘BB’ + master_secret +
ServerHello.random +
ClientHello.random)) +

MD5(master_secret + SHA(‘CCC’ + master_secret +
ServerHello.random +
ClientHello.random)) +

6.5. CASTING PKCS #11 TOKEN 47

MD5(master_secret + SHA(‘DDDD’ + master_secret +
ServerHello.random +
ClientHello.random)) +

[...];

Another major problem was that the functions GetOperationState and
SetOperationState were not implemented, although Netscape apparently
needs them at different occasions.

A minor error was that the random number generator was never seeded. This
led to an error condition when calling RSA public encrypt, which is a func-
tion provided by the OpenSSL library. Initialization can be done by using function
RAND seed. Maybe it is important to mention here that OpenSSL 0.9.5a was used
(the newest version of OpenSSL available), not version 0.9.4 that is recommened
by TrustCenter. It should be noted that the randomness of the seed of the current
implementation should be improved.

There were multiple minor bugs that were relatively easy to fix, like inserting a
missing break statement, disabling some checks, and removing unneeded header
files.

The original token read the user certificate from a local database, called cryptdb.
This database was removed, as all user related information is stored inside the SIM.
The CASTING implementation does not store any user related data persistently.

CI Ceay OpenSession and CI Ceay Sign are the most heavily adapted
functions.

CI Ceay OpenSession first checks if the user certificate has changed, by
calling mobile certificateChanged of the mobile proxy component. This
happens if a new mobile device/SIM has connected to the terminal. If it has
changed, the new certificate is formatted as two PKCS #11 objects: a certificate
object and a public-key object. These are added to an internal cache (nonappropri-
ately called persistent cache). Then the change is propagated to all sessions.
Finally the session is added to the session list.

CI Ceay Sign is called by Netscape when the signature of the SSL/TLS hash
value has to be computed. For our purposes only the signature type CKM RSA PKCS
is relevant. The actual cryptographic signing operation is no longer performed by
the function itself, but outsourced to the mobile. Therefore the function just calls
the functions mobile RSA signLen and mobile RSA sign located in the
mobile proxy component to determine the signature length1 and to compute the
signature from the 36 byte hash value.

6.5.2 mobile proxy.c

This file is probably the best place to start exploring the CASTING implementa-
tion. The mobile proxy module acts as a proxy for the mobile phone. In a separate

1The length of the signature depends on the size of the user’s private key.

48 CHAPTER 6. IMPLEMENTATION

thread it continuously tries to establish short-distance connections to appearing mo-
bile phones. When a connection is established, an input dialog is shown to enable
the user to input the one-time password r. While the user inputs the password, the
certificate is transferred in the background. This eliminates the perceived delay for
the user.

mobile doSectus preforms the SECTUS protocol, while mobile RSA -
sign is responsible for the signing operation. This function recognizes if an au-
thentication key has been set and calls the mobile doSectus function if nec-
essary. The function mobile processCert converts a DER-encoded X.509
certificate, as read from the mobile, into a PKCS #11 certificate object (type CKO -
CERTIFICATE) and a PKCS #11 public key object (type CKO PRIVATE KEY2).

X.509 (from SIM) cert attributes privKey attributes

– CKA CLASS CKA CLASS
– CKA TOKEN CKA TOKEN
– CKA PRIVATE CKA PRIVATE
(1) CKA LABEL CKA LABEL
(2) CKA ID CKA ID
– CKA ALWAYS SENSITIVE CKA ALWAYS SENSITIVE
Subject CKA SUBJECT CKA SUBJECT
– CKA SENSITIVE CKA SENSITIVE
– CKA APPLICATION
(3) CKA VALUE
(4) CKA CERTIFICATE TYPE
Issuer CKA ISSUER
Serial Number CKA SERIAL NUMBER
– CKA DERIVE
– CKA MODIFIABLE
– CKA LOCAL
Exponent CKA PUBLIC EXPONENT
Modulus CKA MODULUS
(5) CKA KEY TYPE
– CKA EXTRACTABLE
Version – –
Signature Alg. – –
Not Before – –
Not After – –
X.509v3 ext. – –

Table 6.1: Conversion of X.509 attributes (left column) to PKCS #11 object at-
tributes (middle and right column)

2Despite its name it does not contain private key information.

6.6. USAGE, TESTING, AND DEBUGGING 49

1) Human-readable identifier for the certificate
2) PKCS #11-specific ID of the certificate needed to match

the two PKCS #11 objects: certificate and private key
3) The whole x509 certificate in binary form

(as we read it from the mobile/card)
4) Defined certificate types (we need CKC X 509)

#define CKC X 509 0x00000000

#define CKC VENDOR DEFINED 0x80000000

5) Defined key types (we need CKK RSA)
#define CKK RSA 0x00000000

...

6.5.3 comIR.c

The comIR module is responsible for the implementation of the short distance
communication. It provides functions to open and close the link and to exchange
data.

6.6 Usage, Testing, and Debugging

6.6.1 OpenSSL Server Tool

To test the terminal and the simulator, you need an HTTP server that is able to
establish SSL connections and that asks the client for its certificate. This can be
done by setting up an HTTP server like Apache with an SSL module. Alternatively
a tool from the openssl distribution can be used to simulate the connection estab-
lishment between the terminal and an SSL HTTP server. openssl s server is such
a tool that acts like an SSL HTTP server. The following describes the setup of the
openssl tool for Windows NT. It is also available for Linux with roughly the same
options.

Setup for openssl s server:

� Create a directory that contains the trusted CA certificates, like the certifi-
cates of the Swisskey Test CA described in chapter 4. The client certificate
that is used for testing has to be signed by one of these CA certificates. The
directory is used by the openssl s server tool to verify the client certificate.

� Copy a server certificate and private key to the directory in which the tool is
started (the working directory of the tool). Both may be located in a single
file. The certificate is used to identify our test server to its clients.

� Start the tool (the following is a single command line):

openssl s server -accept 8088 -no dhe -no tmp rsa
-Verify 4 -CApath C:�swisskey certs
-state -www

50 CHAPTER 6. IMPLEMENTATION

At startup the tool generates the following output:

verify depth is 4, must return a certificate
Loading ’screen’ into random state - done
ACCEPT

This indicates that the tool is ready to accept incoming connection requests. It
listens on the port given by the accept command line argument. The client must
provide a valid certificate (option Verify in capital case3) and the certificate path
must be no longer than four certificates. The client certificate is verified against
the CA certificates in the swisskey certs directory. The www argument (in
lower case) causes the return of a status page to the client. The tool can even act
as a bare bones Web server, using the WWW option (in capital case). For a list of
options type openssl s server -h. For more information see the OpenSSL
documentation.

6.6.2 CASTING PKCS #11 Token

Load Visual C++ and open the ceay token.dswworkspace. Now the token can
be debugged or executed, which automatically starts Netscape.

6.6.3 Mobile/SIM Simulator

To start the simulator, simply provide the file names of the certificate and the (un-
encrypted) key as command line arguments:

mobile sim SECTUS <user X.509 certificate file> <user RSA key file>

For the IrCOMM version there is an additional third argument, giving the serial
port to use (e.g. COM5).

Figure 6.6 shows an example output of the simulator. First, the CASTING pro-
tocol is performed to establish the authentication key. Then, a signature operation
is executed to sign the SSL/TLS hash value.

6.6.4 Starting Netscape

Once configured, Netscape can be started in the usual way, e.g. by double-clicking
its icon. It can also be started from within the Visual C++ environment for debug-
ging. To start Netscape from Visual C++ the ceay token project has to be open.
Then the CASTING token DLL must be connected to Netscape. This is achieved
by setting Executable for debug session in general project options to the path of
the Netscape executable, e.g.
c:�Program Files�Netscape�Communicator�Program�netscape.exe.

3Note that case is significant for the options.

6.6. USAGE, TESTING, AND DEBUGGING 51

Figure 6.6: Example output of the simulator

6.6.5 Testing, Debugging and Demo Setup

When the simulator connects to the terminal, the user certificate is transferred. The
one-time password of the SECTUS protocol is shown on the mobile display, and
on the terminal screen an input dialog is presented to the user. After correct input
of the one-time password, the authentication key is established. Now Netscape is
ready to connect to an Apache-SSL server that requests client certificates or to the
OpenSSL server tool.

The transferred user certificate can be displayed in Netscape, but only when
an SSL connection has been established using that certificate. Netscape does not
ask the CASTING PKCS #11 token for user certificates any earlier. Even if trans-
ferred, the certificate first remains internal to the CASTING token. To view the
user certificate choose Security from the toolbar and select Certificates/Yours.

To connect to the OpenSSL server tool, input its URL into Netscape’s location
bar. E.g. assuming the server is located at vs6.inf.ethz.ch, type: https://vs6.inf.-
ethz.ch:8088/. If it is located on your local host, type: https://localhost:8088/

Netscape should now show connection and status information, which was gen-
erated by the OpenSSL server tool. If all is well, it should contain a line like this:
Verify return code: 0 (ok)

The openssl tool should display the following information about the connec-
tion. It gives detailed information about the steps of the SSL handshake protocol.

SSL accept:before/accept initialization
SSL accept:SSLv3 read client hello A
SSL accept:SSLv3 write server hello A
SSL accept:SSLv3 write certificate A
SSL accept:SSLv3 write certificate request A

52 CHAPTER 6. IMPLEMENTATION

SSL accept:SSLv3 flush data
depth=2 /

CN=Swisskey Test Root CA/
O=Swisskey AG/
OU=008510000000500000903/
OU=Test Certificates only/
OU=Identities not verified/
L=Zuerich/
C=CH

verify return:1 depth=1 /
CN=Swisskey ID Test CA Professional
O=Swisskey AG/
OU=008510000000500000701/
OU=Test Certificates only/
OU=Identities not formally verified/
L=Zuerich/
C=CH/

verify return:1 depth=0 /
CN=Rene Frutiger/
O=Swisscom AG, Bern/
OU=008510000684600000518/
OU=Corporate Information + Technology/
2.5.4.17=3050/
L=Bern/
C=CH/

verify return:1
SSL accept:SSLv3 read client certificate A
SSL accept:SSLv3 read client key exchange A
SSL accept:SSLv3 read certificate verify A
SSL accept:SSLv3 read finished A
SSL accept:SSLv3 write change cipher spec A
SSL accept:SSLv3 write finished A
SSL accept:SSLv3 flush data
ACCEPT

The simulator is called by Netscape to sign the hash value that was computed
during the SSL/TLS handshake protocol. The steps of the SECTUS protocol are
written to standard output by the simulator. The token writes the steps of the pro-
tocol into a log file, if the logging level is high enough. The location of the log file
and the amount of logging information are specified in the gpkcs11.ini file.

The software package also contains some CGI scripts that were used for demon-
stration purposes. These scripts show the CGI environment variables that are
passed to the script and return information specific to the user connecting.

An example Web page generated by the second CGI script is shown in fig-
ure 6.7. Information about the protocol versions, the server and the client host, and
about the client and server certificates is presented.

6.6. USAGE, TESTING, AND DEBUGGING 53

Figure 6.7: Personal Web page generated by script 2

54 CHAPTER 6. IMPLEMENTATION

Bibliography

[1] C. Adams and S. Farrell. Internet X.509 Public Key Infrastructure Certificate Man-
agement Protocols. Internet RFC 2510, Mar. 1999.

[2] C. Allen and T. Dierks. The TLS Protocol, Version 1.0. Internet RFC 2246, Jan.
1999.

[3] Apache HTTP Server Project. http://httpd.apache.org.
[4] Bluetooth Consortium. The Bluetooth Project Homepage. www.bluetooth.com.
[5] Bluetooth Special Interest Group. Specification of the Bluetooth System – Volume 1:

Core, v1.0 B, Dec. 1999.
[6] Bluetooth Special Interest Group. Specification of the Bluetooth System – Volume 2:

Profiles, v1.0 B, Dec. 1999.
[7] L. Buttyán. CASTING – Cryptographic Protocols. Research Report, Mar. 2000.
[8] European Telecommunications Standard Institute. Digital cellular telecommunica-

tions system (Phase 2+); AT command set for GSM Mobile Equipment (ME) (GSM
07.07), 1997.

[9] European Telecommunications Standard Institute. Digital cellular telecommuni-
cations system (Phase 2+); Specification of the SIM Application Toolkit for the
Subscriber Identity Module – Mobile Equipment (SIM–ME) interface (GSM 11.14),
1998.

[10] European Telecommunications Standard Institute. Digital cellular telecommunica-
tions system (Phase 2+); Specification of the Subscriber Identity Module – Mobile
Equipment (SIM–ME) interface (GSM 11.11), 1998.

[11] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL Protocol, Version 3.0. home.
netscape.com/eng/ssl3/draft302.txt, Nov. 1996.

[12] R. Housley, W. Ford, T. Polk, and D. Solo. Internet X.509 Public Key Infrastructure
Certificate and CRL Profile. Internet RFC 2459, Jan. 1999.

[13] Infrared Data Association. ’IrCOMM’: Serial and Parallel Port Emulation over IR
(Wire Replacement), Version 1.0, Nov. 1995.

[14] Infrared Data Association. Link Management Protocol (LMP), Version 1.1, Jan.
1996.

[15] Infrared Data Association. Serial Infrared Link Access Protocol (IrLAP), Version
1.1, June 1996.

[16] Infrared Data Association. Tiny TP: A Flow-Control Mechanism for use with IrLMP,
Version 1.1, Oct. 1996.

[17] Infrared Data Association. Serial Infrared Physical Layer Specification, Version 1.3,
Oct. 1998.

[18] Infrared Data Association. Object Exchange Protocol (IrOBEX), Version 1.2, Mar.
1999.

[19] Infrared Data Association. Serial Infrared Link Access Protocol Specification for 16
Mb/s Addition (VFIR), Errata to IrLAP Version 1.1, Jan. 1999.

55

56 BIBLIOGRAPHY

[20] Infrared Data Association. Serial Infrared Physical Layer Link Specification for 16
Mb/s Addition (VFIR), Errata To IrPHY Version 1.3, Jan. 1999.

[21] Infrared data association. www.irda.org/, 1999.
[22] B. Kaliski and J. Staddon. PKCS #1: RSA Cryptography Specifications, Version 2.0.

Internet RFC 2437, Oct. 1998.
[23] B. S. Kaliski, Jr. A Layman’s Guide to a Subset of ASN.1, BER, and DER. ftp:

//ftp.rsasecurity.com/pub/pkcs/doc/layman.doc, Nov. 1993.
[24] B. S. Kaliski, Jr. An Overview of the PKCS Standards. ftp://ftp.rsasecurity.com/pub/

pkcs/doc/overview.doc, Nov. 1993.
[25] B. S. Kaliski, Jr. Some Examples of the PKCS Standards. ftp://ftp.rsasecurity.com/

pub/pkcs/doc/examples.doc, Nov. 1993.
[26] K. Kaukonen and R. Thayer. A Stream Cipher Encryption Algorithm ”Arcfour”.

Internet Draft, www.cs-ipv6.lancs.ac.uk/ipv6/documents/standards/general-comms/
internet-drafts/draft-kaukonen-cipher-arcfour-03.txt, July 1999.

[27] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message
Authentication. Internet RFC 2104, Feb. 1997.

[28] X. Lai. On the design and security of block ciphers, volume 1 of ETH Series in Infor-
mation Processing, Technische Hochschule Zurich. Hartung-Gorre Verlag Konstanz,
1992.

[29] P. J. Megowan, D. W. Suvak, and C. D. Knutson. IrDA Infrared Communications:
An Overview. www.extendedsystems.com/prodinfo/pdf/irda�%5Foverview.pdf.

[30] R. Mettala. Bluetooth Protocol Architecture, Version 1.0. www.bluetooth.com/
developer/download/download.asp?doc=175, Sept. 1999.

[31] T. Muller. Bluetooth Security Architecture, Version 1.0. www.bluetooth.com/
developer/download/download.asp?doc=174, July 1999.

[32] M. Myers, C. Adams, D. Solo, and D. Kemp. Internet X.509 Certificate Request
Message Format. Internet RFC 2511, Mar. 1999.

[33] National Institute of Standards and Technology, Computer Systems Laboratory. FIPS
PUB 46-2: Data Encryption Standard (DES), federal information processing stan-
dards publication 46-2 edition, Dec. 1993.

[34] National Institute of Standards and Technology, Computer Systems Laboratory. FIPS
PUB 180-1: Secure Hash Standard, federal information processing standards publi-
cation 180-1 edition, Apr. 1995.

[35] OpenSSL: The Open Source toolkit for SSL/TLS. www.openssl.org.
[36] GNU PKCS #11 (gpkcs11). Available at www.trustcenter.de/html/Produkte/TC

PKCS11/1490.htm.
[37] Public-Key Cryptography Standards. Available at www.rsasecurity.com/rsalabs/

pkcs/.
[38] Entrust. www.entrust.com.
[39] NIST PKI Program. http://csrc.nist.gov/pki/.
[40] Swisskey Zertifizierungsstelle. www.swisskey.ch.
[41] Thawte Digital Certificate Services. www.thawte.com.
[42] VeriSign Root Certificates. www.verisign.com/repository/root.html.
[43] E. Rescorla. HTTP Over TLS. Internet RFC 2818, May 2000.
[44] R. L. Rivest. The MD5 Message-Digest Algorithm. Internet RFC 1321, Apr. 1992.
[45] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Digital Signa-

tures and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126,
Feb. 1978.

[46] M. Rohs and H. Vogt. Project CASTING – Task Description (CASTING Phase2,
Part I). Draft, June 2000.

[47] RSA Security Inc. PKCS #1 – RSA Cryptography Standard, Version 2.1, Sept. 1999.

BIBLIOGRAPHY 57

[48] RSA Security Inc. PKCS #11 – Cryptographic Token Interface Standard, Version
2.10, Dec. 1999.

[49] RSA Security Inc. PKCS #12 – Personal Information Exchange Syntax, Version 1.0,
June 1999.

[50] S. Santesson, T. Polk, P. Barzin, and M. Nystrom. Internet X.509 Public Key Infras-
tructure Qualified Certificates Profile. Internet RFC 3039, Jan. 2001.

[51] Introduction to SSL. http://developer.netscape.com/docs/manuals/security/sslin/
index.htm, 1998.

[52] Card applications and mobility in a world of short distance communication – CAST-
ING. Project Definition, May 2000.

[53] I. VerisSign. Secure Wireless E-Commerce with PKI from VeriSign. Available at
www.verisign.com, May 2000.

[54] J. Wandmacher. Software-Ergonomie. de Gruyter, 1993.
[55] E. Wiedmer. CASTING Project Monthly Report, June 2000.
[56] E. Wiedmer. Concept for CASTING Demonstrator: Authentication with Mobile.

Report (Draft) for internal use, May 2000.

