
Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems HS 2017

Assignment 1
Start: 2nd October 2017
End: 12th October 2017

Objectives

The goal of this assignment is to familiarize yourself with the Android development process, to think
about user interface design, and to learn how to access sensors on a smartphone. As the emulator cannot
emulate all sensors, you will have to test your code on a physical device. Besides implementing the
application, you have to answer a mini-test given below. More details are available in the Deliverables
section. With this assignment you can gain 10 points out of the total 45.

Task Points
1 2
2 3
3 3
4 2

Total 10

1 Sensing with Android (2 Points)

Every Android application must provide an Activity as an interface for user interaction. In this exercise,
you will let the user access sensors and the corresponding values.

1. Create a new Android project called VS_nethz_Sensors. Set the application name to
VS_nethz_Sensors and the package name to ch.ethz.inf.vs.a1.nethz.sensors
(nethz here and also later means the group leader’s nethz ID). Create the first Activity and name
it MainActivity.

2. In the MainActivity, design a user interface to list all available sensors of the smartphone.
The sensors should be contained in a ListView which automatically resizes with different input
sizes.

3. Create a second Activity called SensorActivity. When the user clicks on an entry in the
ListView, the SensorActivity should be started through an intent. The intent should carry
information about the sensor. Display at least the name of the sensor in the SensorActivity.

4. In the SensorActivity, the sensor’s values should be displayed. First, create a simple
TextView, to show the current values. Note, that you should handle and display the values
you obtain from the sensor correctly according to the type of the sensor, in terms of number
of values (e.g. one for light intensity, three for acceleration) and the corresponding units. For
that reason, create a class which implements the interface SensorTypes we provide. This
class should offer the number of values and the unit for a specific sensor type. Moreover, be
careful to copy the values before using them (see https://developer.android.com/
reference/android/hardware/SensorEventListener.html).

5. Next, you should use a graph to display the history of the sensor values. Place the graph below
the text view. Use the library Graph View (http://www.android-graphview.org/).

1

https://developer.android.com/reference/android/hardware/SensorEventListener.html
https://developer.android.com/reference/android/hardware/SensorEventListener.html
http://www.android-graphview.org/


Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems HS 2017

The library can be imported very easily by modifying the Gradle scripts as shown in the docu-
mentation and in the listing below.

Listing 1: GraphView setup in the app’s gradle script.
1 android {
2 ...
3 }
4
5 dependencies {
6 ...
7 compile ’com.jjoe64:graphview:4.2.1’
8 }

The graph should show the latest 100 values from the sensor (i.e. a moving window over the
sensor values). If a sensor generates multiple values (e.g. the acceleration sensor), all of them
should be shown in different series (and do use a different colour for each series). The y-axis
should be labelled with the sensor’s corresponding unit, the x-axis with the time of the sensor
readings since starting the SensorActivity (i.e. these time points are changing as well). Please
create a class which implements the interface GraphContainer we provide, which holds the
GraphView and applies all modifications to it. The graph should not restart when the orientation
of the device is changed.

6. We will run automated JUnit and Android instrumentation tests on your code and also provide
some of them to you. To do so it is necessary that you implemented the two aforementioned
interfaces. To run them make sure to add the following lines to your app gradle script in the
according sections.

Listing 2: Setup for testing.
1 android {
2 defaultConfig {
3 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
4 }
5 }
6
7 dependencies {
8 testCompile ’junit:junit:4.12’
9 androidTestCompile ’com.android.support.test:runner:0.5’

10 androidTestCompile ’com.android.support.test:rules:0.5’
11 }

Since the sensors are still active during the test do not move your smartphone during the test since
that might interfere with the artificial values injected in the test (or use the emulator). Additionally,
turn off the screen (i.e. lock the device).

2 The Anti-Theft Alarm (3 Points)

In this exercise, you will create an application to secure an Android device against unauthorized usage.
When the device is locked, movements should be registered. If the user (thief) keeps moving the phone
for a certain amount of time, the phone should raise an alarm (e.g. by playing a sound file or sending
a silent notification). You should create an Activity to control the sensitivity of the alarm and the
timeout after which an alarm is raised, and a Service to deal with the readings from the accelerometer.
You must use the code skeleton provided on the course website which is described below.

1. Create a new project called VS_nethz_AntiTheft with an Activity called MainActivity.
The package name should be ch.ethz.inf.vs.a1.nethz.antitheft.

2



Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems HS 2017

2. The Activity will also need some means to start and stop the background process running the
alarm logic. We suggest you to use a ToggleButton to change the state of the alarm.

3. Create a Service called AntiTheftService. The service must implement the
AlarmCallback interface provided to you. This interface class contains a method
onDelayStarted(), which is called from the movement detector as described below.
The service should run in the background and post an ongoing notification which cannot be
cleared by the user. This notification should only disappear when the Service is shut down. The
notification is used for resuming of the MainActivity. Unlocking the device (i.e. turning off
the alarm) should lead to the termination of the service and the cancellation of the notification.
Hint: Consider the guidelines of the Android website provided at https://
developer.android.com/guide/components/services.html for services
and https://developer.android.com/guide/topics/ui/notifiers/
notifications.html for notifications.

4. The user should be able to access settings for the sensitivity and the length of the delay (i.e. the
duration before the alarm sound is activated). To store settings, Android offers Preferences, a very
convenient way store and retrieve values, which should persist in the application independently
from the application cycle. Refer to the Settings guide (https://developer.android.
com/guide/topics/ui/settings.html) for further information. An example of the use
of the methods to store and retrieve a value in code are shown below.

Listing 3: Examples for preferences.
1 // Store value
2 boolean value = true;
3 SharedPreferences.Editor editor = getPreferences(Context.MODE_PRIVATE).edit();
4 editor.putBoolean("key_stored_boolean", value);
5 editor.apply();
6
7
8 // Retrieve stored value
9 boolean val = getPreferences(Context.MODE_PRIVATE).getBoolean("key_stored_boolean",

false);

Moreover, the user should be able to change the sensitivity of the alarm. To do so, you should
implement a PreferenceFragment which is managed by an Activity. This Activity
should be started by an intent when the user selects the settings in the options menu. All these
topics are also mentioned in the Android settings guide. Changes should only be possible when
the device is in the unlocked state. Otherwise each preference (settings option) should be disabled.

5. To implement a movement detector, create a class which extends the provided
AbstractMovementDetector, which implements the SensorEventListener in-
terface. The movement detector should contain the logic necessary to trigger the alarm. Use the
linear acceleration sensor, where gravity is already subtracted. Your logic should recognize a
deliberate movement (which we will arbitrarily define as a significant change in sensor readings).
The way you detect a deliberate movement should be a spike detector, i.e. if the element-wise
sum of the absolute linear acceleration values exceeds the sensitivity threshold, a movement
is detected. Additionally, add a second movement detector of your choice with a different
mechanism. Add an option in the settings through which the user can select which detector is
used (e.g. by using a list preference).

6. The user should have a certain period of time, the delay (∆t) defined in the settings, during which
he/she can still disarm the device.

3

https://developer.android.com/guide/components/services.html
https://developer.android.com/guide/components/services.html
https://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://developer.android.com/guide/topics/ui/settings.html
https://developer.android.com/guide/topics/ui/settings.html


Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems HS 2017

7. When the delay has elapsed after a deliberate movement, the phone should raise an alarm (e.g.
play a sound file). Disarming the device (i.e. turning off the service) should also stop the alarm.

8. Pay attention to typical Android crashes like on rotating the screen, pushing the back button,
etc. At the end, do not forget to unregister the sensor event listener, i.e. the movement detector.
Failing to do so can drain the battery in just a few hours because some sensors have substantial
power requirements and can use up battery power quickly. In contrast to earlier Android versions,
the system will not disable sensors automatically when the screen turns off.

3 Sensing using Bluetooth Low Energy (3 Points)

In this task, you will use Android’s built-in platform support for Bluetooth Low Energy (BLE) to con-
nect to the Sensirion HumiGadget to sense humidity and temperature. You should display the current
measurements to the user.

Helpful resources for this task are

• the Android guide on BLE: https://developer.android.com/guide/topics/
connectivity/bluetooth-le.html. Note, that it partly uses deprecated methods and
you should use the current methods which are available from version 5.0 (API 21) onwards (see
https://developer.android.com/about/versions/lollipop.html under
Advanced Connectivity)

1. Create a new project called VS_nethz_BleSensirion with an Activity called
MainActivity. The package name should be ch.ethz.inf.vs.a1.nethz.ble.

2. The Activity should first check if BLE is supported on the device. It should then check if bluetooth
is enabled, and display a dialog to the user requesting permission to enable it if it is disabled.

3. Implement a scan for available devices. You should limit the time of the scan and you should only
show Sensirion HumiGadget devices (e.g. by using a ScanFilter). Scanning should stop once
the user selects one of the listed devices, or the scan-time expires.

4. Note, that you also need the permission ACCESS_FINE_LOCATION. Since Android
6.0 you have to request this permission from the user the first time the app is
started. Find more information on https://developer.android.com/training/
permissions/requesting.html. Additionally, also since Android 6 the location service
has to be turned on to be able to perform a BLE-scan. You have to request the user to activate the
location services.

5. Basically, scanning for BLE devices works as follows:

(a) Request a BluetoothManager from the system and retrieve the BluetoothAdapter
from it.

(b) With the BluetoothAdapter you can check whether Bluetooth is turned on on the device
or not. If not, display the dialog.

(c) From the BluetoothAdapter, you can get the BluetoothLeScanner. With this
you can scan for Bluetooth devices. You have to provide a ScanCallback to receive the
results.

4

https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
https://developer.android.com/about/versions/lollipop.html
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/training/permissions/requesting.html


Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems HS 2017

6. When the user selects a listed device, you should start a new activity which connects to
it. This is done by the method connectGatt(...), to which you have to pass a
BluetoothGattCallback, which you have to implement. This callback monitors the con-
nection state. The method returns a BluetoothGatt object with which you can discover and
access the device’s services by discoverServices() and getService(...). When the
connection state changes to BluetoothProfile.STATE_CONNECTED, you should attempt
to start the service discovery on the device.

7. To access a service you can either iterate through the discovered services or use its unique
identifier ID (UUID) in getService(...). You should access two services, the humidity
and the temperature service. All UUIDs needed are listed below and are available in the class
SensirionSHT31UUIDS which we provide (to be able to omit the class name you can use a
static import for the class).

8. A service is composed of at least one characteristic (containing a single value), and a characteristic
holds descriptors (describing the characteristic’s value, optional).

9. Once you hold a service, you can access its characteristics using
service.getCharacteristic(...) with the corresponding UUID. Attempt to
read a value from the data characteristic.

10. You will realise, that there is a problem with reading data values. That is because the service
has to be activated on the device to use it. This is usually done by writing a one-byte in the
service’s configuration characteristic. The problem is that the characteristic has no permissions
set for writing. To change that we add our own characteristic with the same UUID and the correct
permissions using addCharacteristic(...). Basically, we are overwriting the previous
characteristic for that UUID.

11. Now you can read values from the data characteristic. Note, that these have to be converted to
decimal format with the following code.

Listing 4: Conversion for humidity values.
1 private float convertRawValue(byte[] raw) {
2 ByteBuffer wrapper = ByteBuffer.wrap(raw).order(ByteOrder.LITTLE_ENDIAN);
3 return wrapper.getFloat();
4 }

12. Rather than reading or continuously polling the device, we want to be informed of new
values. This can be done via notifications. To enable notification you have to set
them for the app and the bluetooth device. First, enable them on the app by calling
bluetoothGatt.setCharacteristicNotification(...) with the corresponding
characteristic as argument. Second, for the bluetooth device, add a descriptor to the char-
acteristic with the following UUID: UUID_NOTIFICATION_DESCRIPTOR. Set the value
of the descriptor to BluetoothGattDescriptor.ENABLE_NOTIFICATION_VALUE
and call writeDescriptor to the descriptor of the data characteristic. Hence forth,
whenever the values changes the method onCharacteristicChanged(...) in the
BluetoothGattCallback will be called, from where you can retrieve the value.

13. The process above is the same for both the humidity and the temperature service.
Hint: Note, that to transfer anything to the BLE device you have to set the value and then call
the corresponding write-method. However, you always have to make sure that a read or write
on the bluetooth device has finished before you can call the next one. Take this into account for
configuring the second service.

5



Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems HS 2017

14. Finally, use a graph as in task 1 to display the values.

15. Be aware of handling the resources correctly, i.e. closing the connection when closing the app etc.
Hint: One source of errors we found is pairing the BLE device with your smartphone in the
Android settings. Do not do this.

• UUID_HUMIDITY_SERVICE: 00001234-b38d-4985-720e-0f993a68ee41

• UUID_HUMIDITY_CHARACTERISTIC: 00001235-b38d-4985-720e-0f993a68ee41

• UUID_TEMPERATURE_SERVICE: 00002234-b38d-4985-720e-0f993a68ee41

• UUID_TEMPERATURE_CHARACTERISTIC: 00002235-b38d-4985-720e-0f993a68ee41

• UUID_NOTIFICATION_DESCRIPTOR: 00002902-0000-1000-8000-00805f9b34fb

4 Mini-Test (2 Points)

As part of the assignment, you should answer the mini-test given below and submit the answers as a
PDF file. The test covers general Android knowledge questions, as well as questions related to how you
tackled the assignment. When text answers are required, please answer in full sentences.

1. (Sensor Framework)
A) Write a small code snippet to show how to perform the following tasks:

a) List available sensors on a device

b) Retrieve the value range of a specific sensor

c) Register for monitoring accelerometer sensor changes at the maximum available rate

B) The following code snippet is used to monitor the values of the ACCELEROMETER and
PROXIMITY sensors. The goal is to log the sensor values to create a history of them. The
class SensorValuesDetector is used as the SensorEventListener in an activity (the
code of the activity is omitted for brevity). The code for the log method is not given, it is just a
placeholder for an implementation. Be aware that this method may take some time. Lines 13-24
in the onSensorChanged method contain a mistake. Point out the mistake, and explain how it
may cause a problem.

Listing 5: Code for question 1.b
1 import android.hardware.Sensor;
2 import android.hardware.SensorEvent;
3 import android.hardware.SensorEventListener;
4
5 public class SensorValuesDetector implements SensorEventListener {
6 float[] proximityValues;
7 float[] accelerometerValues;
8
9 @Override

10 public void onSensorChanged(SensorEvent event) {
11 int sensorType = event.sensor.getType();
12
13 switch (sensorType) {
14 case Sensor.TYPE_ACCELEROMETER:
15 accelerometerValues = event.values;
16 // log the values
17 log(Sensor.TYPE_ACCELEROMETER, accelerometerValues);
18 break;

6



Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems HS 2017

19 case Sensor.TYPE_PROXIMITY:
20 proximityValues = event.values;
21 // log the values
22 log(Sensor.TYPE_PROXIMITY, proximityValues);
23 break;
24 }
25 }
26
27 @Override
28 public void onAccuracyChanged(Sensor sensor, int accuracy) {
29 // Do Nothing
30 }
31
32 public void log(int type, float[] values) {
33 // Logging the values. This operation may take some time.
34 // ...
35 }
36 }

2. (Activity lifecycle) The lifecycle of an activity comprises a set of states, and a set of callback func-
tions which are invoked when transitioning from one state to another such as onStart(). However,
only three states can be static, that is, the activity can exist in only one of these three states for an
extended period of time. Name these three states and the corresponding callback functions which
are invoked when transitioning to these states.

3. (Resources) It is discouraged to use literal strings in the app code and instead define them as
resources. Where should strings be defined instead? What is the advantage of this approach?

4. What are Intents? What are they used for? What is the difference between Explicit
Intents and Implicit Intents?

5. (Service lifecycle) State whether each of the following sentences is true or false:

a) A service started by calling startService() can never be stopped before it finishes its
job.

b) Both bound and unbound services can interact with more than one client processes.

c) A bound service, which is not a started service at the same time, can only be running as long
as there is a component bound to it.

d) Services which perform lengthy computations are automatically started in a separate thread
from the main thread.

6. (AndroidManifest file) Suppose that you are implementing an Android application that consists of
one activity MainActivity and one service LocationService. The service retrieves the
user’s current fine-grained location at regular intervals using Android’s Location Services
framework. The application sends a text message to a phone number with the current location
every hour.

Below is the AndroidManifest file for such an application. The file is missing three necessary
tags for the application to work. List the needed tags.

Listing 6: AndroidManifest file for question 6
1 <?xml version="1.0" encoding="utf-8"?>
2 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
3 package="ch.ethz.inf.vs.android.nethz.locationsender"
4 android:versionCode="1"
5 android:versionName="1.0" >

7



Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems HS 2017

6
7
8 <application
9 android:allowBackup="true"

10 android:icon="@drawable/ic_launcher"
11 android:label="@string/app_name"
12 android:theme="@style/AppTheme" >
13
14 <activity
15 android:name="ch.ethz.inf.vs.android.nethz.locationsender.MainActivity"
16 android:label="@string/app_name" >
17 <intent-filter>
18 <action android:name="android.intent.action.MAIN" />
19
20 <category android:name="android.intent.category.LAUNCHER" />
21 </intent-filter>
22 </activity>
23
24 </application>
25 </manifest>

Deliverables

The following deliverables have to be submitted by 11:59 p.m., 12th October 2017:

1. code.zip You should create a zip file containing the Android Studio projects created in this as-
signment. The projects should have been tested both on the mobile phone and on the emulator.
The code must compile on our machines as well, so always use relative paths if you add external
libraries to your project. Do not forget to include those libraries in the zip file. Please use UTF-8
encoding for your documents and avoid special characters like umlauts.

2. answers.pdf Your answers to the mini-test in PDF format.

Submission

The deliverables must be uploaded through:
https://www.vs.inf.ethz.ch/edu/vs/submissions/
The group leader can upload the files, the other group members have to sign them in the online system
to express their consent with the submission. Use your nethz accounts to log in. The submission script
will not allow you to submit any part of this exercise after the deadline. However, you can re-submit as
many times as you like until the deadline.

8

https://www.vs.inf.ethz.ch/edu/vs/submissions/

	Sensing with Android (2 Points)
	The Anti-Theft Alarm (3 Points)
	Sensing using Bluetooth Low Energy (3 Points)
	Mini-Test (2 Points)

