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Transaction Processing

Why is transaction processing relevant?

Most of the information systems used in businesses are transaction based (either
databases or TP-Moniforsy. The market for transaction processing is many tens
billions of dollars per year

Not long ago, transaction processing was used mostly in large companies (both
users and providers). This is no longer the case (CORBA, WWW, Commodity TP-
Monitors, Internet providers, distributed computing)

Transaction processing is not just database technology, it is core distributed
systems technology

Why distributed transaction processing?

It is an accepted, proven, and tested programming model and computing paradigm
for complex applications

The convergence of many technologies (databases, networks, workflow
management, ORB frameworks, clusters of workstations ...) is largely based on
distributed transactional processing
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From business to transactions

o A business transaction usualll involves an exchange between two or more entities
(selling, buying, renting, booking ...).
o When computers are considered, these business transactions become electronic

transactions:
TRANSACTION
BUYER € > SELLER

book-keeping

o The ideas behind a business transaction are intuitive. These same ideas are used in
electronic transactions.

o Electronic transactions open up many possibilities that are unfeasible with traditional

accounfmszems.
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The problems of electronic transactions

Transactions are a great idea:
o Hack a small, cute program and that's it.

Unfortunately, they are also a complex idea:

o From a programming point of view, one must be able to encapsulate the transaction
(not everything is a transaction).

o One must be able to run high volumes of these transactions (buyers want fast
response, sellers want to run many transactions cheaply).

o Transactions must be correct even if many of them are running concurrently (= at the
same time over the same data).

o Transactions must be atomic. Partially executed transactions are almost always
incorrect (even in business transactions).

o While the business is closed, one makes no money (in most business). Transactions
are “mission critical”.

o Legally, most business transactions require a written record. So do electronic
transactions.
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What is a transaction?

Transactions originated as “spheres of control” in which to encapsulate certain behavior of
particular pieces of code.

o A transaction is basically a set of service invocations, usually from a program
(although it can also be interactive).

o A transaction is a way to help the programmer to indicate when the system should
take over certain tasks (like semaphores in an operating system, but much more
complicated).

o Transactions help to automate many tedious and complex operations:
record keeping,
concurrency control,
recovery,
durability,
consistency.

o |t is in this sense that transactions are considered ACID (Atomic, Consistent,
Isolated, and Durable).
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Transactional properties

These systems would have been very difficult to build without the concept of transaction.
To understand why, one needs to understand the four key properties of a transaction:

o ATOMICITY: necessary in any distributed system (but also in centralized ones). A
transaction is atomic if it is executed in its entirety or not at all.

o CONSISTENCY: used in database environments. A transactions must preserve the data
consistency.

o |SOLATION: important in mulfi-rrogramming, multi-user environments. A transaction
must execute as if it were the only one in the system.

o DURABILITY: important in all cases. The chan?es made by a transaction must be
permanent (= they must not be lost in case of failures).

©Gustavo Alonso. ETH Ziirich. V$2004-6A 7

Transactional properties

C

consistent Transaction > consistent
database database
A
consistent TXn inconsistent
database database
Failure
; Txn1l A
congistent - congistent
database database
Txn 2
> inconsistent
database
consistent TL”; ecovery
database database
? recovery Sélrst aghm \) inconsistent
e e e e e e 2 S T2 database
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Transactional atomicity

o Transactional atomicity is an “all or nothing” property: either the entire transaction
takes place or it does not take place at all.

o A transaction often involves several operations that are executed at different times
(control flow dependencies). Thus, transactional atomicity requires a mechanism to
eliminate partial, incomplete results (a recovery protocol).

Txn
consistent inconsistent
database database

Failure

RECOVERY datl%base
MANAGER 9

xn\

(_X Failure
congistent congistent inconsistent
database database database
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Transactional isolation

o lsolation addresses the problem of ensuring correct results even when there are many
transactions being executed concurrently over the same data.

o The goal is to make transactions believe there is no other transaction in the system

(isolation).
o This is enforced by a concurrency control protocol, which aims at guaranteeing
serializability.
congistent Txn1 > congistent
database database
Txn 2 o
> inconsistent
database
Txn 1 > CONCURRENCY
Txn 2 > CONTROL

consistent —_— consistent —_— consistent
database database database
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Transactional consistency

o Concurrency control and recovery protocols are based on a strong assumption: the
transaction is always correct.

o |n practice, transactions make mistakes (introduce negative salaries, empty social
security numbers, different names for the same person ...). These mistakes violate
database consistency.

o Transaction consistency is enforced through integrity constraints:
Null constrains: when an attribute can be left empty.
Foreign keys: indicating when an attribute is a key in another table.

Check constraints: to specify general rules (“employees must be either managers
or technicians”).

o Thus, integrity constraints acts as filters determining whether a transaction is
acceptable or not.

o NOTE: integrity constraints are checked by the system, not by the transaction
programmer.
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Transactional durability

o Transactional system often deal with valuable information. There must be a guarantee
that the changes introduced by a transaction will last.

o This means that the changes introduced by a transaction must survive failures (if you
deposit money in your bank account, you don't want the bank to tell you they have lost
all traces of the transaction because there was a disk crash).

o In practice, durability is guaranteed by using replication: database backups, mirrored
disks.

o Often durability is combined with other desirable properties such as availability:

Availability is the percentage of time the system can be used for its intended
purpose (common requirement: 99.86% or 1 hour a month of down time).

Availability plays an important role in many systems. Consider, for instance, the
name server used in a CORBA implementation.

©Gustavo Alonso. ETH Ziirich. V§2004-GA 12




A Simple Transaction Manager (l)

transactions TRANSACTION
(r,w,c,a) > MANAGER
restart | read, write, commit, abort
ga.ftef system SCHEDULER
ailure) (concurrency
control .
T read, write,
I commit, abort
RECOVERY
MANAGER
fetch, flush |
read, write CACHE read, write
| MANAGER
DETI'AA%IAESE DATA
MANAGER CACHE
LOG
stable stor age main memory
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A Simple Transaction Manager (ll)

o Each one of the modules shown is a complex component that can be optimized by
using clever tricks (engineering, not theory).

o In practice, these modules tend to be heavily interconnected (if one wants
performance, forget about modularity and nice, clear cut interfaces).

o A crucial aspect of a transaction manager is to ensure that operations are executed in
the proper order.

o When a module indicates “A should be executed before B, this should be the case at
all levels, independently of the optimizations performed at each level. There are two
ways to quarantee such property:

FIFO queues between each module: force sequential processing but have problems
with threads and multi-processing.

Handshaking: If A must happen before B, B is not passed to a lower module until
the execution of A has not been confirmed by the lower module.
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Example Application (ATM)

Example 1: Automated Teller Machines (ATM)

o Tables:
AccountBalance (Acct#, balance): the accounts and the money in them
HotCard-List (Acct#): card that have been canceled/stolen/suspended.

AccountVelocity (Acct#,SumWithdrawals): stores the latest transactions and the
accumulated amount.

Postinglog (Acct# ATMid,Amount): a record of each operation.
o Typical operation (money withdrawal):
Get input (Acct#, ATM#, type, PIN, Txn-id, Amount).
Write request to PostinglLog.
Check PIN
Check Acct# with HotCard-List table.
Check Acct# with AccountVelocity table
Update AccountVelocity table.
Update balance in AccountBalance table.
Write withdrawal record to Postinglog
©ustavo Alorlo it it thansaction and dispense money. V$2004-6A 15

Example Application (ATM)

o Size: with several hundred ATMs and about one million customers, the database takes
25-50 MB.

o Load: the system is configured to deal with the peak load: about one transaction per
minute per ATM. Under normal circumstances, one mirrored disk (two disks doing the
same operations) can handle 5 transactions per second (tps). Assuming 5 1/0
operations per transaction, one mirrored disk can then handle about 300 ATMs.

o The Postinglog can be updated off-line (at night).

o Before, these systems were based on snapshot replication. Today, many of these
systems access on-line databases.
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Example Application (Stock Exchange)

Example 2: Stock Exchange.
o Tables:
Users: list of traders and market watchers.
Stocks: list of traded stocks.
BuyOrders/SellOrders: all the orders entered during the day
Trades: all trades executed during the day.
Price: buy and sell total volume, and numbers of orders for each stock and price.
Log: all users’ requests and system replies.

NotificationMssgs: all messages sent to the users (usually, confirmations of an
operation).

o Typical operation (Execute Trade):
Read information about the stock from the Stocks table.
Get timestamp.
Read scheduled trading periods for the stock.
Check validity of operation (time, value, prices).

If valid, find a matching trade operation, update Trades, NotificationMssgs,
©6ustavo AlorQrdevg;iRrices, Stocks. V$2004-6A 17

Example Application (Stock Exchange)

Write the system’s response to the log.
Commit the transaction.
Broadcast the new book situation.

o Size: 10 stock exchanges connected, real-time distributed trading, total database size
2.6 6GB.

o Load: Peak daily load is 140.000 orders. The peak-per-second load involves 180 disk
1/0s and executing 300 million instructions per second.
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Some bagic advanced transaction models
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Distributed Transactions gﬁ

o The transaction model described so far is known as “flat model”, i.e., transactions
have only two levels, the parent transaction and the children transaction

o Distributed transactions are difficult to model with flat transactions (for instance, a
chain of TRPCs), hence more complex models are needed

o The most common model for distributed transactions is the nested model in which
operations of a transaction can be transactions themselves

o One of the most important aspects of distributed transactions is the problem of
atomic commitment. Nested transactions help with this problem by indicating when
transactions at different systems need to be committed
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Pros and Cons of Atomicity

consistent Transaction > consistent
database database
consistent Txn
database

Recovery

If aprogram findsthereissomeerror, it sufficesto
abort the transaction. Therecovery mechanism
ensuresthe effects of the transaction will be
eliminated. Thisisboth good and bad.
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Pros and Cons of Atomicity

o |f you are a transaction programmer, every time there is something that goes wrong
(there is not enough funds, for instance), it is enough to execute ROLLBACK WORK
to go back to the beginning of the transaction:

consistent Txn
database

ROLLBACK
WORK

o But is transactions are long, or complex, aborting the entire transaction may be a
waste of effort. In many cases, one does not want to o all the way to the beginning
but to some intermediate point where one is sure things were correct, and then take

again from there.
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Savepoints

o To avoid this problem, savepoints are used.
o A savepoint records the current state of the execution of a transaction.

o When invoking ROLLBACK WORK; one indicates to which point one wants to rollback
(to the beginning or to a savepoint).

BEGIN (1)
oP1
QP2
SAVEP (2) .
oP3 J OP 4
OP5
ROLLB(2) AVEP)
O OP9
OP7 OP 10
OP8 OP 11
ROLLE(S) COMMIT
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Triggered Commits

How can savepoints be implemented ?

Consider each set of operations between two savepoints as an atomic unit.
A ROLLBACK(x) aborts all atomic units all the way back to savepoint x.
A COMMIT at the end, triggers a chain of commits for each atomic unit.

O O o O

BEGIN@) <]~
OP1 .
OP2 I
SAVEP(2) <l o ____
OP 3 J OP 4 :
ABORT (2) OP5 I
SAVEP(3) «f-mcococoocooooo
OP6 OoP9 !
OoP7 OP 10 .
OP8 OP11 |
ABORT(3) COMMIT | |
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Persistent Savepoints ?

o Savepoints are a great idea:

if something goes wrong, we can rollback to different parts of the execution and
resume from there.

rollback is performed by the system using the standard recovery mechanism.
o Can this great idea be generalized?

o |f savepoints are made persistent, we may be able to resume the execution of a
transaction even after crash failures!

o In principle yes, but in practice:
The database can recover to a savepoint, but the application program may not be

able to do the same.
User program

A crash
\J failure
restart > -

Database
transaction

»

restart

©Gustavo Alonso. ETH Ziirich. V$2004-6A 25

Chained Transactions

o Note that the atomic units used in savepoints are almost like a transaction.

o The important difference is that the transaction context is kept (locks are not
released until commit, not needed ones can be released).

Chained transactions allow to commit one transaction and pass its context to the next.

If a failure occurs, committed transactions are safe, only the last active transaction
will be aborted.

o However, there is no possibility of rollback to a previous transactions (now they are
really committed).

©Gustavo Alonso. ETH Ziirich.

BEGIN (1)

oP1

oP2 OP 3 OP5

CHAIN S 8E$
COMMIT




Non-Flat Transaction Models ﬁ&

o Savepoints and chained transactions point the need to structure sequences of
interactions with the database.

o The transactions we have been discussed so far are known as flat transactions.
o A chained transaction can be seen as a first step towards a non-flat transaction model:

parent

children

o When these ideas are generalized, one arrives at the nested transaction model.
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Nested Transactions

o A nested transaction is a tree of transactions.
Transactions at the leaves are flat transactions.

Transactions can either commit or rollback. The commit is conditional to the parent
transaction’s commit (hence, transactions commit only if the root commits).

o Rollback of a transaction causes all of its children to also rollback.

root
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Nested Transaction Structure

©Gustavo Alonso. ETH Ziirich.

Nested Transaction Rules

BEGIN ~~~7= S - mmooooooos - COMMIT
BOT - --~-- - C BOT ~®------ ®--C

B-~™=--c||B-""""" R| [B-""""- R|I| B-~""" C
B—C
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o Nested Transactions are like a combination of savepoints and chained transactions.

o They follow these three rules (node = txn.):

Commit Rule: When a node wants to commit, it passes its context to the parent
node (like in chained txns.), it will actually commit when the root node commits

(like in savepoints).

Rollback Rule: If a node does a rollback, all of its children must also rollback.

Visibility Rule: When a node “commits” all of its changes become visible to the
parent (because the child passes its context to the parent). Concurrent siblings
are isolated from each other (they see each other as different transactions). The
parent can make certain objects accessible to the children, thereby allowing the

context of a child to pass to another child.

o All other notions (serializability, recoverability ...) still apply across different

nested transactions

o For distributed transactions, the important aspect is how to commit all transactions,

not so much the isolation aspects

©Gustavo Alonso. ETH Ziirich.
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Atomic commitment in practice (2PC-3PC)
Atomic Commitment =i

The
Consensus

Problem 3 Phase
Commit
2 Phase
Commit
Applications
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The Consensus (agreement) Problem

o Distributed consensus is the problem of
reaching an agreement among all working
processes on the value of a variable

o Consensus is not a difficult problem if the
system is reliable [no site failures, no
communication failures)

o Asynchronous = no timing assumptions can be
made about the speed of processes or the
network delay (it is not possible to distinguish
between a failure and a slow system)

The impossibility result implies that there is always

a chance to remain uncertain (unable to make a
decision), hence:

If failures may occur, then all entirely
asynchronous commit protocols may block.

No commit protocol can guarantee independent
recovery (if a site fails when being uncertain,
upon recovery it will have to find out from
others what the decision was).

This is a very strong result with important
implications in any distributed system.

In an asynchronous environment wher e failures can occur
reaching consensus may beimpossible

©Gustavo Alonso. ETH Ziirich.

Generals problem
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o To succeed the generals must attack at the
same time

o The generals can only communicate through
messages

o The system is asynchronous: messages can be
lost or delayed indefinitely

Under these circumstances,
the generals will never

be able to agree on a
simultaneous attack,

that is, they can never reach
consensus

©Gustavo Alonso. ETH Ziirich.

The impossibility in the generals problem
arises from the need to have complete
knowledge: | need to know my state, the
other’s state, that the other knows my state,
that the other knows that | know her state, that
the other knows that | know that she knows my
state ...
If the system is entirely asynchronous, this
problem cannot be solved by simply exchanging
messages
There are many forms of this problem and
atomic commitment is one of them:
all sites must decide on whether to
commit or abort a transaction and all
must make the same decision
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Atomic Commitment

Properties to enforce:

o AC1 = All processors that reach a decision reach the same one (agreement,
consensus).

o AC2 = A processor cannot reverse its decision.

o AC3 = Commit can only be decided if all processors vote YES (no imposed
decisions).

o AC4 = If there are no failures and all processors voted YES, the decision will be to
commit (non triviality).

o AC5 = Consider an execution with normal failures. If all failures are repaired and no
more failures occur for sufficiently long, then all processors will eventually reach a
decision (liveness).
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Simple 2PC Protocol and its correctness

PROTOCOL: CORRECTNESS:
o Coordinator send VOTE-REQ to all The protocol meets the 5 AC conditions (I - V):
participants. o ACl = every processor decides what the
o Upon receiving a VOTE-REQ, a participant coordinator decides (if one decides to abort,
sends a message with YES or NO (if the vote the coordinator will decide to abort).
is NO, the participant aborts the transaction o AC2 = any processor arriving at a decision
and stops). “stops”.
o Coordinator collects all votes: o AC3 = the coordinator will decide to commit
All YES = Gommit and send COMMIT to if all decide to commit (all vote YES).
all others. o AC4 = if there are no failures and everybody
Some NO = Abort and send ABORT to votes YES, the decision will be to commit.
all which voted YES. o AC5 = the protocol needs to be extended in
o A participant receiving COMMIT or ABORT case of failures (in case of timeout, a site may
messages from the coordinator decides need to “ask around").

accordingly and stops.
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Timeout Possibilities

COORDINATOR

some vote NO
ABORT
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Timeout Possibilities mﬁﬁ
PARTICIPANT

COMMIT
received

vote YES

wait for
\VVOTE-REQ

received
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Timeout and termination

In those three waiting periods:

o If the coordinator times-out waiting for votes:
it can decide to abort (nobody has decided
anything yet, or if they have, it has been to
abort)

o If a participant times-out waiting for VOTE-
REQ: it can decide to abort (nobody has
decided anything yet, or if they have, it has
been to abort)

o If a participant times-out waiting for a

decision: it cannot decide anything unilaterally,

it must ask (run a Cooperative Termination

Protocol). If everybody is in the same situation

no decision can be made: all processors will

block. This state is called uncertainty period

©Gustavo Alonso. ETH Ziirich.

Recovery and persistence

When in doubt, ask. If anybody has decided, they

will tell us what the decision was:

There is always at least one processor that has
decided or is able to decide (the coordinator
has no uncertainty period). Thus, if all failures
are repaired, all processors will eventually
reach a decision

If the coordinator fails after receiving all YES
votes but before sending any COMMIT
message: all participants are uncertain and will
not be able to decide anything until the
coordinator recovers. This is the blocking
behavior of 2PC (compare with the
impossibility result discussed previously)
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Processors must know their state to be able to tell
others whether they have reached a decision.
This state must be persistent:

o Persistence is achieved by writing a log record.

This requires flushing the log buffer to disk
(170).

o This is done for every state change in the
protocol.

This is done for every distributed transaction.

This is expensive!

©Gustavo Alonso. ETH Ziirich.

When sending VOTE-REQ, the coordinator
writes a START-2PC log record (to know the
coordinator).

If a participant votes YES, it writes a YES
record in the log BEFORE it send its vote. If it
votes NO, then it writes a NO record.

If the coordinator decides to commit or abort,
it writes a COMMIT or ABORT record before
sending any message.

After receiving the coordinator's decision, a
participant writes its own decision in the log.
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Linear 2PC ﬁ

o Linear 2PC commit exploits a particular network configuration to minimize the number
of messages:

©Gustavo Alonso. ETH Ziirich. V$2004-6A 41

Linear 2PC

o The total number of messages is 2n instead of 3n, but the number of rounds is 2n
instead of 3
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3 Phase Commit Protocol

2PC may block if the coordinator fails after having
sent a VOTE-REQ to all processes and all
processes vote YES. It is possible to reduce
the window of vulnerability even further bx
using a slightly more complex protocol (3PC).

In practice 3PC is not used. It is too expensive
(more than 2PC) and the probability of
blocking is considered to be small enough to
allow using 2PC instead.

But 3PC is a good way to understand better the
subtleties of atomic commitment

©Gustavo Alonso. ETH Ziirich.

Blocking in 2PC

We will consider two versions of 3PC:

o One capable of tolerating only site failures (no
communication failures). Blocking occurs only
when there is a total failure (every process is
down). This version is useful if aIY participants
reside in the same site.

o One capable of tolerating both site and
communication failures (based on quorums).
But blocking is still possible if no quorum can
be formed.
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Why does a process block in 2PC?

o If a process fails and everybody else is
uncertain, there is no way to know whether this
process has committed or aborted (NOTE: the
coordinator has no uncertainty period. To block
the coordinator must fail).

o Note, however, that the fact that everzbody is
uncertain implies everybody voted YES!

o Why, then, uncertain processes cannot reach a
decision among themselves?

©Gustavo Alonso. ETH Ziirich.

The reason why uncertain process cannot make a
decision is that being uncertain does not mean
all other processes are uncertain. Processes
may have decided and then failed. To avoid this
situation, 3PC enforces the following rule:

o NB rule: No operational process can decide to
commit if there are operational processes that
are uncertain.

How does the NB rule prevent blocking?

p=

('
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Avoiding Blocking in 3P0

The NB rule guarantees that if anybody is uncertain, nobodY can have decided to commit.
Thus, when running the cooperative termination protocol, if a process finds out that
everybody else is uncertain, they can all safely decide to abort.

o The consequence of the NB rule is that the coordinator cannot make a decision by
itself as in 2PC. Before making a decision, it must be sure that everybody is out of
the uncertainty area. Therefore, the coordinator, must first tell all processes what is
going to happen: (request votes, prepare to commit, commit). This implies yet another
round of messages!
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3PC Coordinator 5&

al ACKs
received

' Possible time-out actions
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3PC Participant

wait for
commit

vote YES pre-commit commit
received received
wait for
abort
received
vote NO

@ Possible time-out actions
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3PC and Knowledge (using the NB rule)

The NB rule is used when time-outs occur
(remember, however, that there are no
communication failures):

3PC is interesting in that the processes know what
will happen before it happens:

o Once the coordinator reaches the “beast pre-

commit”, it knows the decision will be to
commit.

o  Once a participant receives the pre-commit
message from the coordinator, it knows that
the decision will be to commit.

Why is the extra-round of messages useful?

o The extra round of messages is used to spread
knowledge across the system. They provide
information about what is going on at other
processes (NB rule).

©Gustavo Alonso. ETH Ziirich.

If coordinator times out waiting for votes =
ABORT.

If participant times out waiting for vote-req =
ABORT

If coordinator times out waiting for ACKs =
ianore those who did not sent the ACK! (at
this stage everybody has agreed to commit).

If participant times out waiting for pre-commit
= sfill in the uncertainty period, ask around.
If participant times out waiting for commit
message = not uncertain any more but needs
to ask around!
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Persistence and recovery in 3PC

Similarly to 2PC, a process has to remember its
previous actions to be able to participate in
any decision. This is accomplished by recording
every step in the log:

o Coordinator writes “start-3PC" record before
doing anything. It writes an “abort” or
“commit” record before sending any abort or
commit message.

o Participant writes its YES vote to the log
before sending it to the coordinator. If it votes
NO, it writes it to the log after sending it to
the coordinator. When reaching a decision, it
writes it in the log (abort or commit).

©Gustavo Alonso. ETH Ziirich.

Termination Protocol

Processes in 3PC cannot independently recover

unless they had already reached a decision or
they have not participated at all:

If the coordinator recovers and finds a “start
3PC" record in its log but no decision record,
it needs to ask around to find out what the
decision was. If it does not find a “start 3PC",
it will find no records of the transaction, then
it can decide to abort.

If a participant has a YES vote in its log but no
decision record, it must ask around. If it has
not voted, it can decide to abort.

V$2004-GA 49

Elect a new coordinator.

New coordinator sends a “state req” to all
processes. participants send their state
(aborted, committed, uncertain, committable).
TR1 = If some “aborted” received, then abort.
TR2 = If some “committed” received, then
commit.

TR3 = If all uncertain, then abort.

TR4 = If some “committable” but no
“committed” received, then send “PRE-
COMMIT" to all, wait for ACKs and send
commit message.

©Gustavo Alonso. ETH Ziirich.

TR4 is similar to 3PC, have we actually solved the

[0]

problem?

Yes, failures of the participants on the
termination protocol can be ignored. At this
stage, the coordinator knows that everybody is
uncertain, those who have not sent an ACK
have failed and cannot have made a decision.
Therefore, all remaining can safely decide to
commit after going over the pre-commit and
commit phases.

The problem is when the new coordinator fails
after asking for the state but before sending
any pre-commit message. In this case, we have
to start all over again.
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Partition and total failures

This protocol does not tolerate communication
failures:

o A site decides to vote NO, but its message is
lost.

o All vote YES and then a partition occurs.
Assume the sides of the partition are A and B
and all processes in A are uncertain and all
processes in B are committable. When they run
the termination protocol, those in A will decide
to abort and those in B will decide to commit.

o This can be avoided is quorums are used, that
is, no decision can be made without having a
quorum of processes who agree (this
reintroduces the possibility of blocking, all
processes in A will block).

©Gustavo Alonso. ETH Ziirich.

2PC in Practice

Total failures require special treatment, if after the

total failure every process is still uncertain, it
is necessary to find out which process was the
last on to fail. If the last one to fail is found
and is still uncertain, then all can decide to
abort.

Why? Because of partitions. Everybody votes
YES, then all processes in A fail. Processes in
B will decide to commit once the coordinator
times out waiting for ACKs. Then all processes
in B fail. Processes in A recover. They run the
termination protocol and they are all uncertain.
Following the termination protocol will lead
them to abort.
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o 2PC is a protocol used in many applications from distributed systems to Internet

environments

o 2PC is not only a database protocol, it is used in many systems that are not
necessarily databases but, traditionally, it has been associated with transactional

systems

o 2PC appears in a variety of forms: distributed transactions, transactional remote
procedure calls, Object Transaction Services, Transaction Internet Protocol ...

o In anY of these systems, it is important to remember the main characteristic of 2PC:

if fai

ures occur the protocol may block. In practice, in many systems, blocking does

not happen but the outcome is not deterministic and requires manual intervention

©Gustavo Alonso, ETH Zurich.
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2PC

COORDINATOR

Prepare-Log

Comnit

Abort-Log

Ack

Hwwo) ajop

Vote Yes -Log

Commit-Log

@ Vote Abort N
Abort-Log

PARTICIPANT Vote Abort
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ORB

Application Objects Common Facilities

13X

SOFTWARE BUS (ORB)

Common Object Services

naming events security  transactions
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Object Transaction Service

o The OTS provides transactional guarantees to the execution of invocations between
different components of a distributed application built on top of the ORB

o The OTS is fairly similar to a TP-Monitor and provides much of the same functionality
discussed before for RPC and TRPC, but in the context of the CORBA standard

o Regardless of whether it is a TP-monitor or an OTS, the functionality needed to
support transactional interactions is the same:

transactional protocols (like 2PC)
knowing who is participating
knowing the interface supported by each participant

©6Gustavo Alonso, ETH Zurich.

Object Transaction Service
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Assume App A wantsto updateits database and also that in B

DB :

Application
A

Application
B

E DB
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Object
Transaction
Service
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Object Transaction Service =k

Application Application

Object
Transaction
Service
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Object Transaction Service

Application Application

OTS now knows Object
that thereisdatabase| ~ Transaction
behind App A Service
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Object Transaction Service

... but the transaction does not commit
TXN(2) I

e .Application Application e
DB A B DB

-

<),

Object
Transaction
Service
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Object Transaction Service

Application Application
A | B
Call

DB

Object
Transaction
Service

©Gustavo Alonso, ETH Zurich. VS$2004-6A 60




Object Transaction Service =k

Application Application

ey
DB A I B DB

Object OTS now knows
Transaction that thereis database
Service behind App B
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Object Transaction Service

... but the transaction does not commit |TXN(1)

e Application Application
DB A B DB

-

<),

Object
Transaction
Service
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Object Transaction Service =k

Application Application
DB A B DB

M Object
Transaction
Service
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Object Transaction Service mﬂ
e Application Application e
DB A B DB

2PC
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Object
Transaction
Service

2PC
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0TS Sequence of Messages

DBA APPA begin OTS APPB DBB
register
TXN
invoke
register
TXN
commit
prepare prepare
voté ves voteves ~
| commit commit BN

©6Gustavo Alonso, ETH Zurich.

Transaction Propagation & Resource Registration ﬁ@
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o When a call is made to another server,
somebody has to know that this call belongs to
a given transaction. There are two ways of
doing this:

o  Explicit (manual): the invocation itself
containg the transaction identifier. Then, when
the application registers the resource manager,
it uses this transaction identifier to say to
which transaction it is “subseribing”

o lmplicit (automatic): the call is made through
the OTS, which will forward the transaction
identifier along with the invocation. This
req:ires to link with the OTS library and to
make all methods involved transactional

©Gustavo Alonso. ETH Ziirich.

Registration is necessary in order to tell the
0TS who will participate in the 2PC protocol
and what type of interface is supported.
Registration can be manual or automatic

Manual registration implies the the user
provides an implementation of the resource.
This implementation acts as an intermediary
between the OTS and the actual resource
manager (useful for legacy applications that
need to be wrapped)

Automatic registration is used when the
resource manager understands transactions
(i.e., it is a database), in which case it will
support the XA interface for 2PC directly. A
resource are registered only once, and implicit
propagation is used to check which transactions
go there
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Transaction Processing Monitors (TP-monitors)
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Outline

o Historical perspective:
The problem: synchronization and atomic interaction
The solution: transactional RPC and additional support
o TP Monitors
Example and Functionality
Architectures
Structure
Components
o TP Monitor functionality in CORBA
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Client, server, and databases

(0]

o

! l

Server 2 (products) Server 3 (inventory)

0]
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The nice thing about databases ...

Processing, storing, accessing and
retrieving data has always been one of
the key aspects of enterprise
computing. Most of this data resides in
relational database management
systems, which have well defined
interfaces and trovided very clear
guarantees to the operations performed
over the data.
However:
not all the data can reside in the
same database
the application is built on top of
the database. The guarantees
Erovided by the database need to
e understood by the application
running on top
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0 ... is that they take care of all aspects o
related to data management, from
physical storage to concurrency control
and recovery

Using a database can reduce the
amount of code necessary in a large
application by about 40 %

From a client/server perspective, the
databases help in: o

concurrency control: man¥ servers
can be connected in parallel to the
same database and the database
will still have correct data

recovery: if a server fails in the
middle of an operation, the
database makes sure this does not
affect the data or other servers

o

o
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Unfortunately, these properties are
provided only to operations performed
within the database. In principle, they
do not apply when:

An operation spawns several
databases

the operations access data not in
the database (e.g., in the server)

To help with this problem, the
Distributed Transaction processing
Model was created by X/Open (a
standard’s body). The heart of this
model is the XA interface for 2 Phase
Commit, which can be used to ensure
that an operation spawning several
databases enjo¥ the same atomicity
properties as if it were executed in one
database.
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One at a time interaction

o Databases follow a single thread
execution model where a client can
only have one outstanding call to one
and only one server at any time. The
basic idea is one call per process

(thread).

o Databases provide no mechanism to
bundle together several requests into a
single work unit

o The XA interface solves this problem
for databases by providing an interface
that supports a 2 Phase Commit
protocol. However, without any further
support, the client becomes the one
responsible for running the protocol
which is highly impractical

o An intermediate layer is needed to run
the 2PC protocol

©Gustavo Alonso. ETH Ziirich.

2 Phase Commit

DBMS enforces
transactional
brackets

Additional layer
enforces
transactional
rackets

2 Phase Com
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BASIC 2PC
o Goordinator send PREPARE to all
participants.

o Upon receiving a PREPARE message, a
participant sends a message with YES
or NO (if the vote is NO, the
participant aborts the transaction and
stops).

o Coordinator collects all votes:

All YES = Commit and send
COMMIT to all others.

Some NO = Abort and send
ABORT to all which voted YES.

o A participant receiving COMMIT or
ABORT messages from the coordinator
decides accordingly and stops.

©Gustavo Alonso. ETH Ziirich.

What is needed to run 2PC?

o Control of Participants: A transaction
may involve many resource managers,
somebody has to keep track of which
ones have participated in the execution

o Preserving Transactional Context:
During a transaction, a participant may
be invoked several times on behalf of
the same transaction. The resource
manager must keep track of calls and
be ab?e to identify which ones belong
to the same transaction by using a
transaction identifier in exl invocations

o Transactional Protocols: somebod
acting as the coordinator in the 2PC
protocol

o Make sure the ﬁarﬁcipanfs understand
the protocol (this is what the XA
interface is for)
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Interactions through RPC

o RPC has the same limitations as a
database: it was designed for one at a
time interactions between two end
points. In practice, this is not enough:

a) the call is executed but the
response does not arrive or the
client fails. When the client
recovers, it has no way of knowing
what happened

b) ¢) it is not possible to join two
calls into a single unit (neither

client

the client nor the can do
this) gj

(©

server W server
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Transactional RPC

o The limitations of RPC can be resolved by

making RPC calls transactional. In practice,

this means that they are controlled by a
2PC protocol

o As before, an intermediate entity is needed

to run 2PC (the client and server could do
this themselves but it is neither practical
nor generic enough)

o This intermediate entity is usually called a
transaction mana?er (TM) and acts as
intermediary in all interactions between
clients, servers, and resource managers

o When all the services needed to support
RPC, transactional RPC, and additional
features are added to the intermediate
layer, the result is a TP-Monitor

©Gustavo Alonso. ETH Ziirich.
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Basic TRPC (making calls)

SEVC

©Gustavo Alonso. ETH Ziirich.

Basic TRPC (committing calls)

Client
SEVC

EOT
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Server

Service
procedure
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One step beyond ...

o The previous example assumes the
server is transactional and can run
2PC. This could be, for instance, a
stored procedure interface within a
database. However, this is not the
usual model

o Typically, the server invokes a resource

manager (e.g., a database) that is the TP-Monitor
one actually running the transaction

o This makes the interaction more
complicated as it adds more
participants but the basic concept is
the same:

the server registers the resource
manager(s) it uses

the TM runs 2PC with those

resources managers instead of with

the server (see OTS at the end) databasd
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client

TP-Monitors = transactional RPC

o A TP-Monitor allows building a common
interface to several applications while
maintaining or adding transactional properties.
Examples: CICS, Tuxedo, Encina.

o A TP-Monitor extends the transactional
capabilities of a database beyond the database
domain. It provides the mechanisms and tools
necessary to build applications in which
transactional guarantees are provided.

o TP-Monitors are, perhaps, the best, oldest,

and most complex example of middleware.
Some even try to act as distributed operating
systems providing file systems,
communications, security controls, etc.

o TP-Monitors have traditionally been associated
to the mainframe world. Their functionality,

transactional
coordination

TP-Monitor

however, has long since migrated to other
Application 1| |Application2 | |Application 3 environments and has been incorporated into
L] most middleware tools.
PRI PR PR
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TP-Monitor functionality

o TP-Monitors appeared because operating
systems are not suited for transactional
processing. TP-Monitors are built as operating
systems on top of operating systems.

o As aresult, TP-Monitor functionality is not
well defined and very much system dependent.

o A TP-Monitor tries to cover the deficiencies of
existing “all purpose” systems. What it does is
defermmed by the systems it tries to

"improve”.

o A TP-Monitor is basically an integration tool.
It allows system designers to tie together
heterogeneous system components using a
number of utilities that can be mixed and
matched depending on the particular
characteristics of each case.

o Using the tools provided by the TP-Monitor,
the integration effort becomes more
straightforward as most of the needed
functionality is directly supported by the TP-
Monitor.

©Gustavo Alonso. ETH Ziirich.

Transactional properties

0]

A TP-Monitor addresses the problems of
sharing data from heterogeneous, distributed
sources, providing clean interfaces and
ensuring ACID properties.

A TP-Monitor extrapolates the functions of a
transaction manager (locking, scheduling,
logging, recovery) and controls the distributed
execution. As such, TP-Monitor functionality
is at the core of the integration efforts of
many software producers (databases, workflow
systems, CORBA providers, ...).

A TP-Monitor also controls and manages
distributed computations. It performs load
balancing, monitoring of components, starting
and finishing components as needed, routing of
requests, recovery of components, logging of
all operations, assignment of priorities,
scheduling, efe. In many cases it has its own
transactional file system, becoming almost
indistinguishable from a distributed operating
system.
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(0]

The TP-monitor tries to encapsulate the
services provided within transactional brackets.
This implies RPC augmented with:

atomicity: a service that produces
modifications in several components
should be executed enhreIY and correctly
in each component or should not be
executed at all (in any of the
components).

isolation: if several clients request the
same service at the same time and access
the same data, the overall result will be
as if they were alone in the system.

consistency: a service is correct when
executed in its entirety (it does not
introduce false or incorrect data into the
component databases)

durability: the system keeps track of
what has been done and is capable of
redoing and undoing changes in case of
failures.

V$2004-GA 80




TRAN-C (Encina)

#include <tc/tc.n>
inModule(**helloWorld”);

void Main () {
inti;
inFunction(“main”);
initTC(); /* initializes transaction manager */
transaction { /* starts a transaction */

printf(“Hello World - transaction %d\n”, getTid());
if (1 % 2) abort (“Odd transactions are aborted”);

onCommit
printf(“Transaction Comitted”);
onAbort
printf(“Abort in module: %s\n \t %s\n”, abortModuleNAme(), abortReason());
}
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TP-Monitor, generic architecture

@ |Interfacesto user defined services
- Programs implementing the services
Y early balance ? Monthly average revenue ?

TP—_M onitor Control (load balancing,
environment cc and rec., replication,
distribution, scheduling,
priorities, monitoring ...)

o 5 5 abl
) = T = o recoverable
c | [ c
=g o S22 Q
§ S = =% =
app server 3
L -
Branch 1 Branch 2 Finance Dept.
.| = =
=" === ="
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Tasks of a TP Monitor

Core services

o Transactional RPC: Implements RPC 0
and enforces transactional semantics,
scheduling operations accordingly

o Transaction manager: runs 2PC and 0
takes care of recovery operations

o Log manager: records all changes done
by transactions so that a consistent
version of the system can be
reconstructed in case of failures

o Lock manager: a generic mechanism to ~ ©
requlate access to shared data outside
the resource managers 0
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Structure of TP-Monitors (l)

Additional services

Server monitoring and administration:
starting, sfopting and monitoring
servers; load balancing

Authentication and authorization:
checking that a user can invoke a given
service from a given terminal, at a
given time, on a given object and with
a given set of parameters (the 08 does
not do this)

Data storage: in the form of a
transactional file system

Transactional queues: for asynchronous
interaction between components

Booting, system recovery, and other
administrative chores
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o TP-Monitors try in many aspects to replace the
operating system o as to provide more
efficient transactional properties. Depending
what type of operating system they try to
replace, they have a different structure:

Monolithic: all the functionality of the
TP-Monitor is implemented within one
single process. The design is simpler (the
process can control everything) but
restrictive (bottleneck, single point of
failure, must support all possible
protocols in one single place).

Layered: the functionality is divided in
two layers. One for terminal handling and
several processes for interaction with the
resource managers. The design is still
simple but provides better performance
and resilience.

Multiprocessor: the functionality is

divided among many independent,
distributed processes.
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,7
- |
- |
- |
- |

Monolithic structure
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Structure of TP-Monitors (ll) =i

|

db db db
Layered structure
Multiprocessor structure
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persistent
queue

-

""" data _ internal
dictionary Application resource
program manager s

persistent

e ==
external
resour ce
manager

From “Transaction Processing” Gray&Reuter. Morgan Kaufmann 1993
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Example: BEA Tuxedo

bulletin
client dil client board server  named resource
process  routine handler  name server process  service manager
service
call
forward call locate
server
server
location
ueue
forward call
read invoke

transaction

ﬁ response [ ]

response

I
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Example: BEA Tuxedo

o The client uses DLL (Dynamic Link
Libraries) routines to interact with the m
TP-Monitor

o The Monitor Process or Tuxedo server dil rouine

implements all system services (name
services, transaction management, load
balancing, etc) and acts as the control
point for all interactions

o Application services are known as
named services. These named services
interact with the system through a
local server process

o |nteraction across components is
through message queues rather than
direct calls (although clients and
servers may interact synchronously)

v

server process

|
%al‘aba%e
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Resource
manager




TP-Monitor components (Encina)

o The current trend is towards a “family of
products” instead of a single system. Each
element can be used by itself (reduced

footprint) and, in some cases, can be used - —

completely independent of the TP-Monitor. el Senmiletien
o Monitor: execution environment providing e

integrity, availability, security, fast response mp P P

time and high throughput. It includes tools for

administration and installation of components

and the development environment.

o Communication services: protocols and * —
mechanisms for persistent messages and peer Txn.-RPC Txn. services

o i Bl oy v

o Transactiona : basic interaction

mechanism logging
I

o Transactional services: supporting concurrency 1

control, recovery, logging and transactional Persistent storage
programming. Behavior of the system can be _
tailored (advances transaction models, txnal. file system. database

selective logging, ad-hoc recovery ...)
o Persistent storage
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External interfaces

With clients With administrators
o The main interface is through the o The TP-Monitor needs to be maintained
presentation services. In old systems, and administered like any other
Eresenfaﬁon services included terminal system. Today there are a wide variety
andling and format control for of tools for doing so. They include:
presentation on a screen. Today, the node monitoring

presentation services are mostly

interfaces to other systems that take service moniforing

care of data presentation (mainly web load monitoring
servers) configuration tools
o The most important part of the programming support

presentation services still in use today
is the RPC (TRPC) stubs and libraries
used on the client side for invokin
services implemented within the TP-
Monitor

o Another important part of the
interfaces to the system are the
development environments which tend
to be similar in nature to that of RPC
systems
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Monitor services

el

o Monitor services are those facilities
that provide the basic functionality of
the TP-Monitor. They can be

implemented as part of the TP-Monitor

process or as external resource
managers

o Server class: each application program
implementing services has a server
class in the monitor. The server class
starts and stops the application,
creates message queues, monitors the
load, etc. In general, it manages one
application program

o Binding: acts as the name and directory

services and offers similar
functionality as the binder in RPC. It
might be coupled with the load
balancing service for better
distribution
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Resource managers

(0]

(0]

Load balancing: tries to optimize the
resources of fLe s¥sfem by providing an
accurate picture of the ongoing and
scheduled work

Context management: a key service in
TRPC that is also used in Y(eeping
context across transaction boundaries
or to store and forward data between
different resource managers and
servers

Communication services (queue
mana?emenf and networking) are
usually implemented as external
resource managers. They take care of
transactional queuing and any other
aspect of message passing
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Internal Resource Managers

o These are modules that implement a
particular service in the TP-Monitor.
There are two kinds:

o Application programs: programs that

implement a collection of services that

can be invoked by the clients of the
TP-Monitor. They define the
application built upon the TP-Monitor

o Internal services: like logging, locking,

recovery, or queuing. Implementing
these services as resource managers
gives more modularity to the system
and even allows to use other systems
for this purpose (like queue
management systems)
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o

External Resource Managers

These are the systems the TP-Monitor
has to integrate

The typical resource manager is a
database management system with an
SQL/XA infer?ace. It can also be a
legacy application, in which case
wrappers are needed to bridge the
interface gap. A typical example are
screen scraping modules that interact
with mainframe based applications by
posing as dumb terminals

The number and type of external
resource managers keeps growing and a
resource manager can be another TP
monitor.

The WWW is slowly also becoming a
resource manager
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Transaction processing components ol

Service Request/Response

forward request

> transaction
response

Begin Work Resource
Save Work managers
send/ Commit Save Work
receive Rollback Checkpoint Log
Prepare Records

register incoming /
outgoing transactions|

Commit

UNDO/ Savepoint
REDO Prepared

. Prepare Log Committed
Savepoint Commit Records Completed
Prepare Checkpoint
Commlt From “Transaction Processing” Gray&Reuter. Morgan Kaufmann 1993
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TP-Monitors vs. 08 mﬁ

processing data communication

Databases
Disaster recovery

TP Services

TP internal
system services

Process — IPC
Address space Simple sessions
Scheduling File System Naming
Local naming protection | Blocks, paging Authentication
File security
Hardware CPU Memory Wires, switches

From “Transaction Processing” Gray&Reuter. Morgan Kaufmann 1993
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Advantages of TP-Monitors

o TP-Monitors are a development and run-time platform for distributed applications

o The separation between the monitor and the transaction manager was a practical
consideration but turned out to be a significant advantage as many of the features
provided by the monitor are as valuable as transactions

o The move towards more modular architectures prepared TP-Monitors for changes that
had not been foreseen but turned be quite advantageous:
the web as the main interface to applications: the presentation services included
an interface so that requests could be channeled through a web server

queuing as a form of middleware in itself (Message Oriented Middleware, MOM):
once the queuing service was an internal resource manager, it was not oo
difficult to adapt the interface so that the TP-Monitor could talk with other

queuing systems

Distributed object systems (e.g., CORBA) required only a small syntactic layer
in the development tools and the presentation services so that services will

appear as objects and TRPC woulI
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TP-Heavy vs. TP-Light = 2 tier vs. 3 tier

be come a method invocation to those objects.
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o A TP-heavy monitor provides:

a full development environment
(programming tools, services, libraries,
ete.),

additional services (persistent queues,
communication tools, transactional
services, priority scheduling, buffering),

support for authentication (of users and
access rights to different services),

its own solutions for communication,
replication, load balancing, storage
management ... (most of the functionality
of an operating system).

o lts main purpose is to provide an execution
environment for resource managers
(applications), and do all this with guaranteed
reasonable performance (e.g., > 1000 txns.
per second).

o This is the traditional monitor: CICS, Encina,
Tuxedo.
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o A TP-Light is an extension to a database:

it is implemented as threads, instead of
processes,

it is based on stored procedures
("methods" stored in the database that
perform an specific set of operations) and
triggers,

it does not provide a development
environment.

o Light Monitors are appearing as databases
become more sophisticated and provide more
services, such as integrating part of the
functionality of a TP-Monitor within the
databage.

o Instead of writing a complex query, the query

is implemented as a stored procedure. A client,
ingtead of running the query, invokes the
stored procedure.

o  Stored procedure languages: Sybase's Transact-

SQL, Oracle's PL/SQL.
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TP-light: databases and the 2 tier approach s

database management system

| Database
developing

user defined
application logic

environment

|

database

external
application

———

resource manager
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TP-Heavy: 3-tier middleware

P———¥
N

Databases are traditionally used to manage
data,

However, simply managing data is not an end in
itself. One manages data because it has some
concrete application logic in mind. This is
often forgotten when considering databases
(specially benchmarking) and has allowed SAP
to take over a significant market share before
any other vendors reacted.

But if the application logic is what matters,
why not move the application logic into the
database? These is what many vendors are
advocating. By doing this, they propose a 2
tier mode? with the database providing the
tools necessary to implement complex
application logic.

These tools include triggers, replication, stored
procedures, queuing systems, standard access
interfaces (ODBC, JDBC) .. which are already
in place in many databases.
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TP-heavy are middleware platforms for
developing 3-tier architectures. They provide
all the funcfionalitl necessary for such an
architecture to work.

A system designer only need to program the
services (whici will run within the scope of the
TP-Monitor; the services are linked to a
number of TP libraries providing the needed
functionality), the wrappers (if they are not
already provided), and the clients. The TP-
Monitors takes these components and embeds
them within the overall system as
interconnected components.

The TP-Monitor provides the infrastructure for
the components to work and the tools
necessary to build services, wrappers and
clients. In some cases, it provides even its own
programming language (e.g., Transational-C of
Encina).
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Object Transaction Service

o An OTS provides transactional
guarantees to the execution of
invocations between different
comronenfs of a distributed application
built on top of an ORB. It is part of

the CORBA standard It is identical to a

basic TP-Monitor

o There are two ways to trace calls:

Explicit (manual): the invocation
itself contains the transaction
identifier. Then, when the
application registers the resource
manager, it uses this transaction
identifier to say to which
transaction it is “subscribing”

Implicit (aufomafic]l_: the call is
made through the 0TS, which will
forward the transaction identifier
along with the invocation. This
requires to link with the 0TS
library and to make all methods

©Gustavo Alnnisrt‘zyyxgudriat[a"sacﬁonal

Running a distributed transaction (1)

o ... and two ways to register resources
(necessary in order to tell the 0TS
who will participate in the 2PC
protocol and what type of interface is
supported)

o Manual reaisfraﬁon implies the the
user provides an implementation of the
resource. This implementation acts as
an intermediary between the 0TS and
the actual resource manager (useful for
legacy applications that need to be
wrappedg

o Automatic registration is used when
the resource manager understands
transactions (i.e., it is a database), in
which case it will support the XA
interface for 2PC directly. A resource
are registered only once, and implicit
fropagaﬁon is used to check which

ransactions go there
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1) Assume App A wantsto update databases A and B 3) App A registersthe database for that transaction
App A AppB |e»
s <> AppA ApPPB |e> = DB <> App PP DB
db
Txn haspart
Object Object executed in
Transaction Transaction database A
Service Service
; ; - ; 4) App A runsthetxn but does not
2) App A obtains a txn identifier for the operation rom commit at the end
—F
App A App B App A App B
b pp PP B e e og pp PP B &> e
txn
Object Object
Transaction Transaction
Service Service
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Running a distributed transaction (2)

5) App A now calls App B

Call for
Txn

App A App B
DB<—>pp| ‘PP <—>DB

*
ORB

Object
Transaction
Service

7) App B runsthetxn but does not

commit at theend txn
—>
App A App B
- <> App PP B <> DB
(0]3{}
Object
Transaction
Service

6) App B registersthe database for that transaction

App A App B
DB<—>DD PP<—>DB

ORB ;
Register
Txn haspart

executed in Object

database B Transaction
Service

©6Gustavo Alonso, ETH Zurich.

The future of TP-Monitors

2) App A request commit and the OT Sruns 2PC

App A App B
e <> App PP B |« -
txn
Object
Transaction
2PC Service 2PC
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o TP-Monitors are the best example of middleware and the most successful
implementation both in terms of performance and functionality.

o Together with object brokers, TP-Monitors form the foundation of today's distributed
data management products. Enterprise Application Integration is still largely based on

TP-Monitor technology.

o TP-Monitors are the main reference for implementing middleware:
in terms of performance, TP-Monitors are orders of magnitude ahead of other

middleware systems

in terms of functionality, TP-Monitors offer a quite complete, well integrated
platform that can be extended to provide the functionality needed in other

middleware systems

o Unlike other forms of middleware, TP-Monitors have proven to be quite resilient in
time: some product lines are almost 30 years old already. Although the technology
changes, the answer to fundamental design problems is well understood in TP-
Monitors. These expertise will still have a significant impact on any emerging form of

middleware.

©Gustavo Alonso. ETH Ziirich.
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WS-Coordination

©Gustavo Alonso. ETH Ziirich. V$2004-6A 103

WS-Coordination

o WS-Coordination is intended as a
generic infrastructure to implement

coordination protocols between Web 5. 4 coordination Fég‘girztﬁ ;t‘l’(') 2
services protocol protocol

o lts main goal is to serve as a generic
platform for implementing advanced
transaction models but it can be used

to im[;Ierr_lenf a wide variety of _ Activation Registration
coordination protocols between services service service
(mcludmg_ some forms of COORDINATOR
conversations)
.o Coord. Coord.

o WS-Coordination encompasses a set of Protocol Protocol
behaviors and APls that conform a A B
module that will extend Web services
with coordination capabilities

o |t mirrors the behavior of transactional  oOperationsof Operations of
services in conventional middleware coor dination coordination
platforms protocol protocd
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Basics of WS-Coordination (1)

APPLICATION APPLICATION
A

Context (Ca)

activity identifier Al

coordination type Q supporting protocol Y
portReferencefor theregistration service A

reateCoor dinationContext
for coordination type Q

Activation | |Registration Registration| | Activation
service service A service B service
Coord. Coord.
Protocol Ya Protocol Yb
COORDINATOR A COORDINATOR B
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Basics of WS-Coordination (2)

APPLICATION MESSAGE (e.g., SOAP message)

APPLICATION APPLICATION
A HTTP POST B

SOAP Envelope
Header: Context Ca

Body

L

Activation | |Registration Registration| | Activation
service service A service B service
Coord. Coord.

Protocol Ya Protocol Yb

COORDINATOR A COORDINATOR B
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Basics of WS-Coordination (3)

APPLICATION

Context (Cb)
activity identifier A1

coordination type Q supporting protocol Y
portReference for theregistration service B

Activation Registration
service service A
Coord.
Protocol Ya

COORDINATOR A

©Gustavo Alonso. ETH Ziirich.

Basics of WS-Coordination (4)

APPLICATION
B
8
c
o
Q
c
2
o]
S
5 O
8
°
8
(@]
Registration Activation
service B service
Coord.
Protocol Yb

COORDINATOR B
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APPLICATION APPLICATION
A B
Application B
registersfor coordination protocol Y
and passes portReference to the protocol
Activation Registration Registratione—| Activation
service service A service B gznvies
Coord. Coord.
Protocal Ya Protocol Yb[—

COORDINATOR A

©Gustavo Alonso. ETH Ziirich.

COORDINATOR B
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Basics of WS-Coordination (5)

APPLICATION APPLICATION
A B

Registration service B forwardstheregistration of
application B to theregistration service A along
with information about coordination protocol Yb
Theregistration service A can then link both ends
of the coordination protocol

Activation | |Registration Registration| | Activation
service service A service B service
Coord. |gmmmmm e q Coord.
Protocol Ya Protocol Yb
COORDINATOR A COORDINATOR B
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Messages and interfaces

o The coordinator defined by WS-Coordination is described using WSDL and offers a
number of services to the application.

o The application accesses these services by sending, e.g., SOAP messages to the
coordinator which then responds with new SOAP messages. Interactions with the
protocol would then also be in terms of SOAP messages (but other protocols are
possible, one needs only o provide alternative bindings for the coordinator services)

o The example shown considers the case where application B decides to use its own
coordinator. Application B could also decide to use the same coordinator as
application A but in the cases where A and B are independent services provided by
different organizations a coordinator per application makes more sense

o WS-Coordination is an attempt at standardizing:
the use of SOAP headers for coordination protocols
the basic operations for most coordination protocols

the functionality a Web service middleware platform must support for allowing
coordination protocols to be implemented
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WS-Coordinator in XML

ACTIVATION SERVICE:
<wsdl:portType name ="ActivationCoordinatorPortType" >
<wedl:operation name ="CreateCoordinationContext" >
<wsdl:input message ="wscoor:CreateCoordinationContext"/ >
< /wsdl:operation>
< /wedl:portType >

RESPONSE ACTIVATION SERVICE
<wsdl:portType name="ActivationRequesterPortType" >
<wsdl:operation name ="CreateCoordinationContextResponse" >
<wsdl:input message="wscoor:CreateCoordinationContextResponse"/ >
</wsdl:operation>
<wsdl:operation name="Error" >
<wsdl:input message="wscoor:Error"/ >
</wsdl:operation>
< /wedl:portType >

From Web Services Coordination (WS-Coordination) 9 August 2002
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WS-Transactions

©Gustavo Alonso. ETH Ziirich. VS$2004-6A 112




WS-Transactions aﬂ

o WS-Transactions builds directly upon WS-Coordination to specify different
coordination protocols related to transaction processing

atomic transactions (governed by 2 Phase Commit)
business activities (transactional but based on compensation activities)

® business agreement

* business agreement with complete

o WS-Transactions specifies the coordination protocol to be used as part of WS-
Coordination. The specification deals with the nature of the interaction, the syntax
and semantics of the messages to exchange as part of the coordination protocol, and
the expected responses of a?l participants involved

o Like WS-Coordination, WS-Transactions follows very closely the transactional model
found in conventional middleware platforms
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Coordination protocol for 2PC

Figure 5: 2PC Protocol State Diagram

Hﬂg;ﬁler _______,_@
: R.Olmcl ;J"D-IDH -‘

Prepare pared Comm
( Prepanng —_— Prepara—»\?\c-mmmmg -- End>

E,mdinmm generated
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From Web Services Transaction (WS-Transaction) 9 August 2002




Business agreement ke

Figure 2: Business Agreement Protocol State Diagram

Coordinator generated  Participan! generated

From Web Services Transaction (WS-Transaction) 9 August 2002
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Business agreement with completion e

Figure 3: Business Agreement WithComplete Protocol State Diagram

Coordinator generated

From Web Services Transaction (WS-Transaction) 9 August 2002
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WS-Transactions

APPLICATION
A

Activation Registration
service service A
Coord. |«
Protocol Ya

WS- TRANSACTION

PROTOCOL

COORDINATOR A
©Gustavo Alonso. ETH Ziirich.

CORBA transactions (1)

APPLICATION
B

Registration Activation
service B service
q Coord.
Protocol Yb

COORDINATOR B
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1) Assume App A wants to update databases A and B

3) App A registers the database for that transaction

App A App B
g APPA | | APPB s o 7 T os
ORB
Txn haspart
S Object executed in
Transaction Transaction database A
bl Service
2) App A obtains a txn identifier for the operation 4 AP-P A run fhe fun bt does ot
) App P txn | commit it at the end
—
AbD A App B App A App B
o <> App PPB > DB DB > AP 05 e DI
e 3
txn
Object Object
Transaction fjatoe o
Service Service

©Gustavo Alonso, ETH Zurich.
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CORBA transactions (2)

5) App A now calls
App B

Call for
Txn

<+

DB

App A

App B

DB

C ]

ORB

Object
Transaction
Service

7) App B runs the txn but does not

commit it at the end

—>
App A App B
pg % PP PPE 14> g
(0]34=]
Object
Transaction
Service

6) App B registers the database for that transaction

<+
DB

App A

App B

DB

Txn haspart
executed in
database B

Object
Transaction
Service

©6Gustavo Alonso, ETH Zurich.

Transactional queues

©Gustavo Alonso. ETH Ziirich.

8) App A request commit and the OTS runs 2PC

DB

App A

App

B
<—>DB

txn

2PC

Object
Transaction
Service

2PC
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Synchronous Client/Server

o The most straightforward interaction
between components is the
request/response model in which the
client sends a request and waits until
the server provides a response:

closely resembles the way we
program (hence RPC as the basic
mechanism to support this idea)
the model is simple and intuitive
well supported by RPC and the
Ffems built around RPC (TRPC,

Monitors and even Object
Monitors)

Server 2 (producfs) Server 3 (mveniory)

needs additional infrastructure
when interactions becomes more
complex (e.g., nested) but this
infrastructure is available

©Gustavo Alonso. ETH Ziirich.

Disadvantages of sync C/$
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o Synchronous interaction requires both
parties to be “on-line": the caller
makes a request, the receiver gets the
request, processes the request, sends a
response, the caller receives the
response.

The caller must wait until the response
comes back. The receiver does not need
to exist at the time of the call (TP-
Monitors, CORBA or DCOM create an
instance of the service/server /object
when called if it does not exist
already) but the interaction requires
both chenf and server to be “alive” at
the same time

©Gustavo Alonso. ETH Ziirich.

Call

Receive

idle time

Response

Answer

o Because it synchronizes client and
server, this mode of operation has
several disadvantages:

connection overhead
higher probability of failures

difficult to identify and react to
failures

it is a one-to-one system; it is not
really practical for nested calls
and complex interactions (the
problems becomes even more
acute)
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Overhead of synchronism

o Synchronous invocations require to
maintain a session between the caller
and the receiver.

o Maintaining sessions is expensive and
consumes CPU resources. There is also
a limit on how manx sessions can be
active at the same time (thus limiting
the number of concurrent clients
connected to a server)

o For this reason, client/server systems
often resort to connection pooling to req"m”\\
optimize resource utilization

have a pool of open connections
agsociate a thread with each

receive
process
return

session
duration

connection do with answer 3
allocate connections as needed =
o When the interaction is not one-to- receive | =
one, the context (the information process
defining a session) needs to be passed Context is lost return
around. The context is usually volatile Needs o be restarted!!
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Failures in synchronous calls

o If the client or the server fail, the
context is lost and resynchronization

might be difficult. request() ~——.
If the failure occurred before 1, \»receive ;
nothing has happened process
If the failure occurs after 1 but | return [
before 2 (receiver crashes), then _ 4 3
the request is lost do with answer
If the failure hag ens after 2 but
before 3, side effects may cause 1
inconsistencies request() T ,
If the failure occurs after 3 but > receive [
before 4, the response is lost but process
the acfigsl has been performed (do | return ?
it again? . ‘X
o Finding out when the failure took place do ':f"' e
may not be easy. Worse still, if there Heow |2
is a chain of invocations, the failure L > recelle Ly
can occur anywhere. process g |
do with answer return \,
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Failure semantics

o A great deal of the functionality built
around RPC tries to address the
problem of failure semantics, i.e.,
determine what has happened after a
failure

o Exactly-once semantics solves this
problem but it has hidden costs:

it implies atomicity in all
operations
the server must support some form
of 2PC; if it is a database, then
one can use the XA interface,
otherwise one needs a TP-Monitor
to make the server transactional
it usually requires a coordinator to
oversee the interaction

©Gustavo Alonso. ETH Ziirich.

Two solutions

o The more elements are involved in an

interaction, the higher the probability
that the interaction will fail (a failure
in anyone of the elements results is
enough)

The more elements are required to be
alive for an interaction to succeed, the
more difficult it is to maintain the
system:

even if it is modular, the
components cannot do anything
without the rest of the system

upgrades, corrections, general
maintenance becomes very difficult
because they might require to shut
the system down
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Enhanced Support

o Client/Server middleware provides a
number of mechanisms to jeal with the
problems created by synchronous
interaction:

Transactional RPC: to enforce
exactly once execution semantics
and enable more complex
interactions with some execution
guarantees

Service replication and load
balancing: to prevent the system
from having to shut down i¥ a
given service is not available; this
also gives a chance to maintain and
upgrade the system while keeping
it online

©Gustavo Alonso. ETH Ziirich.

ASYNCHRONOUS INTERACTION

o Using asynchronous interaction, the

caller sends a message that gets stored
somewhere until the receiver reads it
and sends a response. The response is
sent in a similar manner

o Asynchronous interaction can take

place in two forms:

non-blocking invocation (RPC but
the call returns immediately
without waiting for a response,
similar to batch jobs)

persistent queues (the call and the
response are actually persistently
stored until they are accessed by
the client and the server)
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TP-Monitors

o The problems of synchronous
interaction are not new. The first
Y’sfems to provide alternatives were
Monitors which offered two
choices:

asrnchronous RPC: client makes a
call that returns immediately; the
client is responsible for making a
second call to get the results

Reliable queuing systems (e.g.,
Encina, Tuxedo) where instead of
through procedure calls, client and
server interact by exchanging
messages. Making the messages
persistent by storing them in
queues added considerable
flexibility to the system

©Gustavo Alonso. ETH Ziirich.

Reliable queuing

servicecall pg

Client stub

get results

RPC support

Input queue Output queue Reliable
queuing

system

external
application Output
L mm queue
=

| .-

Input
queue

external
appli

L

C%

Il
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o Reliable queuing turned out to be a
very ?ood idea and an excellent
complement to synchronous
interactions:

Suitable to modular design: the
code for making a request can be
in a different module (even a
different machine!) than the code
for dealing with the response

It is easier to design sophisticated
distribution modes (multicast,
transfers, replication, coalescing
messages) an it also helps to
handle communication sessions in
a more abstract way

More natural way to implement
complex interactions (see next)
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request()—_
\A receive
process
do with answerk

return
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Queuing systems

[l
jo==x]

& =
Input queue Output queue

Reliable queuing system
Monitoring
Administration
Persistent storage

Input queue Output queue

externa
application

\!ﬁu
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Transactional queues

Queuing systems implement asynchronous
interactions.

Each element in the system communicates with
the rest via persistent queues. These queues
store messages transactionally, guaranteeing
that messages are there even after failures
oceur.

Queuing systems offer significant advantages
over traditional solutions in terms of fault
tolerance and overall system flexibility:
applications do not need to be there at the
time a request is made!

Queues provide a way to communicate across
heterogeneous networks and systems while still
being able to make some assumptions about the
behavior of the messages.

They can be used embedded (workflow, TP-
Monitors) or by themselves (MQSeries,
Tuxedo/Q).
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o Persistent queues are closely tied to
transactional interaction:

to send a message, it is written in the
queue uging 2P0

messages between queues are exchanged
using 2PC

reading a message from a queue,
processing it and writing the reply to
another queue is all done under 2PC

o This introduces a significant overhead but it
also provides considerable advantages. The
overhead is not that important with local
transactions (writing or reading to a local
queue).

o Using transactional queues, the processing of
messages and sending and receiving can be tied
together into one single transactions so that
atomicity is quaranteed. This solves a lot of
problems!
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Jind

e(ltemal
appli
B

Output queue Input queue
2PC 2PC
Input queue Output queue
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Problems solved (l)

SENDING

exlt.em.al

application

L m J
=

2P0

Message is now persistent. If the node
crashes, the message remaing in the
queue. Upon recovery, the application
can look in the queue and see which
messages are there and which are

not. Multiple applications can write to
the same queue, thereby “multiplexing”
the channel.

©Gustavo Alonso. ETH Ziirich.

Problems solved (ll)

externd
application
L /m
==
It

Arriving messages remain in the queue.
If the node crashes, messages are not
lost. The application can now take its
time to process messages. It is also
possible for several applications to read
from the same queue. This allows to
implement replicated services, do load
balancing, and increase fault tolerance.
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o An application can bundle within a single
transaction reading a message from a queue,
interacting with other systems, and writing the
response to a queue.

o |f a failure occur, in all scenarios consistency
is ensured:

if the transaction was not completed, any
interaction with other applications is
undone and the reading operation from the
input queue is not committed: the
message remains in the input queue.

Upon recovery, the message can be
processed again, thereby achieving exactly
once semantics.

If the transaction was completed, the
write to the output queue is committed,
i.e., the response remains in the queue
and can be sent upon recovery.

If replicated services are used, if one
fails and the message remaing in the

input queue, it is safe for other services
to take over this message.

©Gustavo Alonso. ETH Ziirich.

Input queue Output queue

! 2PC |
bl
1 on
& e

=
r—

v

Message is either read or written

Input queue Output queue

V II
This is uﬂdone if necessarv




Simple implementation

o Persistent queues can be imﬁlemenfed

as part of a database since the

functionality needed is exactly that of external

a databage: A 1
a transactional interface ==

ersistence of committed
rransacﬁons Output queue Input queue
advanced indexing and search
capabilities
o Thus, messages in a queue_become
simple entries in a table. These entries

can be manipulated like any other data

in a database so that applications ugin
the queue can assign pmrifies, look M3 QUEVE
for messages with given n2 s
characteristics, trigger certain actions m3 :7
when messages of a particular kind n6 5
arrive ... m4 ql
m5 q1
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Queues in practice

o To access a queue, a client or a server
uses the queuing services, e.g., :

put (enqueue) to place a message
in a given queue

?ef (dequeue) to read a message
rom a queue T

mput to put a message in multiple
queues

transfer a message from a queue to
another queue

o In TP-Monitors, these services are management
implemented as RPC calls to an
internal resource manager (the reliable
queuing service)

o These calls can be made part of
transaction using the same mechanisms
of TRPC (the queuin sstem uses an server
XA interface and works like any other get
resource manager)

Client stub
(queving
service)

repository

Queuing server

service)

Client stub
(queuing
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Advanced functionality 5&

o Queues allow to implement complex interaction patterns between modules:
1-to-1 interaction with failure resilience

1-to-many (multicast: put in a queue and then send from this queue to many
other queues) this is very helpful for “subscriptions”. The fact that the queues
are implemented in the database even helps with performance since the logic for
distribution can be embedded in the database itself

many-to-1 many modules send their request to a single module that can then
assign priorities, reorder, compare, etc.
many-to-many as in replicated services for large amount of clients
o In some cases queues are being used for interactions that are also on-line. If the
queues are fast enough (like in a cluster) one can take advantage of the properties of

queues at the expense of performance. Building computer farms becomes easier since
messages are one more element that can be moved, copied and stored.

o ncorporating queues into databases provides databases with a very powerful tool for
designing distributed applications (TP-light).
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Types and messages

o Queues are very useful but they also o The way to develop a system is as
have their disadvantages from the follows:
programming point of view: define message formats by
In RPC, the type of the parameters creating complex types (records,
exchanged between client and objecfs%
server is determined by the DL create the queues and the access

definition and available in the
stubs. The RPC infrastructure
takes care of marshalling,
unmarshalling, serializing, ete.

When queues are used, there is no
IDL determining the interface. The
type and format of the data in a
queue must be agreed upon before
hand but the system does not have
much control over it

The role of IDL is now taken over
by the message format (it is not in

the stubs)
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policies for those queues

program the server and clients
according to the type definitions
of the messages

o The system uses the types defined for
the messages to set up the RPC calls
needed to do marshalling,
unmarshalling, serialization, ete.




Beyond client/server e

o Persistent queues are most useful when o Because these interactions are also

the interactions are not simple very common and have increased in
client/server calls importance, queuing systems are no
workflow processes can be easily longer just one more module in TP-
implemented as a sequence of Monitors but have become products in
services that pass messages to their own right (e.g., MQSeries of
each other along a well defined set 1BM)
of queues o Once they became products, queuing
information dissemination and systems started to be subjected to the
event notification can be directly same evolutionary forces as other
and efficiently implemented on top forms of middleware:
of queues integration in larger, more
publish/subscribe systems are, in comprehensive tools
essence, event systems enhancements to the basic
implemented on top of modified functionality by making the queues
queuing systems active processing entities =

Information Brokers
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Message brokers

o Message brokers add logic to the queues and at
the level of the messaging infrastructure.

o Messaging processing is no longer just moving
messages between locations but designers can
associate rules and processing steps to be
executed when given messages are moved
around

o The downside of this approach is that the logic i basic MOMmitis

associated with the queues and the messaging {1+ *Ei%) U

middleware might be very difficult to identity of the
understand since it is distributed and there is  receivers
no coherent view of the whole \
[ sender ] [ receiver

| with message
brokers, custom
message routing

T T logic can be
_Y \ 4 defined at the

message broker
level or at the
queue level

.........................................

message broker
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Publish/Subscribe

o Standard client/server architectures
and queuing systems assume the client

and the server know each other

(through an interface or a queue)
o |n many situations, it is more useful to

implement systems where the

interaction is based on announcing

given events:

a service publishes
messages/events of given type
clients subscribe to different types
of messages/events

when a service publishes an event,
the system looks at a table of
subscriptions and forwards the

server client
publish subscribe
get
Subscription server P#b'li(s" o
List subscriptions Cuﬁn atbef;p"ons
for amessage type = 3
Subscribeto a subscribe
message type check subscriptions
put in queues
—
subscriptions get
read from queue

event to the interested clients;
this is usual|¥ done in the flf;rm of
or

a message pu

into a queue
that client

o publish, subscribe, get, .. are also RPC

calls to a resource manager
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Reliable queuing system

RPC support (DCE,
TP-Monitor, ...)

Subscription in message brokers

[ RFQ processing

)

1 ST
v

l€------

6

A

message broker

-

ik B

SmartQuotation

adapter

SmartQuotation
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at systems startup time (can occur in
any order, but all must occur before
RFQs are executed)

A: subscription to message quote

B: subscription to message
quoteRequest

C: subscription to message newQuote

at run time: processing of arequest for
quote.

1: publication of a quoteRequest
message

2: delivery of message quoteRequest

3: synchronous invocation of the
getQuote function

4: publication of a quote message

5: delivery of message quote

6: publication of a newQuote message
7: delivery of message newQuote

8: invocation of the
createForecastEntry procedure
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