
Distributed Systems
Web Services

Dr. Cesare Pautasso
Computer Science Department
Swiss Federal Institute of Technology (ETHZ)
pautasso@inf.ethz.ch
http://www.inf.ethz.ch/~pautasso

©IKS, ETH Zürich. 2

Web Services

ComponentsWorld Wide
Web

Distributed
Systems Middleware

Web Services in Context

©IKS, ETH Zürich. 3

Web Services

World Wide
Web

Web Services in Context

©IKS, ETH Zürich. 4

Is this a Web Service?

©IKS, ETH Zürich. 5

Web-based Services
Services offered through a Web site

HTTP

HTML

Web Services
Services offered through Web-wide standardized
protocols

Web
Browser

Web
Server

HTTP

SOAP

ServerClient XML

©IKS, ETH Zürich. 6

Extending the Web with Services

Back-end Systems and Databases

CGI Java
ServletPHP

Web Server

Web Browser

HTML/HTTP

ASP
.NET

SOAP/HTTP

WS Client

add your
favourite

here

©IKS, ETH Zürich. 7

Web Services

Components

Web Services in Context

©IKS, ETH Zürich. 8

Services and Components
What is a component?
What is a service?

Component Based Software Engineering (CBSE).
Define system architectures in terms of the
dependencies connecting a set of reusable
components (Spatial dimension)
Service Oriented Architectures (SOA).
The architecture of a distributed system is
defined in terms of the interactions among its
component services (Temporal dimension)

©IKS, ETH Zürich. 9

Components
Software components are reusable
To be used a component must:

be packaged to be deployed as part of some larger
application system
fit with the existing framework used to develop the system
(as an exercise try to use a .NET assembly to make an
Eclipse plug-in and see what happens)

Components can be sold.
Component developers charge on a per-deployment basis:
whenever a new client downloads the component.

There are many component frameworks available for
building distributed systems (e.g., J2EE, DCOM, .NET,
CORBA).
The problem is: they are not compatible.

©IKS, ETH Zürich. 10

Web Services are Components
Web services are reusable too.
To be used a service must:

be published on the Web (once)
advertise its description and location to potential clients
across the Web so that they can access it using standard
protocols

Web Services can be sold too.
Service providers can charge on a per-call basis: each time
an existing client interacts with a service by exchanging a
new message.

Like components, Web services can be reused, composed into
larger systems and (of course) they can be found on the Web.
Unlike components, Web services do not have to be
downloaded and deployed in order to be used by clients.
Instead, a client may discover and access their functionality by
using standard protocols (WSDL, SOAP, UDDI) based on XML.

©IKS, ETH Zürich. 11

Component Interoperability

Enterprise
Java

Beans
DCOM
Objects

Legacy
COBOL

Programs

Eiffel
.NET

Assemblies

CORBA
Objects

Web
Services

Due to lack of interoperability, it is not always
possible to build a distributed system using
heterogeneous components

©IKS, ETH Zürich. 12

Web Services for Interoperability
If the components are published as Web services,
they can interoperate across different component
frameworks. (Interoperability through Wrapping)

Java
Bean

DCOM
Object

Legacy
COBOL

Program

Eiffel
.NET

Assembly

CORBA
Object

Web
Service

©IKS, ETH Zürich. 13

Web Services

Distributed
Systems

Web Services in Context

©IKS, ETH Zürich. 14

Distributed Systems & Web Services
Web services provide standards for developing large
scale distributed systems
One example: “the Grid” is adopting Web services as
standard protocols to build a distributed
infrastructure for utility based computing
Web services on the path of success while CORBA
distributed objects failed (This is nothing technical,
only a matter of widespread industry acceptance)

The
Internet

The
WWW

Web
Services

Semantic
Web

1973 1992 2000 ?

Standard
Network

Standard
User Interface

Standard
API

Standard
API Metadata

©IKS, ETH Zürich. 15

Standards, Platforms and Layers
A layer with a standard interface becomes a stable
platform on which to build the higher layers
The purpose of a platform is also to hide the
complexity of the lower layers
The OS/VM platform example shows that controlling
the standard can bring a great competitive
advantage in the marketplace

Virtual
Machine

Java
VM

Operating
System

Hardware

Microsoft
Windows

Apple
Mac OS

GNU
Linux

Sun
Solaris

x86 PowerPC SPARC

.NET
VM

©IKS, ETH Zürich. 16

Standards for Distributed Systems
Distributed systems are built using standardized layers of
increasingly higher abstraction levels.
It took 20 years to go from the TCP/IP (Internet, 1973) standard
to the HTTP/HTML (World Wide Web, 1992) standards.
By reusing HTTP, the time to standardize SOAP/XML was
halved (Web Services, 2000).

TCP/IP

Ethernet

HTTP
HTML XML

SOAPStandard
Network
Protocol

Standard
User

Interface

Standard
API

Layers

WirelessPOTS

©IKS, ETH Zürich. 17

Layers in Distributed Systems

Client

Presentation Layer

Server

Application Layer

Database

Resource Manager Layer

©IKS, ETH Zürich. 18

Layers in Distributed Systems
Client is any user or program that wants to perform an
operation over the system. To support a client, the system
needs to have a presentation layer through which the user
can submit operations and obtain a result.
The application logic establishes what operations can be
performed over the system and how they take place. It takes
care of enforcing the business rules and establish the
business processes. The application logic can be expressed
and implemented in many different ways: constraints,
business processes, server with encoded logic ...
The resource manager deals with the organization (storage,
indexing, and retrieval) of the data necessary to support the
application logic. This is typically a database but it can also be
a text retrieval system or any other data management system
providing querying capabilities and persistence.

©IKS, ETH Zürich. 19

Layers in Distributed Systems

Presentation Layer

Application Layer

Resource Manager Layer

1-2 years Clients and external
interfaces

2-5 years
Business logic

at the Server

10 years
Database

Management

HTML/HTTP
Standard User Interface

JDBC, ODBC
Standard Data Access

SOAP/XML/HTTP
Standard API

INTEGRATION TIER

ACCESS TIER

CLIENT
TIER

RE
SO

U
RC

E
TI

ER

APP
TIER

wrapper

wrapper

wrapper

db db db

business
object

business
object

business
object

apiapiapi

web
client

java
client

wap
client

WWW servers, J2EE, CGI
JAVA Servlets API

WWW servers, J2EE, CGI
JAVA Servlets API

databases, multi-tier systems
backends, mainframes

databases, multi-tier systems
backends, mainframes

system federations, filters
object monitors, MOM

system federations, filters
object monitors, MOM

TP-Monitors, stored procedures
programs, scripts, beans

TP-Monitors, stored procedures
programs, scripts, beans

WWW and WAP browsers
specialized clients (Java, .NET)

Eclipse RCP, SMS ...

WWW and WAP browsers
specialized clients (Java, .NET)

Eclipse RCP, SMS ... CL
IE

N
T

AC
CE

SS
AP

P
IN

TE
G

RA
TI

O
N

RE
SO

U
RC

E

HTML, SOAP, XML

MOM, HTML, IIOP,
RMI-IIOP, SOAP, XML

MOM, IIOP,
RMI-IIOP, XML

ODBC, JDBC, RPC,
MOM, IIOP, RMI-IIOP

©IKS, ETH Zürich. 21

Web Services

Middleware

Web Services in Context

©IKS, ETH Zürich. 22

Distributing the Layers

Support for
multiple clients

Modular
Application Logic

Data Partitioning
or Replication

In general,
all layers can

be distributed

Presentation Layer

Application Layer

Resource Layer

©IKS, ETH Zürich. 23

A game of boxes and arrows
Each box represents a part of the system.
Each arrow represents a connection between
two parts of the system.
The more boxes, the more modular the
system: more opportunities for distribution
and parallelism.
This allows encapsulation, component based
design, reuse.
The more boxes, the more arrows: more
sessions (connections) need to be maintained,
more coordination is necessary. The system
becomes more complex to monitor and
manage.
The more boxes, the greater the number of
context switches and intermediate steps to go
through before one gets to the data.
Performance suffers considerably.
System designers try to balance the flexibility
of modular design with the performance
demands of real applications. Once a layer is
established, it tends to migrate down and
merge with lower layers.

There is no problem in
system design that
cannot be solved by

adding a level of
indirection.

There is no performance
problem that cannot be

solved by removing a
level of indirection.

©IKS, ETH Zürich. 24

One tier: fully centralized
The presentation layer, application
logic and resource manager are
built as a monolithic entity.
Users/programs access the system
through display terminals but what
is displayed and how it appears is
controlled by the server.
(These are “dumb” terminals).
This was the typical architecture of
mainframes, offering several
advantages:

no forced context switches in
the control flow (everything
happens within the system),
all is centralized, managing and
controlling resources is easier,
the design can be highly
optimized by blurring the
separation between layers.

1-tier architecture

Server

©IKS, ETH Zürich. 25

Two tier: Client/Server
As computers became more powerful, it was
possible to move the presentation layer to the
client. This has several advantages:

Clients are independent of each other:
one could have several presentation
layers depending on what each client
wants to do.
One can take advantage of the
computing power at the client machine
to have more sophisticated presentation
layers. This also saves computer resources
at the server machine.
It introduces the concept of API
(Application Program Interface). An
interface to invoke the system from the
outside. It also allows designers to think
about federating the systems into a
single system.
The resource manager only sees one
client: the application logic. This greatly
helps with performance since there are
no client connections/sessions to
maintain.

2-tier architecture

Server

©IKS, ETH Zürich. 26

Standard Client/Server APIs
Client/server systems introduced the notion of service (the client invokes a
service implemented by the server)
Together with the notion of service, client/server introduced the notion of
service interface (how the client can invoke a given service)
Taken all together, the interfaces to all the services provided by a server
define the server’s Application Program Interface (API) that describes how
to interact with the server from the outside
Web Services standardize the mechanisms used to describe, discover and
access the API offered by a server

resource management
layer

se
rv

er

service
interface

service
interface

service
interface

service
interface

server’s API

serviceserviceserviceservice

©IKS, ETH Zürich. 27

The problem of Client/Server
the client is the point of
integration (increasingly
fat clients)
The responsibility of
dealing with
heterogeneous systems is
shifted to the client.

This is tremendously
inefficient from all points of
view (software design,
portability, code reuse,
performance since the client
capacity is limited, etc.).
There is very little that can be
done to solve this problems if
staying within the 2 tier
model.

Server A Server B

If clients want to access two
or more servers, a 2-tier
architecture causes several
problems:

the underlying systems
don’t know about each
other
there is no common
business logic

©IKS, ETH Zürich. 28

Middleware
Middleware is just a level of
indirection between clients and
other layers of the system.
It introduces an additional layer of
business logic encompassing all
underlying systems.
By doing this, a middleware system:

simplifies the design of the
clients by reducing the number
of interfaces,
provides transparent access to
the underlying systems,
acts as the platform for inter-
system functionality and high
level application logic, and
takes care of locating resources,
accessing them, and gathering
results.

But a middleware system is just a
system like any other! It can also be
1 tier, 2 tier, 3 tier ...

Integration logic

Clients

Resource managers

Application logic

Server A Server B

Middleware

Middleware

©IKS, ETH Zürich. 29

Middleware 3-tier Architectures
External clients

connecting logic

control

user
logic

internal
clients

2
tie

r s
ys

te
m

s

Resource
manager

s

wrappers

middleware

Resource
manager

2 tier system

m
id

dl
ew

ar
e

sy
st

em

External client

©IKS, ETH Zürich. 30

N-tier: connecting to the Web
N-tier architectures result from
connecting several three tier
systems to each other and/or
by adding an additional layer to
allow clients to access the
system through a Web server
The Web layer was initially
external to the system (a true
additional layer); today, it is
slowly being incorporated into
a presentation layer that
resides on the server side (part
of the middleware
infrastructure in a three tier
system, or part of the server
directly in a two tier system)
The addition of the Web layer
led to the notion of
“application servers”, which
was used to refer to
middleware platforms
supporting access through the
Web

client

resource management
layer

application logic
layer

information system

N-tier
architecture

middleware

presentation
layer

Web server

Web browser

HTML filter

©IKS, ETH Zürich. 31

Limitations of Middleware
Non-standard interfaces. Traditional middleware
systems and tools suffer from lack of
standardization: they are not compatible. Thus, it is
very expensive to build integrated distributed
systems across different middleware platforms.
Lack of trust. With Web Services the internal “API” of
a company is exposed to the Internet. How to trust
the clients? Building integrated systems spawning
across different trust domains can be difficult.
Middleware systems are (logically) centralized.
Thus, there is no place for them in B2B Integration
scenarios as they should be distributed across all
partners. Point to Point integration does not scale.
Interactions across organizational boundaries may
be slow and should be handled asynchronously.

©IKS, ETH Zürich. 32

Limitations of Middleware

middleware

Middleware

Company A

Company B

Company C

A direct connection between different
organizations is not allowed (security
breach) and sometimes not possible
(incompatible middleware)

©IKS, ETH Zürich. 33

Limitations of Middleware

middleware

Middleware

Company A

Company B

Company C

Conceptually, it could be possible to use a
global middleware. However, in practice,
there is no “place” for it.

Global
Middleware

©IKS, ETH Zürich. 34

Limitations of Middleware

middleware

Middleware

Company A

Company B

Company C

Point to Point solutions are expensive and
do not scale well with the number of
systems to be integrated

©IKS, ETH Zürich. 35

Web Services for integration

middleware

Middleware

Company A

Company B

Company C

Publishing the systems to be integrated
as Web Services simplifies the integration
and keeps the companies decoupled

WS

Web Services
Wrapper

Web Services protocols

©IKS, ETH Zürich. 36

WS Wrapper

Web Services and Middleware
Web Services can be seen as the natural evolution of
existing Middleware systems:

Web Services standards enable the interoperability of
existing Middleware platforms and tools
Enterprise Application Integration made easier by using
Web Services
Business to Business integration enabled by common
interface standards
(“Unlike CORBA protocols, SOAP goes through firewalls”)

Legacy
Application

WS Wrapper

Legacy
Application

SOAP-based Middleware

WS Interface

Business
A

WS Interface

Business
B

SOAP across the Internet

©IKS, ETH Zürich. 37

Web Services and Middleware
The Web services architecture represented by SOAP,
UDDI, and WSDL is a direct descendant of conventional
middleware platforms. They can be seen as the most
basic extensions that are necessary to allow conventional
synchronous (RPC based) middleware to achieve
interoperability.
The model and even the notation followed in this
architecture mimics to a very large extent what has
already been done in RPC, RMI, CORBA, etc.
This dependency gives a very good hint of what can be
done with these technologies today and what is missing
to obtain a complete distributed systems platform
First implementations are just extensions of existing
platforms to accept invocations through a Web service
interface (e.g., database stored procedure published as
Web services)

©IKS, ETH Zürich. 38

Web Services

Defining Web Services

©IKS, ETH Zürich. 39

Web services are not…
…the latest revolutionary technology which will
enable seamless interoperability and solve all
integration problems across the entire World Wide
Web because all major software vendors are going
to support Web services related standards with a
new wave of powerful automatic tools

[Hint: Try to recognize hype when you see it]

©IKS, ETH Zürich. 40

What are Web services?
The term Web services has become nowadays very
popular and it is not always used with the same
meaning.
At one extreme, a Web service is any application program
which is accessible through the World Wide Web
More precisely, W3C defines Web services as: a software
application identified by a URI, whose interfaces and
bindings are capable of being defined, described and
discovered as XML artifacts.
A Web service supports direct interactions with other
software agents using XML-based messages exchanged via
the Internet
The long-term goal is just-in-time integration of
applications by discovering and orchestrating Web
services available on the network

©IKS, ETH Zürich. 41

Properties of Web Services
The W3C definition emphasizes different aspects:

In order to be accessed by clients, a Web Service
should be defined, described and discovered.
XML is the foundation for all standards that are going
to be used (SOAP, WSDL, UDDI) to do so.
Web services are intended to be used as components
that can be readily integrated into more complex
distributed applications.
Web services are meant for software based
consumption (clients are programs)

Web-based applications are meant to be used by
humans equipped with a WWW browser
(clients are users)

©IKS, ETH Zürich. 42

Benefits of Web services
One important difference with conventional
middleware is related to the standardization efforts
at the W3C that should guarantee:

Platform independence (Hardware, Operating
System)
Reuse of existing networking infrastructure (HTTP
has become ubiquitous)
Programming language neutrality
(.NET talks with Java, and vice versa)
Portability across Middleware tools of different
Vendors
Web services are loosely coupled, reusable and can
be adopted incrementally

©IKS, ETH Zürich. 43

Problems of Web services
What is the price to pay for interoperability?
Currently Web services standards are still rapidly
evolving
A good thing about standards is that there are so
many to choose from: Many WS-* standards are
competing and overlapping.
Not all standards are supported by tools. Tools must
play catch-up with new standard versions.
The performance of some of the available tools and
protocols is quite poor.

©IKS, ETH Zürich. 44

Web Services Architecture
A popular interpretation of
Web services is based on IBM’s
Web service architecture based
on three elements:

1. Service requester: The
potential user of a service (the
client)

2. Service provider: The entity
that implements the service
and offers to carry it out on
behalf of the requester (the
server)

3. Service registry: A place where
available services are listed
and that allows providers to
advertise their services and
requesters to lookup and query
for services

©IKS, ETH Zürich. 45

Main Web Services Standards

UDDI

SOAP

WSDL

The Web service architecture
proposed by IBM is based on
two key concepts:

architecture of existing
synchronous middleware
platforms
current specifications of
SOAP, UDDI and WSDL

The architecture has a
remarkable client/server flavor
It reflects only what can be
done with

SOAP (Simple Object
Access Protocol)
UDDI (Universal
Description and Discovery
Protocol)
WSDL (Web Services
Description Language)

©IKS, ETH Zürich. 46

Plan
Context: What is the problem?
Interoperability in distributed systems
Solution: Standardization

Web Service Invocation: SOAP
Web Service Description: WSDL
Web Service Discovery: UDDI

Advanced Topics
Web Service Coordination
Web Service Composition

©IKS, ETH Zürich. 47

The Web services stack

SAML
S/MIMEWS-SecuritySecurity

BTPBTPWS-
TransactionsTransactions

ebXML
registriesUDDIDiscovery

ebXML CPAContracts

BPMLBPMLBPEL4WS
WSFL/XLANG

Business
processes

WS-
CoordinationChoreography

ebXML
BPSSWSCI

WSCLConversations
DAML-S

WSELNonfunctional
description

ebXML CPPRDFWSDLDescription

ebXML MSSSOAPMessaging

ebXMLSemantic WebWSDL-based

©IKS, ETH Zürich. 48

More information
Take the EAI lecture, if you are interested in doing a
big project using Web services

Read the book:
G. Alonso et al.,
Web Services. Concepts,
Architectures and
Applications, Springer, 2004
ISBN 3-540-44008-9

ETH-BIB 783322
ETH-INFK IK.04.1

