
Distributed Systems
UDDI and beyond

Dr. Cesare Pautasso
Computer Science Department
Swiss Federal Institute of Technology (ETHZ)
pautasso@inf.ethz.ch
http://www.inf.ethz.ch/~pautasso

©IKS, ETH Zürich. 2

Where we are

TCP/IP
HTTP

HTML XML
SOAP

TCP/IP
HTTP

HTML XML

SOAP WSDL
UDDI

User
Interface

Messaging

Discovery

Description

Universal Description, Discovery and
Integration (UDDI)

©IKS, ETH Zürich. 4

U
D

D
I

Basic Problems to solve
1. How to make the service invocation

part of the language in a more or
less transparent manner.

Don’t forget this important
aspect: whatever you
design, others will have to
program and use

2. How to exchange data between
machines that might use different
representations for different data
types. This involves two aspects:

data type formats (e.g., byte
orders in different
architectures)
data structures (need to be
flattened and the
reconstructed)

3. How to find the service one actually
wants among a potentially large
collection of services and servers.

The goal is that the client
does not necessarily need to
know where the server
resides or even which server
provides the service.

4. How to deal with errors in the
service invocation in a more or less
elegant manner:

server is down,
communication is down,
server busy,
duplicated requests ...

©IKS, ETH Zürich. 5

DCE architecture

©IKS, ETH Zürich. 6

What is UDDI?
The UDDI specification is probably the one that has evolved the most from all
specifications we have seen so far. The latest version is version 3 (July 2002):

version 1 defined the basis for a business service registry
version 2 adapted the working of the registry to SOAP and WSDL
version 3 redefines the role and purpose of UDDI registries,
emphasizes the role of private implementations, and deals with the
problem of interaction across private and public UDDI registries

Originally, UDDI was conceived as an “Universal Business Registry” similar to
search engines (e.g., Google) which will be used as the main mechanism to
find electronic services provided by companies worldwide. This triggered a
significant amount of activity around very advanced and complex scenarios
(Semantic Web, dynamic binding to partners, runtime/automatic partner
selection, etc.)
Nowadays UDDI is far more pragmatic and recognizes the realities of B2B
interactions: it presents itself as the “infrastructure for Web services”,
meaning the same role as a name and directory service (i.e., binder in RPC) but
applied to Web services and mostly used in constrained environments
(internally within a company or among a predefined set of business partners)

©IKS, ETH Zürich. 7

Role of UDDI
Services offered through the
Internet to other companies require
much more information that a
typical middleware service
In many middleware and EAI
efforts, the same people develop
the service and the application
using the service
This is obviously no longer the case
and, therefore, using a service
requires much more information
that it is typically available for
internal company services
This documentation has three
aspects to it:

basic information
categorization
technical data

©IKS, ETH Zürich. 8

More detailed (ebXML architecture)

ebXML compliant
system

Business Profiles
Business Scenarios

ebXML
Registry

XML

Request Business Details
1

Build Local System
Implementation

Register Implementation Details
Register COMPANY A Profile

3

2

5
Agree on Business Arrangement4

Query about COMPANY A profile

Download Scenarios and Profiles

DO BUSINESS TRANSACTIONS

6

COMPANY A

COMPANY B
ebXML compliant

system

Business Profiles
Business Scenarios

ebXML
Registry

XML

Request Business Details
1

Build Local System
Implementation

Register Implementation Details
Register COMPANY A Profile

3

2

5
Agree on Business Arrangement4

Query about COMPANY A profile

Download Scenarios and Profiles

DO BUSINESS TRANSACTIONS

6

COMPANY A

COMPANY B
ebXML compliant

system

Business Profiles
Business Scenarios

ebXML
Registry

XML

Request Business Details
1

Build Local System
Implementation

Register Implementation Details
Register COMPANY A Profile

3

2

5
Agree on Business Arrangement4

Query about COMPANY A profile

Download Scenarios and Profiles

DO BUSINESS TRANSACTIONS

6

COMPANY A

COMPANY B

20

0 0
 e

bX
M

L
TM

Information in an UDDI registry

©IKS, ETH Zürich. 10

UDDI data
An entry in an UDDI registry is an XML document composed of different
elements (labeled as such in XML), the most important ones being:

businessEntity : is a description of the organization that provides the
service.
businessService: a list of all the Web services offered by the business
entity.
bindingTemplate: the technical aspects of the service being offered.
tModel: (“technical model”)is a generic element that can be used to
store addotional information about the service, typically additional
technical information on how to use the service, conditions for use,
guarantees, etc.

Together, these elements are used to provide:
white pages information: data about the service provider (name,
address, contact person, etc.)
yellow pages information: what type of services are offered and a list
of the different services offered
green pages information: technical information on how to use each
one of the services offered, including pointers to WSDL descriptions of
the services (which do not reside in the UDDI registry)

©IKS, ETH Zürich. 11

Business entity
The generic white and yellow pages information about a service provider is
stored in the businessEntity, which contains the following data:

each businessEntity has a businessKey
discoveryURLs: a list of URLs that point to alternate, file based service
discovery mechanisms.
Name: (textual information)
Business description: (textual information)
Contacts: (textual information)
businessServices: a list of services provided by the businessEntity
identifierBag: a list of external identifiers
categoryBag: a list of business categories (e.g., industry, product
category, geographic region)

The businessEntity does not need to be the company. It is meant to
represent any entity that provides services: it can be a department, a group
of people, a server, a set of servers, etc

©IKS, ETH Zürich. 12

Business service
The services provided by a business entity re described in business terms
using businessService elements. A businessService element can describe a
single Web service or a group of related Web services (all of them offered
by the same businessEntity)
A businessEntity can have several businessServices but a businessService
belongs to one businessEntity
The businessService can actually by provided by a different businessEntity
that the one where the element is found. This is called projection and
allows to include services provided by other organizations as part of the
own services
It contains:

a serviceKey that uniquely identifies the service and the businessEntity
(not necessarily the same as where the businessService is found)
name: as before
description: as before
categoryBag: as before
bindingTemplates: a list to all the bindingTemplates for the service
with the technical information on how to access and use the service

©IKS, ETH Zürich. 13

Binding template
A binding template contains the technical information associated to a
particular service. It contains the following information:

bindingKey
serviceKey
description
accessPoint: the network address of the service being provided
(typically an URL but it can be anything as this field is a string: e.g., an
e-mail address or even a phone)
tModels: a list of entries corresponding to tModels associated with this
particular binding. The list includes references to the tModels,
documents describing these tModles, short descriptions, etc.
categoryBag: additional information about the service and its binding
(e.g., whether it is a test binding, it is on production, etc)

A businessService can have several bindingTemplates but a binding
Tenplate has only one businessService
The binding template can be best seen as a folder where all the technical
information of a service is put together

©IKS, ETH Zürich. 14

tModel
A tModel is a generic container of information where designers can write any
techical information associated to the use of a Web service:

the actual interface and protocol used, including a pointer to the
WSDL description
description of the business protocol and conversations supported
by the service

A tModel is a document with a short description of the technical information
and a pointer to the actual information. It contains:

tModelKey
name
description
overviewDoc: (with an overviewURL and useType that indicate
where to find the information and its format, e.g., “text” or
“wsdldescription”)
identifierBag
categoryBag

A tModel can point to other tModels and eventually different forms of tModels
will be standardized (tModel for WSDL services, tModels for EDI based services,
etc.)

©IKS, ETH Zürich. 15

BusinessEntity
businessKey, name, contact, description,
identifiers, categories

BusinessEntity
businessKey, name, contact, description,
identifiers, categories

Summary of the UDDI data model

BusinessService
serviceKey, businessKey, name
description, categories

BusinessService
serviceKey, businessKey, name
description, categories

BindingTemplate
bindingKey, serviceKey,
description, categories,
access point

BindingTemplate
bindingKey, serviceKey,
description, categories,
access point tModel

name, description,
overview document,
url pointer to WSDL

tModel
name, description,
overview document,
url pointer to WSDL

WSDL Document
External Web Service
Interface Description
(located at the service
provider)

WSDL Document
External Web Service
Interface Description
(located at the service
provider)

Interacting with an UDDI registry

©IKS, ETH Zürich. 17

Inquiry and Publishing interfaces
Access to an UDDI registry typically
takes place through SOAP
messages that are used to invoke
the corresponding API

©IKS, ETH Zürich. 18

UDDI interfaces
The UDDI specification provides a number of Application Program Interfaces
(APIs) that provide access to an UDDI system:

UDDI Inquiry: to locate and find details about entries in an UDDI
registry. Support a number of patterns (browsing, drill-down,
invocation)
UDDI Publication: to publish and modify information in an UDDI
registry. All operations in this API are atomic in the transactional sense
UDDI Security: for access control to the UDDI registry (token based)
UDDI Subscription: allows clients to subscribe to changes to
information in the UDDI registry (the changes can be scoped in the
subscription request)
UDDI Replication: how to perform replication of information across
nodes in an UDDI registry
UDDI Custody and Ownership transfer: to change the owner
(publisher) of information and ship custody from one node to another
within an UDI registry

UDDI also provides a set of APIs for clients of an UDDI system:
UDDI Subscription Listener: the client side of the subscription API
UDDI Value Set: used to validate the information provided to an UDDI
registry

©IKS, ETH Zürich. 19

UDDI inquiry API
Search and lookup entries in a
registry.
This API is freely available, no
client authentication is required.
Errors are reported as SOAP Faults
Browse functions search the
registry based on keywords and
return summary lists with
overview information (key, name
and description) about matching
businesses or services.
Find qualifiers are used to sort the
results and to control the keyword
matching: toggle between
AND/OR, case
sensitive/insensitive, use of
wildcards and categories.
To minimize the number of
requests, find queries can be
nested

Drill-down functions are used to
fetch the specific UDDI data
structures about particular
entries given their key, returned
by the Browse functions

Browse functions
find_business

find_relatedBusinesses
find_service

find_binding
find_tModel

Drill down functions
get_businessDetail

get_operationalInfo
get_serviceDetail

get_bindingDetail
get_tModelDetail

UDDI Version 3.0 Specification, 19 July 2002

©IKS, ETH Zürich. 20

UDDI publishing and security API
Publish, update and delete
information contained in a UDDI
registry
The publishing API requires user
authentication using a session
token and typically uses SOAP
over HTTPS
The registry performs access
control for all publishing
functions: information about the
entries can only be edited by the
owner
Category information and keyed
references associated to the
entries are validated before
accepting new information into
the registry
Deletion functions are used to
remove entries identified by their
key from the registry. Removing a
business will remove all services
associated with it.

The same publishing functions are
used both to add new information
or replace existing information,
depending on whether a valid key
is passed or not.
When adding new entries, keys are
usually automatically generated by
the registry

Security Session Management
get_authToken, discard_authToken

Publishing Deletion
save_business delete_business
save_service delete_service

save_binding delete_binding
save_tModel delete_tModel

©IKS, ETH Zürich. 21

UDDI Summary
The UDDI specification is rather complete and encompasses many aspects
of an UDDI registry from its use to its distribution across several nodes and
the consistency of the data in a distributed registry
Most UDDI registries are private and typically serve as the source of
documentation for integration efforts based on Web services
UDDI registries are not necessarily intended as the final repository of the
information pertaining Web services. Even in the “universal” version of the
repository, the idea is to standardize basic functions and then built
proprietary tools that exploit the basic repository. That way it is possible to
both tailor the design and maintain the necessary compatibility across
repositories
While being the most visible part of the efforts around Web services, UDDI
is perhaps the least critical due to the complexities of B2B interactions
(establishing trust, contracts, legal constrains and procedures, etc.) . The
ultimate goal is, of course, full automation, but until that happens a long
list of problems need to be resolved and much more standardization is
necessary.

©IKS, ETH Zürich. 22

References
Specifications:

http://www.uddi.org
http://uddi.org/pubs/uddi-v3.00-published-20020719.pdf

UDDI Business Registry (UBR) nodes:
IBM
Homepage: http://uddi.ibm.com/
Inquiry API:

http://uddi.ibm.com/ubr/inquiryapi
Publish API:

https://uddi.ibm.com/ubr/publishapi
Microsoft
Homepage: http://uddi.microsoft.com/
Inquiry API:

http://uddi.microsoft.com/inquire
Publish API :

https://uddi.microsoft.com/publish

SAP
Homepage: http://uddi.sap.com/
Inquiry API :

http://uddi.sap.com/uddi/api/in
quiry

Publish API :
https://uddi.sap.com/uddi/api/p
ublish

NTT
Homepage:

http://www.ntt.com/uddi/
Inquiry API :

http://www.uddi.ne.jp/ubr/inqui
ryapi

Publish API :
https://www.uddi.ne.jp/ubr/publ
ishapi

©IKS, ETH Zürich. 23

Hype and reality
There are a few universal UDDI
registries in operation (maintained
by IBM, Microsoft, SAP, etc)
These registries are very visible and
often the first thing one sees of
Web services
Unfortunately, these registries are
still very small and most of the
entries in them do not work or do
not correspond to any real service
This has been a source of criticism
to We services in general. The
criticism has not been entirely
undeserved but it is often
misguided: what was there to
criticize was not UDDI itself but the
use that was been made of it and
the hype around dynamic Web
services

UDDI is rather useful if seen as
supporting infrastructure for Web
services in well defined and
constrained environments (i.e.,
without public access and where
there is a context that provides the
missing information)
Most of the UDDI registries in place
today are private registries
operating inside companies (recall
that the widest use of Web services
today is for conventional EAI) or
maintained by a set of companies
in a private manner
UDDI has now become the
accepted way to document Web
services and supply the information
missing in WSDL descriptions

©IKS, ETH Zürich. 24

Limitations of UDDI
UDDI was initially proposed as a
standard to enable universal
discovery of services
Public registries compliant to
UDDI didn’t grow as expected:

Registries assumed
voluntary registration of
service providers (registry is
passive, as opposed to
actively crawling the Web
looking for WSDL definitions
of services)
Registries didn’t provide any
value-added service, such as
checking the quality of the
registered services

Web-based registries such as
the XMethods.com portal offer a
human-oriented registry of Web
services (also based on
voluntary registration)

WSDL Search Engines (like
Woogle) offer a simpler query
interface that makes it easier to
search for services that match a
specific interface template (UDDI
is quite complex in that regard)
In addition to service lookup
functionality, automatic B2B
Integration requires additional
capabilities (which are not part of
UDDI) such as:

Provider Validation
Semantics Lookup
Quality of Service Metadata
Service Level Agreements
Contract Negotiation
Trust Establishment

Limitations of SOAP, WSDL and UDDI

SOAP and Security

©IKS, ETH Zürich. 27

SOAP and Firewalls
One of the perceived advantages of SOAP lies in its ability to tunnel RPC
calls through firewalls
This works only because SOAP uses HTTP and firewalls do not typically
block TCP port 80, the default one used by the HTTP protocol.

Firew
all

RPC Client

FTP Client

SSH Client

HTTP Client

RPC Server

FTP Server

SSH Server

HTTP Server

Firew
all

INTERNET

©IKS, ETH Zürich. 28

SOAP Firewalls?
Once all communication traffic is encoded in SOAP and sent over HTTP,
traditional TCP-level firewalls do not offer an acceptable level of protection
because RPC services which were hidden behind specific TPC port numbers
are now exposed as SOAP Web services.
Thus, firewalls become more complex as they must allow or disallow HTTP
connections based on the content of the SOAP messages

SO
AP Firew

all

RPC Client

HTTP Client

RPC Server

HTTP Server

SO
AP Firew

all

INTERNET

SOAP
request

SOAP
response

©IKS, ETH Zürich. 29

WS-Security
The SOAP standard does not
make any provision for secure
message exchange. As its name
implies SOAP is meant to be a
simple (but extensible)
messaging protocol, and
properties such as security can be
added to it.
WS-Security is a SOAP extension
that addresses some of the
security issues such as:

Message integrity (guarantee
that a message is not tampered
with)
Message confidentiality
(guarantee that the content of a
message is kept secret)
Sender authentication (identify
the sender of the message)

WS-Security prescribes how to
use SOAP header blocks to store
the digital signature of the
message, as well as user
identification information and
passwords.
WS-Security enables end-to-end
secure message exchange,
whereas SOAP on top of HTTPS
only guarantees security across
each hop.
With SOAP/HTTPS messages are
decrypted and re-encrypted by
each intermediate receiver and
there is no way to encrypt the
SOAP message all the way
between initial sender and
ultimate receiver
WS-Security also supports
encryption of only specific blocks
of a SOAP message (e.g., the ones
carrying sensitive information,
such as Credit Card numbers)

SOAP and Client/Server architectures

©IKS, ETH Zürich. 31

SOAP and the client server model
The close relation between SOAP, RPC and HTTP has two main reasons:

SOAP has been initially designed for client server type of interaction
which is typically implemented as RPC or variations thereof
RPC, SOAP and HTTP follow very similar models of interaction that
can be very easily mapped into each other (and this is what SOAP
has done)

The advantages of SOAP arise from its ability to provide a universal
vehicle for conveying information across heterogeneous middleware
platforms and applications. In this regard, SOAP will play a crucial role
in enterprise application integration efforts in the future as it provides
the standard that has been missing all these years
The limitations of SOAP arise from its adherence to the client server
model:

data exchanges as parameters in method invocations
rigid interaction patterns that are highly synchronous

and from its simplicity:
SOAP is not enough in a real application, many aspects are missing

©IKS, ETH Zürich. 32

SOAP Message Exchange Patterns
SOAP response

It involves a request which is not
a SOAP message (implemented
as an HTTP GET request method
which eventually includes the
necessary information as part of
the requested URL) and a
response that is a SOAP
message
This pattern excludes the use of
any header information (as the
request has no headers)

SOAP request-response

It involves sending a request as
a SOAP message and getting a
second SOAP message with the
response to the request
This is the typical mode of
operation for most Web services
and the one used for mapping
RPC to SOAP.
This exchange pattern is also
the one that implicitly takes
advantage of the binding to
HTTP and the way HTTP works

HTTP GET
SOAP response

SOAP request
SOAP response

©IKS, ETH Zürich. 33

RPC vs. One Way Messaging
Both of the previous exchange
patterns are used to implement a
synchronous client/server message
exchange, which is just a particular
case of more complex message
exchange patterns.

SOAP messages, however, can also
be used as part of asynchronous
interactions between a set of peers

By using techniques
developed as part of
traditional Message Oriented
Middleware, asynchronous
messaging can be built on
top of synchronous
interactions, by introducing a
queuing system that stores
and forwards the messages.Client SOAP request

Server
SOAP response

Peer1 Peer2SOAP message

SO
AP

SO
AP

Client ServerQueue

send

receive

receive

push

pull
or

©IKS, ETH Zürich. 34

Standard Layers

TCP/IP
HTTP

XML
SOAP

HTTP

XML
SOAP WSDL

TCP/IPJMS/SMTP

©IKS, ETH Zürich. 35

Mapping SOAP to e-mail
Currently, the SOAP specifications (including 1.2) do not contain an e-
mail (SMTP) binding, they just show an example of how to send a
SOAP message in an e-mail (in 1.2). Two possible options are:

as normal e-mail text
as an attachment

In both cases, the SOAP message is not different from what has been
discussed so far (in case of HTTP)
E-mail, however, changes the interaction patterns considered in SOAP
(which are very tied to HTTP)

SMTP implements a mechanism whereby an e-mail message is
automatically responded to with a delivery notification
SOAP cannot use the delivery notification message to return the
response to the request since the delivery notification message
happens at the level of SMTP, not at the level of the SOAP protocol
the current 1.2 draft warns about the limitations of e-mail binding
for SOAP reflecting once more the implicit client server model that
inspires the design and development of SOAP

Conversations

©IKS, ETH Zürich. 37

Conversations
As a first approximation, a
conversation models the
sequences of operations that a
client may invoke as part of the
interaction with a Web service.
In general, a conversation defines
a complex interaction between
multiple Web services involving
the exchange of several messages
and the invocation of different
operations in a well defined order.
In this context, a coordination
protocol specifies the set of
correct conversations between
the various services
The service interface description
(WSDL) only lists the available
operations but does not specify
what is the correct order of
invoking them

Client

Service

1. Login

2. Search

3. Order

4. Pay
5. Logout

©IKS, ETH Zürich. 38

WSDL and Conversations
WSDL defines the interface of a
Web service in terms of what
are the messages that are
exchanged (received and
produced by the service)
A WSDL document also
structures the messages into
pairs (that correspond to the
operations provided by a
service)
However, WSDL does not
contain any further information
specifying what is the correct
order of invocation of the
various operations. If an
operation should not (yet) be
invoked, a fault message is
returned.

From the client’s point of view,
this makes it difficult to
automatically ensure the
correctness of the interaction.
On the service side, an
interaction across multiple
operations may require to
maintain session information.
(stateful interaction). This
information is also used to
enforce the correctness of the
interaction. Whatever
mechanism is employed, these
constraints do not surface in the
WSDL interface description.
The goal is to make the
development as automatic as
possible!

SOAP is XML

©IKS, ETH Zürich. 40

The need for Attachments
SOAP is based on XML
and relies on XML for
representing data types
The original idea in SOAP
was to make all data
exchanged explicit in the
form of an XML
document much like
what happens with IDLs
in conventional
middleware platforms
This approach reflects the
implicit assumption that
what is being exchanged
is similar to input and
output parameters of
program invocations

<env:Body>
<p:itinerary
xmlns:p="http://.../reservation/travel">
<p:departure>
<p:departing>New York</p:departing>
<p:arriving>Los Angeles</p:arriving>
<p:depDate>2001-12-14</p:depDate>
<p:depTime>late afternoon</p:depTime>

<p:seatPreference>aisle</p:seatPreference>
</p:departure>
<p:return>
<p:departing>Los Angeles</p:departing>
<p:arriving>New York</p:arriving>
<p:depDate>2001-12-20</p:depDate>
<p:depTime>mid-morning</p:depTime>
<p:seatPreference/>

</p:return>
</p:itinerary>

</env:Body>

From SOAP Version 1.2 Part 0: Primer.
© W3C December 2002

This approach makes it very difficult to use SOAP for exchanging
complex data types that cannot be easily translated to XML (and there
is no reason to do so): images, binary files, documents, proprietary
representation formats, embedded SOAP messages, etc.

©IKS, ETH Zürich. 41

A possible solution
There is a “SOAP messages
with attachments note”
proposed in 11.12.02 that
addresses this problem
It uses MIME types (like e-
mails) and it is based in
including the SOAP message
into a MIME element that
contains both the SOAP
message and the attachment
(see next page)
The solution is simple and it
follows the same approach as
that taken in e-mail messages:
include a reference and have
the actual attachment at the
end of the message
The MIME document can be
embedded into an HTTP
request in the same way as the
SOAP message

Problems with this approach:
handling the message implies
dragging the attachment
along, which can have
performance implications for
large messages
scalability can be seriously
affected as the attachment is
sent in one go (no streaming)
not all SOAP implementations
support attachments
SOAP engines must be
extended to deal with MIME
types (not too complex but it
adds overhead)

There are alternative proposals
like DIME of Microsoft (Direct
Internet Message Encapsulation)
and WS-attachments

©IKS, ETH Zürich. 42

Attachments in SOAP
MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary;

type=text/xml;
start="<claim061400a.xml@claiming-it.com>"

Content-Description: This is the optional message description.
--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <claim061400a.xml@claiming-it.com>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
..
<theSignedForm href="cid:claim061400a.tiff@claiming-it.com"/>
..
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
--MIME_boundary
Content-Type: image/tiff
Content-Transfer-Encoding: binary
Content-ID: <claim061400a.tiff@claiming-it.com>

...binary TIFF image...
--MIME_boundary

Fr
om

SO
AP

 M
es

sa
ge

s w
ith

 A
tt

ac
hm

en
ts

. ©
W

3C
 N

ot
e

11
D

ec
em

be
r 2

00
0

ATTACHMENT

SOAP Message

Reference

©IKS, ETH Zürich. 43

The problems with attachments
Attachments are relatively easy to include in a message and all
proposals (MIME or DIME based) are similar in spirit
The differences are in the way data is streamed from the sender to the
receiver and how these differences affect efficiency

MIME is optimized for the sender but the receiver has no idea of
how big a message it is receiving as MIME does not include
message length for the parts it contains
this may create problems with buffers and memory allocation
it also forces the receiver to parse the entire message in search for
the MIME boundaries between the different parts (DIME explicitly
specifies the length of each part which can be use to skip what is
not relevant)

All these problems can be solved with MIME as it provides mechanisms
for adding part lengths and it could conceivably be extended to
support some basic form of streaming
Technically, these are not very relevant issues and have more to do
with marketing and control of the standards
The real impact of attachments lies on the specification of the
interface of Web services (how to model attachments in WSDL?)

Integrating Mismatching Services

©IKS, ETH Zürich. 45

Syntax and Semantics
One of the advantages of using
self-describing XML for
encoding SOAP messages is that
it becomes really easy to
develop the corresponding
parsers (for reading messages)
and emitters (for writing
messages).
There are however some
disadvantages, not only related
to the performance overhead
(XML parsing and validation is
expensive) but also to the
limitations of XML as a data
exchange format (SOAP
Attachments for exchanging
binary data)
Another problem is that
parseability does not guarantee
interoperability.

The fact that all parties involved
can parse SOAP messages, only
solves the interoperability
problem at the syntax level.
Although progress has already
been made by standardizing the
syntax, there is still a lot to be
done to agree on the semantics
of the messages.
At the SOAP-level, it may be
necessary to apply
transformations to the
messages that are exchanged
(Data mapping tools for EAI
have not disappeared, they have
just become XML/XSLT based)
At the WSDL-level, it should be
possible to describe the
semantics in addition to the
syntax of the service interfaces.

©IKS, ETH Zürich. 46

Modeling interface syntax with WSDL
WSDL defines a service interface (or port type) as a set of operations,
grouping together pairs of messages, which are defined in terms of
parts (with name and data type, defined in an XML schema).
From a WSDL description it is possible to automatically infer (and
validate) the structure of the corresponding SOAP messages.

<message name="getRateRequest">
<part name="country1" type="xsd:string" />
<part name="country2" type="xsd:string" />
</message>

<soap:Body soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<n:getRate> <country1 xsi:type="xsd:string">USD</country1>
<country2 xsi:type="xsd:string">CHF</country2> </n:getRate> </soap:Body>

<soap:Body soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<n:getRate> <country1 xsi:type="xsd:string">usa</country1>
<country2 xsi:type="xsd:string">switzerland</country2> </n:getRate>

</soap:Body>

©IKS, ETH Zürich. 47

Handling data transformations

In this example, both client and
server use WSDL to describe
their interface and SOAP to
exchange a message. Even if we
assume that the two parties are
somehow compatible, this
standardization doesn’t
guarantee interoperability,
unless both services use the
same XML Schema and
(abstracted from the interface
description), they agree on the
semantics of the message.

If it is possible to address this
mismatch, the message cannot
be sent directly, but should be
transformed between the two
schemas while preserving its
semantics.
This transformation can occur at
the client-side (the client knows
how to adapt to a given server),
at the server-side (the server
supports different data models)
or – in a true integration
scenario – in the middle (using a
mediator service)

Client SOAP message Server

Client SOAP message Mediator SOAP message Server

©IKS, ETH Zürich. 48

Modeling interface semantics
Each syntactical element of a
service interface (message, data
structure or operation) has a
precise semantic meaning
associated with it.
This meaning should be taken
into account by clients invoking
the service, so that they can
understand what functionality
is offered by the service
Semantics can be modeled:

using constraints (e.g., in
case of domains having
enumerable elements)
using ontologies (which
formally define a vocabulary
of terms and relationships)
using contracts (pre-
conditions and post-
conditions)

In an integration scenario, the
middleware infrastructure
should preserve the semantics
of the applications to be
integrated as well as provide
support for mediation (the
transformation of messages
between different
representation by mapping
concepts that are shared
between all applications)
If services are described with
WSDL, there is very little
semantics associated with
them.
Thus, there are many extensions
to WSDL that can be used to
model semantics, e.g., using the
Resource Description
Framework (RDF) and OWL
(Web Ontology Language)

SOAP WSDL UDDI

Semantics

Security

Synchronous
RPC

Asynchronous
Messaging

Basic
Interoperability

Messaging
Service

Description
Service

Discovery

WSCI

Reliable
Messaging

Transactions
Semantic Web

OWL-S, RDF

WS-Security

HTTP

WS-Reliability

WS-Transactions

WS-Coordination

SMTP

Conversations

©IKS, ETH Zürich. 50

More information
Take the EAI lecture, if you are interested in doing a
big project using Web services

Read the book:
G. Alonso et al.,
Web Services. Concepts,
Architectures and
Applications, Springer, 2004

ISBN 3-540-44008-9

ETH-BIB 783322
ETH-INFK IK.04.1

