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Motivation

Final energy consumption in the residential sector by use, EU-27,
2018

Lighting and  Other end uses

appliances 1.0 %
141 %

Cooking
6.1 %

Water heating
14.8 %
Space heating
63.6 %

Space cooling
0.4 %

Source: Eurostat (online data code: nrg_bal_c) eu rOStat -

Source: Eurostat, https://ec.europa.eu/eurostat/statistics-
explained/index.php?title=Energy_consumption_in_households#Energy_products_used_in_the_residential_sector



How can we improve space heating ?
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How can we improve space heating

Improve the building Improve how we use heating

* Have a better isolation * Machine Learning to decide

* Buy solar panels when to heat

* Improve heat pump



Supervised Machine Learning
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Source: https://elearningindustry.com/machine-learning-process-and-scenarios



1. Predict demand of electricity to reduce the
lost

* Short term: optimal day-to-day operational efficiency of electrical
power delivery

* Medium term: to schedule fuel supply and timely maintenance
operations

A high precision is required



LSTM-RNN e

output shape:
(700, 10000)

Softmax weights
shape: (650, 10000)

(700, 650)

LSTM output

shape: (20, 35, 650)

Hidden
layer size:

Input shape: (20, 35, 650)

Source: https://adventuresinmachinelearning.com/recurrent-neural-networks-Istm-tutorial-tensorflow/
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Figure 3. Proposed forecasting methodology.
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Figure 5. Box Plot of Electric load (a) Yearly (b) Quarterly.

Source: Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani. Optimal Deep Learning LSTM Model for Electric Load Forecasting using
Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches, Energies, 11 (7), 2018
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Features selection
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Figure 8. Feature importance plot.

Source: Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani. Optimal Deep Learning LSTM Model for Electric Load Forecasting using
Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches, Energies, 11 (7), 2018
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Results

Model Mean Std. Deviation Forecasting Horizon MAE RMSE CV (RMSE) %
RMSE Extra Trees 513.8 90.9 2 Weeks 251 339 0.61
RMSE LSTM 378 59.8 Between 2—4 Weeks 214 258 0.56
CV (RMSE) % Extra Trees 1.95 0.3 Between 2-3 Months 225 294 0.63
CV (RMSE) % LSTM 1.31 0.2 Between 3-4 Months 208 275 0.50
MAE Extra Trees 344 55.8 Mean-Medium term  215.6 275.6 0.56
MAE LSTM 2704 454 Std. Dev. 8.6 18 0.06

=  The predictions with the LSTM-RNN have a better accuracy than
the ones with the other algorithms.
= The accuracy does not change over the time.
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2. Optimize heating depending on electricity
cost and productivity

Thermal
Storage
Tank

Weather 1. Predict the inside

forecast temperature
Machine Optimization
i Algorithm
Sl Learning : 2. Find the best
uilding
temperature optimization for
predictor heating
Electricity
Price
Predictor

Source: Fabiano Pallonetto, Mattia De Rosa, Federico Milano, Donal P. Finn. Demand response algorithms for smart-grid ready residential
buildings using machine learning models, Applied Energy 239, pp. 1265-1282, 2019 13



Thermal

Storage
Tank

* Irish study. They used an Irish house as reference
e 205m?

 Solar panels of 6 kWp

e Space heating of 12kW

* Electricity price depend on the hour of the day

Table 1
Time of use electricity tariffs (€/kWh).

Weekdays Weekends
A B C D Flat SMP (avg) A B C D Flat SMP (avg)
00:00-08:00 0.12 0.11 0.1 0.09 0.135 0.046 012 0.11 0.1 0.09 0.135 0.044
08:00-17:00 0.14 0.135 0.13 0.125 0.135 0.065 0.14 0.135 0.13 0.125 0.135 0.062
17:00-19:00 0.2 0.26 0.32 0.38 0.135 0.097 0.14 0.135 .13 0.125 0.135 0.088
19:00-23:00 0.14 0.135 0.13 0.125 0.135 0.071 0.14 0.135 .13 0.125 0.135 0.067
23:00-00:00 0.12 0.11 0.1 0.09 0.135 0,053 012 0.11 0.1 0.09 0.135 0.053

Source: Fabiano Pallonetto, Mattia De Rosa, Federico Milano, Donal P. Finn. Demand response algorithms for smart-grid ready residential
buildings using machine learning models, Applied Energy 239, pp. 1265-1282, 2019



1. Predict the inside temperature

Heat on
Outside temperature

Wind speed

Inside temperature
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Circulation pump electricity
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Tree model
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Outside temperature
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1. Predict the inside temperature

Heat on

Outside temperature

Inside temperature

Storage tank temperature

Circulation pump electricity
consumption

Tree model
MP5

Feature Selection with
Pearson correlation
linear coefficient

Heat off

Outside temperature

Inside temperature

PV production

Tree model
MP5



2. Optimal strategy search
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Fig. 8. Optimal strategy search on solution tree.
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Fig. 10. Electricity consumption profiles for the month of January 2014.

Source: Fabiano Pallonetto, Mattia De Rosa, Federico Milano, Donal P. Finn. Demand response algorithms for smart-grid ready residential
buildings using machine learning models, Applied Energy 239, pp. 1265-1282, 2019



Results

E i m First tertile Second tertile Third tertile
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Fig. 12. Total heating electricity consumption for (January 2014).

Source: Fabiano Pallonetto, Mattia De Rosa, Federico Milano, Donal P. Finn. Demand
response algorithms for smart-grid ready residential buildings using machine
learning models, Applied Energy 239, pp. 1265-1282, 2019 19



Results

Smart algorithm Baseline algorithm Rule-based algorithm
Electricity consumption 39% 22,90%

Costs 42%-49% 27%-40%
Environmental 38% 20%

Return of Investment 5-10 years
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3. Optimize heating depending on the home
presence

g F Oracle
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Fig. 1 An overview of our approach to determine the savings potential with inputs marked in red



Heating planning

Building temperature :
= 20° when it’s occupied
" 10° when it’s unoccupied

3476 households
75 weeks, every 30 minutes, between July 2009 and Decembre 2010

75.4 % of occupation



Results

9% of overall saving

14% savings for the employed singles
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Fig. 5 Histograms of the relative savings for the oracle strategy
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Problems

* Privacy Cé

 Discomfort ‘

* Irrelevant in the future with global warning and more efficient
building



Problem of distribution

We have seen that with smart heating you can make more energy

savings with a person leaving alone in a large house with poor
isolation.

Should we favour such a person rather than a family living in a small
house?



Data Center G

From previous presentation, we have seen that data center consume a
lot. For now, it’s 1% of the world consumption of energy.

Google used Google DeepMind

Weather 40% of reduction

Interaction Neural Network .
between env. E—— . E—— of coollng.
trained on PUE 15% less PUE

and equipment
Data center
specification
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Google DeepMind graph showing results of machine learning test
on power usage effectiveness in Google data centers

Source: Rich Evans and Jim Gao. DeepMind Al reduces energy used for cooling Google data centers by 40%, report, 2016

High PUE ML Control On ML Control Off

| Ay

Low PUE \
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Rebound effects

* Higher comfort temperature in the dwelling 'ZEEEZ.

or to buy a newer or larger heating devices « '

* People may increase their energy consumption in other areas of the
daily life
il



Conclusion

With Machine Learning, we can:
e Save electricity and energy

* Save money

e Without lose of comfort

We may imagine more automation ...



Other applications to save energy

* Automate the temperature in each room separately (man and
woman)

* For cooling

Google wanted to use their algorithm to:

* Improving power plant conversion efficiency

* Reducing semiconductor manufacturing energy and water usage,



Thank you for

@ yvour attention



3 different applications of Machine Learning

1. Optimize heating in function of electricity cost and productivity

title: Fabiano Pallonetto, Mattia De Rosa, Federico Milano, Donal P. Finn. Demand response
algorithms for smart-grid ready residential buildings using machine learning models, Applied Energy
239, pp. 1265-1282, 2019

2. Predict demand of electricity to reduce the lost

title: Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani. Optimal Deep Learning LSTM Model
for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with
Machine Learning Approaches, Energies, 11 (7), 2018

3. Optimize heating in function of home presence

title: Vincent Becker, Wilhelm Kleiminger, Vlad C. Coroama, Friedemann Mattern. Estimating the
savings potential of occupancy-based heating strategies, Energy Inoformatics 1, 2018
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Figure 6. Box Plot of Electric Load Consumption Weekend vs. Weekday.

Source: Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani. Optimal Deep Learning LSTM Model for Electric Load Forecasting using
Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches, Energies, 11 (7), 2018



To classify occupation

* Based on the use of electricity
* Hidden Markov Model
* Unsupervised algorithm

* To be able to deal with data without a ground truth of the occupancy



Average floor space per occupant by period of construction, 2019

Period of construction Floor space per occupant
Total 46m?
before 1919 47m?
1919 - 1945 44m?
1946 - 1960 41m?
1961 - 1970 41m?
1971 - 1980 46m?
1981 - 1990 49m?
1991 - 2000 49m?
2001 - 2005 49m?
2006 - 2010 48m?
2011- 2015 48m?
2016 - 2019 47m?

Source: F50 - Buildings and dwellings statistics

https://www.bfs.admin.ch/bfs/en/home/statistics/construction-housing/dwellings/housing-
conditions/floor-area-person.html
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