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Abstract—One of the main challenges for activity recognition
systems is that there are numerous sensors which are likely to
move or exhibit failures due to hardware degradation, inac-
curate readings, and environmental changes. In this paper, we
propose a Simultaneous Multi-classifier Activity Recognition
Technique (SMART) that uses application-level semantics to
detect sensor node failures and improve the detection accuracy
under those failures. Once a node failure is detected, instead
of immediately dispatching maintenance, SMART evaluates
the severity of the failure by using data replay analysis.
Maintenance is dispatched only if the severity analysis indicates
that the node failure would have caused an application-level
failure in the past and the system could not have recovered from
it by updating the classifier ensemble it is using. Evaluation of
SMART on a set of activities from two public datasets shows
that SMART decreases the number of maintenance dispatches
by 45% on average and almost triples the mean time to
failure of the application. SMART identifies all application-
level failures at run time and improves the activity detection
accuracy under node failures by more than 70%.

Keywords-wireless sensor networks; activity detection; ma-
chine learning; failure analysis

I. INTRODUCTION

Activity detection using wireless sensor networks (WSN)
is becoming increasingly valuable for a wide range of
applications such as healthcare, education, and improving
the efficiency of heating, ventilation, and air conditioning
(HVAC) systems. A major challenge with activity detection
is that there are numerous sensors which are likely to
move or exhibit either fail-stop or transient failures due to
hardware degradation, battery depletion, and environmental
changes. These problems are becoming even more important
as sensors built into objects become ubiquitous. As the
numbers of sensors increase, even a large mean time to
failure (MTTF) per sensor can translate to a small MTTF
for applications using multiple sensors.

Even when extensive pre-deployment analysis is per-
formed, system designers do not have a full understanding
of how to best detect activities in a particular home with
particular residents because of all possible patterns the dif-
ferent activities of interest could exhibit. Therefore, in order
to improve the activity detection accuracy, these systems are
often deployed with some level of redundancy. As a result
of this redundancy, node failures might have different effect
on the application performance. In this paper, we describe

a Simultaneous Multi-classifier Activity Recognition Tech-
nique (SMART) that takes advantage of the node redundancy
in a system and minimizes the necessary number of repairs
and maintenance dispatches. SMART uses multiple classifier
instances that are trained preemptively for the occurrence
of node failures by holding one sensor out and employs
application-level semantics to detect sensor node failures.
SMART provides two key features:

1. Failure assessment. When a node failure is detected,
we assess its severity by using data replay analysis to
determine what the impact of the failure would have been
on the activity detection accuracy of the application in the
past. This relies on the basic notion that the past is similar
to the present. A lot of work has been done to show that
learning over a time period is useful for predicting future
patterns [1]. Our system attempts to recover from a node
failure by replacing the existing classifier with one that does
not depend on the failed sensor node(s). If the detection
accuracy would have remained above an application speci-
fied threshold when the new classifier is used, no repair is
necessary in the present. If, however, the detection accuracy
would have deteriorated significantly, physical maintenance
is necessary in the present. Since not all node failures are
repaired as soon as they occur, our approach a) decreases
the number of maintenance dispatches, and b) decreases the
number of sensor node repairs by only repairing the minimal
number of sensors such that the detection accuracy of the
application is restored back to a satisfactory level.

2. Simultaneous use of multiple classifiers. SMART
simultaneously uses multiple classifier classes and classifier
instances that are preemptively trained for failures. This
allows it to: a) Detect node failures at run time: The
basic approach is to constantly monitor for fluctuations in
the relative number of activities reported by the different
classifiers and use this information to infer the occurrence
of sensor failures. b) Improve the application accuracy in the
presence of failures: At run time, based on the characteristics
of the detected activities and the state of the system, SMART
dynamically chooses the most accurate classifier instance.
This allows it to maintain high detection accuracy even in
the presence of failures.

The key difference between SMART and state of the
art health monitoring systems, such as Memento [2], Sym-



pathy [3], or trust-based approaches [4], is that it uses a
top-down failure detection technique. Instead of detecting
and reporting low-level hardware failures, our approach
relies on application semantics to determine the severity of
application-level failures, i.e. failures that affect the high-
level application behavior of the system. In addition, bottom-
up approaches that rely on analysis of raw data, like the ones
mentioned above, are not easily applicable to binary, event-
triggered sensors, such as motion sensors or reed switches.

In our evaluation we use publicly available data sets
from three homes [5], [6]. The node redundancy level in
these datasets is very low since they were not designed
to be fault tolerant. We believe that SMART will be even
more powerful when applied to activity detection systems
that are designed with a sufficient level or redundancy in
order to provide fault tolerance. Despite the limitations of
the datasets we use, our evaluation shows that SMART 1)
reduces the number of necessary repairs by 70% and the
number of maintenance dispatches by 45% on average, 2)
increases the MTTF of the application 2.6 times, 3) can
be used to identify 100% of the application-level failures
and 60% of all node failures, and 4) improves the activity
detection accuracy under the presence of failures by more
than 70%.

II. RELATED WORK

Many applications have been developed to help achieve
sensor network hardware verification. Health-monitoring
systems, such as Memento [2], MANNA [7], and
LiveNet [8], employ sniffers or specific embedded code to
monitor the status of a system. Sympathy [3] was developed
to help with detecting routing problems. However, these
applications are focused on examining low-level system
parameters. Therefore, they cannot be used as a substitute
for our approach. Instead, if available, SMART can take
advantage of such techniques and use them to verify that
fail-stop sensor failures.

The run time assurance methodology (RTA) is similar
to our work in the sense that it targets failures visible
at the application level. However, instead of monitoring
the performance of activity detection classifiers, RTA uses
techniques such as end-to-end application-level tests [9] or
statistical checking of probabilistic properties [10], [11],
to validate at run time that the application can function
correctly despite any changes that might have occurred to the
underlying system or the environment. Our approach goes
one step further than RTA in that instead of dispatching
maintenance when a severe node failure occurs, it attempts
to adapt to the failure by switching to a classifier that is
preemptively trained for this failure.

A number of applications have used outlier detection to
identify faulty sensors. Systems like Suelo [12] learn to
identify faults with the help of human expert assistance.
This approach is not suitable for home deployments since

1) people living in the monitored homes are usually not
experts on activity detection, and 2) people’s recollections
about the time of occurrence, duration, and order of activi-
ties are often inaccurate and incomplete. Another approach
based on outlier detection is the reputation-based framework
proposed by Ganeriwal et al. [4]. However, building and
maintaining a community of trust for activity applications
is inherently hard because of the wide variety of sensors
involved and the diverse sensor firing patterns each activity
can be characterized with.

The idea of using multiple classifiers and dynamically
selecting the most accurate one has been explored in pattern
recognition and neural networks. Partridge and Yates pro-
posed a number of techniques that exploit heuristic rules for
choosing classifier groups [13]. Additional techniques were
proposed by Roli and Giacinto [14], [15]. These techniques
could be incorporated into SMART to further increase the
accuracy of activity detection under failures. This, however,
is not the focus of this paper and we leave it for future work.

A lot of work has been done in the area of using sensor
nodes for activity detection, such as [5], [16], [17]. The
majority of projects have focused on achieving high activity
detection accuracy. Different approaches have been applied
to this problem, such as designing new classification algo-
rithms, adding more sensors, and increasing the granularity
of the activities of interest. Unlike previous work, which
does not consider the effect of node failures, our paper
studies the accuracy of activity detection algorithms in the
presence of sensor node failures.

III. APPROACH

The key insight behind SMART is that the severity of
node failures should be considered when deciding whether
maintenance is necessary and, if so, which nodes should be
repaired. Consider the scenario in Figure 1. The activity we
are interested in is cooking. There are two sensors in the
kitchen but only the star-shaped one is located close to the
appliances and the sink. If this sensor fails, the detection ac-
curacy for cooking will be impacted significantly. Therefore,
this failure is severe and maintenance will be necessary if it
occurs. On the other hand, if the oval sensor fails, this might
not affect the accuracy of detecting cooking. In that case, the
node does not need to be repaired immediately. Also, if the
node redundancy in the kitchen was higher, the failure of
the star-shaped node might not have been considered severe
since it might have barely affected the detection accuracy.

The core of SMART can be divided in two components:
offline and run time (Figure 2). Preliminary failure severity
analysis of the effect of sensor failures on the classifiers’
performance is performed offline. This analysis can also
be rerun in the future if the system behavior evolves over
a longer period of time. Also offline, our approach trains
classifier instances for all possible combinations of node
failures by holding those nodes out of the training set.



Figure 1. The severity of a sensor node failure is very strongly correlated
with the level of redundancy in the system. Therefore, because of the low
node redundancy in the kitchen, if the star-shaped node fails, the accuracy
of detecting cooking activities would be severely impacted.

The results from the failure severity analysis together
with the classifiers are used at run time to detect node
failures. SMART chooses which of the preemptively trained
classifiers to include in the current classifier ensemble based
on the failures that have been detected so far. When a new
node failure is detected, the system adapts to that failure by
updating the classifier ensemble to contain classifiers that
are trained for the failure. Since all classifier instances are
trained beforehand, the overhead of updating the classifier
ensemble at run time is negligible. If the new classifier
ensemble can help maintain the detection accuracy of the
application above the application specified severity threshold
THS , the failure is considered non-severe. We define THS

as a fraction of the original accuracy of the system when no
failures are present. If a failure is not severe, no maintenance
is necessary since the application can still meet its high-
level requirements. However, if the node failure is severe
and the detection accuracy falls below THS , one or more
sensors need to be repaired. Instead of repairing all failed
nodes, SMART determines the minimal number of necessary
node repairs that will restore the detection accuracy of
the application above THS . In the rest of this section
we describe in more detail: 1) the node failure severity
analysis, which allows us to decrease the number of repairs
and maintenance dispatches, and 2) the training of multiple
classifiers, which allows us to detect failures at run time and
maintain higher detection accuracy under failures.

We use the following notation:

1. C (Training set, Testing set), where, for a classifier
instance of class C, Training set and Testing set are the sets
of sensors used for training and testing, respectively.

2. CAccuracy: accuracy of classifier instance C;

3. CNDA: number of detected activities by classifier
instance C;

4. S: the set of all nodes in the system.

Figure 2. SMART has two components: offline and run time. Preliminary
offline analysis of node failure severity is performed and multiple classifiers
are trained. The results of this analysis together with the classifiers are used
at run time to detect node failures and determine if maintenance is needed.

A. Node failure severity analysis

When a failure is detected at run time, we use histor-
ical data and apply data replay analysis to evaluate what
effect this failure would have had on the application had
it occurred in the past. Assume that node s fails, where
s ∈ S. We use historical data to estimate CNDA(S, S)
that would have been reported by the classifier before the
failure. After that, we remove all readings produced by
the failed node s from both the training and the testing
set and calculate CNDA(S − s, S − s). The difference
|CNDA(S, S)− CNDA(S − s, S − s)| determines the effect
of the failure on the application. As mentioned earlier, a
failure is considered severe if it decreases the detection
accuracy below the severity threshold THS . Some appli-
cations might consider failures to be severe if they change
the number of detected activities by more than 30% of the
original number of detected activities. However, for safety-
critical applications, a failure could be severe even if it
changes the number of detections by 5%. Instead of using a
global severity threshold, an application can also specify per-
activity severity thresholds. In this way, if some activities are
considered more critical than others, they can be assigned
stricter severity thresholds.

1) Computing the minimal number of repairs: Mainte-
nance is dispatched every time the detection accuracy of the
system falls below the specified threshold THS . Although
repairing all nodes that have failed would be ideal, it might
not always be feasible. First, it might take too long and,
therefore, cost too much, to repair all nodes in a house with
hundreds of nodes where tens of those nodes have failed.
Also, if some of the nodes themselves are expensive, it might
be more cost-effective to repair just a subset. For those and
other similar situations, our approach computes the minimal
number of necessary repairs that need to be performed when
maintenance is dispatched.

If S is the set of all nodes in the system, the number
of possible failure traces is 2|S| − 1. We use a dynamic
programming algorithm to compute the minimal number of



repairs for each of them. At each step we consider failures
involving exactly k sensors, starting from k = 1 (only
one sensor failing) and ending with k = |S| (all sensors
failing). The number of k-sensor failures is the number
of k-combinations of all sensors. Each failure F(k,i) is
identified by its set of k faulty sensors, and i, where i ranges
from 1 to

(|S|
k

)
. For each k-sensor failure we compute the

classifier accuracy CAccuracy (S, S − k). If the accuracy is
above the severity threshold THS , we consider the failure
as insignificant to the classifier and no repair is necessary.
Otherwise, at least one of the k sensors needs to be repaired,
thus going back to a k− 1-sensor failure situation. In order
to minimize the total number of repairs, we always choose
to repair the sensor that leads to the k − 1-sensor failure
requiring the minimum number of repairs. The algorithm is
formally represented by the following iterative formula:

r(F0,1) = 0 (1a)

r(Fk,i) =


0 if CAccuracy ≥ THS

1 +min{r(Fk−1,j) if CAccuracy < THS

|Fk−1,j ⊂ Fk,i}
(1b)

B. Training multiple classifiers

Performing a complete failure severity analysis requires
consideration of every possible combination of faulty sen-
sors. The analysis of all 2|S|−1 failure sequence traces could
pose scalability issues for large networks with hundreds of
sensors. However, not all of the sequence traces need to be
considered simultaneously at run time. Empirical analysis
we performed showed that it is enough to initially consider
only the |S| single-node failures. Therefore, in addition to
the classifier instance C = (S, S) trained on all nodes, we
also analyze |S| more classifier instances, where ∀s ∈ S a
classifier instance is preemptively trained for the failure of
node s, i.e. its training set contains S − s sensors. Figure 3
shows how the training sets for the additional |S| classifier
instances are identified. To identify when failures occur, we
monitor the relative detection rates of the original classifier
instance and that of the other |S| instances.

1) Failure detection: To detect sensor failures at run
time, SMART relies on monitoring changes in the relative
behavior of the classifiers. The accuracy of a classifier
changes when one of the nodes it has been trained on
fails. Therefore, if we notice a change in the accuracy of
a classifier at run time, we can infer that one (or more) of
the nodes used for training has failed. To detect changes in
the accuracy, we need to have ground truth for comparison.
Unfortunately, this is not available at run time. Instead,
we compare the behavior of the original classifier instance
trained on all available sensors to that of the additional
classifier instances trained by holding one of the sensors out.

Figure 3. Preemptively training classifiers for the occurrence of failures
by holding one sensor out from the training set allows us to build failure-
aware systems. Classifier A is trained on all nodes but classifiers B and C
are trained by holding node 1 and node 7, respectively.

At run time we monitor for changes in the relative number
of activities detected by each of the classifiers.

When sensor s fails, we expect that the ratio of reported
activities by the original classifier instance trained on all S
sensors and that trained without sensor s will change from
Rold to Rnew, where

Rold = CNDA(S,S)
CNDA(S−s,S) Rnew = CNDA(S,S−s)

CNDA(S−s,S−s)

When |Rold −Rnew| > THR, where THR is a prede-
fined threshold, we can infer that node s must have failed.

Unlike health-monitoring, SMART considers more than
just fail-stop failures. We also address transient failures that
could be caused by node displacement, temporary changes
in the environment and connectivity, or faulty values due to
power depletion. In the case of a transient failure, when node
s recovers from the failure, the ratio between the number of
activities detected by the two classifiers should return back
to the original Rold. If the system detects that the original
detection ratio has been restored, it can go back to using the
classifier trained on all nodes including node s.

An important thing to consider here is that small fluc-
tuations in the ratios might occur even without failures. In
addition, non-severe failures might cause very small changes
to the behavior of the classifiers. Therefore, the threshold
THR, which helps distinguish between sensor failures and
normal fluctuations while also allowing the detection of
the majority of node failures, should be carefully chosen.
Section IV discusses how choosing different values for THR

affects the ability of our approach to detect sensor failures.
Another issue is that SMART might have difficulty detect-

ing node failures that cause very small difference between
Rold and Rnew. In general, this should not be a problem,
since such non-severe failures will have very little effect
on the application-level behavior. However, for applications
where it is important that all node failures are detected,
health-monitoring approaches can be used to help identify
some of the node failures that SMART cannot detect.

2) Maintaining detection accuracy under failures: We
want a system that is able to adapt itself and maintain



high activity detection accuracy even in the presence of
node failures. We approach this challenge by simultaneously
running more than one classifier instance. Some of the clas-
sifier instances are preemptively trained for the occurrence
of failures using the hold one sensor out approach. At run
time, based on the relative behavior of the classifiers, the
system dynamically chooses the best classifier instance from
the current classifier ensemble.

In addition to training multiple classifier instances,
SMART also simultaneously uses different classifier classes,
such as Naive Bayesian (NB), Hidden Markov Model
(HMM), Hidden Semi-Markov Model (HSMM), or decision
trees. SMART takes advantage of the fact that classifiers
perform differently based on the current state of the system.
One classifier class might be more accurate than another in
situation A, and less accurate in situation B. This can occur
for a number of reasons, such as the nature of the detected
activity, the number and location of failures, and the network
topology. At run time SMART dynamically chooses the best
classifier instance among all classes and all instances that are
simultaneously running in the system.

IV. EVALUATION

We use two publicly available activity detection datasets
for our experiments. We study two of the houses from the
first dataset [5]: House A and House B. The data from House
A was collected in the course of 24 days from 14 sensors.
House B contained 27 sensors and the data was collected
over 13 days. Each day is divided into fixed-length timeslots
and the activity performed in each timeslot is classified based
on the sensor firings within that particular timeslot. The
subjects living in the houses annotated a number of different
activities that include leave house, toileting, sleeping, pre-
pare breakfast, prepare dinner, and showering. We use this
annotation as the ground truth. The dataset also contains NB
and HMM classifiers for activity detection. Later in [18], an
HSMM classifier was used with the same dataset. In our
experiments we use these classifiers for the evaluation on
activities from House A and House B.

The second dataset is from the PlaceLab project at
MIT [6]. The home they monitor is deployed with over 900
sensors, including wired reed switches, current and water
flow inputs, object and person motion detectors, and RFID
tags. This dataset contains 104 hours of annotated data with
examples of 43 typical house activities. The authors use two
of the classifiers from the WEKA software package [19]: NB
and C4.5 decision trees. We also use the WEKA classifiers
in all experiments involving the PlaceLab dataset.

Although we run experiments with only four classifier
classes, namely NB, HMM, HSMM, and decision trees,
we are confident that other classifier classes can easily be
incorporated into our approach.

The detection of simple activities, such as leave house
and toileting relies on a single sensor. When that sensor

fails, the corresponding activity can no longer be detected.
Such a failure is considered to be severe and maintenance
should always be dispatched. In our evaluation we focus
on complex activities whose detection relies on multiple
sensors. This gives us the opportunity to encounter node
failures with different levels of severity. There are many
complex activities that one might want to monitor, such
as cooking, cleaning, studying, exercising, getting dressed,
and unpacking groceries. In our experiments we evaluate the
detection of the following five activities:

House A: preparing breakfast and preparing dinner
House B: preparing breakfast and preparing dinner
PlaceLab: leisure
Our choice of activities was constrained by the limitations

of the datasets: most of the activities were simple and the
fault tolerance level was low. Preparing dinner and breakfast
were the only complex activities in House A. We study the
same activities in House B for comparison. The PlaceLab
dataset lacks annotations for many of the cooking activities
and they coult not detect those very well. Therefore, we
used the leisure activity which relies on 6 sensors: television,
remote control, computer keyboard, and kitchen, office, and
living room PIR.

The severity threshold for all of the experiments is set
to THS = 0.3. We chose this particular value based on
empirical analysis we performed with smaller thresholds,
such as 0.1 and 0.2. When such small thresholds are used,
due to the low level of redundancy in the datasets, most
of the node failures are classified as severe. Therefore,
we chose a threshold that allowed us to have a more
diverse failure profile. In the rest of this section, a failure is
considered to be severe if it decreases the original accuracy
of the application by more than 30%.

The datasets do not contain failure information. All node
failures in the experiments were introduced by removing the
sensor data for the “failed” node from the testing set. We
use F-score as accuracy measurement for all classifiers:

F-score =
2 ∗ Precision ∗Recall

Precision+Recall
(2)

Precision is the number of correct activity detections divided
by the number of all returned activity detections. Recall is
the number of correct activity detections divided by the
number of all activity detections that should have been
returned.

A. Node failure severity

1) Number of repairs and maintenance dispatches: With
the baseline repair technique, every time a sensor node fails
a repair is necessary and maintenance has to be dispatched.
Figure 4 shows the effect of our approach on the number of
necessary repairs and maintenance dispatches. For this ex-
periment we only look at the behavior of different classifier
classes in isolation, i.e. SMART has one classifier class to



Figure 4. Distribution for minimal number of repairs for activity prepare breakfast. Compared to a baseline where a repair is necessary every time a node
failure occurs, our approach repairs only the severe failures and thus decreases the number of repairs by 70% on average, and the number of maintenance
dispatches by 45%. We evaluate three classifier classes - NB, HMM, and HSMM.

work with. This allows us to see the differences between
the classifier classes. The activity shown in the figure is
prepare breakfast from House A. The figure contains the
repair distribution over all possible combinations of failures
of the sensor nodes used to detect this activity.

When one of the nodes fails we need to perform a repair
in only 43% of the cases. This happens because only 3 of the
7 nodes that participate in the detection of activity prepare
breakfast have high influence on its detection accuracy.
Therefore, only 3 of the single-node failures are severe. The
number of necessary repairs gradually increases when more
nodes fail, but always remains smaller than the number of
node repairs required by the baseline approach. For example,
when all 7 sensors fail, SMART determines that repairing
only 2 nodes (3 in the case of HSMM) can increase the activ-
ity detection accuracy above the specified severity threshold.
Calculating the average number of necessary repairs for
all five activities over all classifier classes shows that our
approach decreases the number of repairs by 70%.

Figure 4 also shows the decrease in the number of
maintenance dispatches. A maintenance dispatch is avoided
whenever no repairs are necessary. When a NB classifier is
used, the number of dispatches is decreased by 57% with
one sensor failure, 43% with two failed sensors, and so on.
The results are similar for the HMM and HSMM classifiers.

There might be a significant difference in the number of
repairs based on the classifier class being used. For example,
for the prepare breakfast activity, introducing failures causes
faster accuracy degradation for HSMM than for NB or
HMM. This difference in the performance of the different
classifiers becomes more prominent when THS increases.

2) Mean time to failure: To evaluate our impact on the
MTTF of the application we compare our approach where
we use an ensemble of classifier instances some of which

Figure 5. Mean time to failure distribution for House A preparing
breakfast. We assume that a new sensor failure occurs after each time unit.
The average MTTF for NB, HMM, and HSMM are 2.2, 2.1, and 1.9 time
units respectively.

are preemptively trained for failures to the baseline where
there is just one classifier instance trained on all nodes.
We consider all possible sequence traces of sensor node
failures. For each of those traces, we evaluate at what point
in time, i.e. after how many node failures, a repair should
be performed. Unlike the baseline, our approach determines
that the application has failed not when the first node fails,
but when the first severe node failure occurs.

Figure 5 shows the results for the MTTF for the prepare
breakfast activity in House A. We introduce a new node
failure after each time unit. With the baseline approach, since
every node failure is also considered to be an application
failure, the MTTF of the system is always 1 time unit.
The results on Figure 5 show that when SMART uses a
NB classifier, the system can sometimes survive 5 failures
before it needs maintenance. This happens when all 4 non-
severe node failures occur first. In that case, the application’s
accuracy will remain above the severity threshold until the
fifth failure, which has to be severe.



Activity MTTF per classifier
House A baseline NB HMM HSMM SMART
breakfast 1 2.2 2.1 1.9 2.2
House A baseline NB HMM HSMM SMART
dinner 1 5 2.3 4.1 5
House B baseline NB HMM HSMM SMART
breakfast 1 4.1 2.3 3.4 4.1
House B baseline NB HMM HSMM SMART
dinner 1 2.9 1.9 1.7 2.9
PlaceLab baseline NB C 4.5 tree SMART
leisure 1 2.5 2.5 2.5

Table I
AVERAGE MTTF FOR ALL FIVE ACTIVITIES. OUR APPROACH
INCREASES THE MTTF 2.6 TIMES ON AVERAGE. THE MTTF

IMPROVEMENT ACHIEVED WITH EACH CLASSIFIER VARIES WITH THE
NATURE OF THE ACTIVITY. SMART CHOOSES THE MOST SUITABLE

CLASSIFIER AT ANY TIME AND THUS ACHIEVES THE HIGHEST MTTF.

Figure 6. Number of time slots classified as prepare breakfast House A
before and after the failure of node 8 for two NB classifiers: A and B.
Classifier A is trained on all nodes while classifier B is trained by holding
out node 8 from the training set. A significant change in the ratio of reported
activity instances by classifier A and classifier B could indicate that this
particular node has failed.

Table 1 shows the average MTTF values for all five activi-
ties. The MTTF achieved by different classifiers varies based
on the activity. For example, for activity preparing breakfast
from House A, using HMM results in much higher MTTF
than when HSMM is used. However, HSMM considerably
outperforms HMM for the preparing dinner activity again
from House A. Since our SMART approach dynamically
chooses the best classifier depending on the current state of
the system, it maintains the highest application MTTF.

B. Using multiple classifiers

1) Identifying sensor node failures: SMART detects the
occurrence of sensor failures at run time by simultaneously
running multiple classifier instances and monitoring changes
in their relative output. Figure 6 shows how SMART iden-
tifies that the fridge node (node ID 8) in House A has
failed. We use the data for the prepare breakfast activity
and compare the performance of two NB classifiers, A and
B, before and after the failure occurs. Classifier A is trained
on all nodes in the system assuming no failure. Classifier B
is preemptively trained for the failure of node 8 by excluding
it from the training set. The first and second bars in Figure 6
show the number of time slots identified as prepare breakfast

by classifiers A and B, respectively, before the failure. The
third and fourth bars show the behavior of the two classifiers
after node 8 fails. The significant difference in the ratio of
the first and second bar (0.50) and the third and fourth bar
(0.21) can be used to indicate that node 8 has failed.

Table 2 shows Rold and Rnew for all nodes that affect
the detection of the prepare breakfast activity in House A
and House B. The calculated change between the two ratios
shows that SMART is very successful at identifying severe
failures. The nodes that have the highest influence on the
detection accuracy of activity prepare breakfast for House
A are nodes 8, 9, and 23. Similarly for House B, we can
easily identify that node 3 is the most critical sensor. The
difference between Rold and Rnew is not as noticeable when
the sensors are not critical for the activity. As mentioned
earlier, health monitoring can be used together with our
approach to help identify low-severity failures.

The results in Table 2 also reveal that failure severity is
deployment-specific even when the same activity is being
analyzed. There is only one sensor in the overlap between
the nodes that are critical for detecting prepare breakfast in
House A and House B. This shows that the failure severity
analysis of two deployments could have very different results
even if the same activities are being detected.

Choosing an appropriate THR value that is low enough
to detect node failures but also high enough to accommodate
the natural fluctuations of the system is an important issue.
Figure 7 shows the effect of using different THR values on
the number of node failures that our approach is capable of
identifying. All activities show a similar trend, where with
smaller thresholds almost all failures can be detected. As
THR increases, the number of node failures that we can
detect decreases steadily. When THR reaches 30% the only
failures that our approach can detect are the severe ones.
Therefore, based on this empirical analysis a suitable value
for THR for the activities we examine would be close to
15%. It will allow us to 1) detect all severe failures; 2) detect
additional non-severe failures; 3) avoid interpreting natural
system fluctuations as node failures. Additional experiments
have shown that the effect of THR on the failure detection
accuracy of HMM and HSMM is very similar to that for NB.
Since the relative behavior of the classifiers may vary based
on the classifiers that are used and the nature of the detected
activities, choosing an appropriate general value for THR

may not always be possible. However, the results from the
offline node failure severity analysis can help in determining
suitable general or activity-specific value(s) for THR.

2) Maintaining high classification accuracy under fail-
ure: Figure 8 shows the relative accuracy in the presence
of failures achieved by NB, HMM, and HSMM classifiers
that were preemptively trained for failures. The results are
normalized to the accuracy of a baseline NB classifier trained
on all nodes when there are no failures in the system. Since
SMART picks the classifier providing the highest detection



House A : prepare breakfast House B : prepare breakfast

ID Location Rold Rnew Change ID Location Rold Rnew Change
1 microwave 0.83 0.83 0% 3 fridge 1.45 0.63 57%
7 cups cabinet 0.83 1.00 21% 9 plates cabinet 0.99 1.00 1%
8 fridge 0.50 0.21 51% 14 cutlery drawer 0.96 0.99 3%
9 plates cabinet 0.73 0.30 59% 15 stove lid 1.16 0.92 21%
17 freezer 0.73 0.94 29% 26 toaster 1.19 0.93 22%
18 pans cabinet 0.94 1.19 27% 27 microwave 1.11 0.97 13%
23 groceries 0.71 0.35 51% 28 motion sensor 1.16 1.27 9%

cabinet

Table II
CHANGE BETWEEN Rold AND Rnew FOR THE prepare breakfast ACTIVITY IN HOUSE A AND HOUSE B WHEN SINGLE NODE FAILURES ARE

INTRODUCED IN THE SYSTEM. IF A NODE HAS A SIGNIFICANT INFLUENCE ON THE DETECTION ACCURACY OF AN EVENT, ITS FAILURE CAUSES A
NOTABLE CHANGE IN THE RATIOS OF DETECTED ACTIVITIES BY THE TWO DIFFERENTLY TRAINED CLASSIFIERS.

Figure 7. Number of failures that our approach identifies using different
values for THR for a NB classifier. The increase of THR limits the number
of failures we can identify.

Figure 8. Detection accuracy for preparing breakfast in House A for
NB, HMM, HSMM, and SMART when the classifiers are trained for the
occurrence of failures. The results are normalized to the accuracy of a
baseline NB classifier trained on all nodes.

accuracy, the SMART curve overlaps with that for HSMM.

The next experiment evaluates the accuracy improvement
achieved by the classifiers trained for failures over the
classifiers that were trained on all nodes. For example, we
compare the accuracy of NB that is preemptively trained by
holding nodes out to that of NB trained on all nodes in the
system. Figure 9 shows the results for NB, HMM, HSMM,
and SMART for the prepare breakfast activity in House A.

Figure 9. Using classifiers that are preemptively trained for failures instead
of ones trained on all nodes in the system improves the detection accuracy
for preparing breakfast in House A. The curve for SMART overlaps with
that for HSMM since HSMM provides the highest detection accuracy.

The highest gain is achieved with the NB classifiers. For
example, when 3 nodes fail, using a NB classifier that is
trained for these failures instead of a NB classifier trained
on all nodes improves the detection accuracy by more than
100%. The curve for SMART again overlaps with that for
HSMM because of HSMM’s accuracy. When more than four
node failures have occurred, the accuracy improvement of
our approach grows exponentially since the accuracy of the
original classifiers trained on all nodes becomes close to 0.

Table 3 shows the average accuracy improvement for all
five activities when failure-trained classifiers are used. The
level of improvement for a classifier differs based on the
activity. For example, for preparing breakfast in House A,
NB shows the highest improvement while for the same
activity in House B SMART achieves almost double the
improvement of NB. Interestingly, using the failure-trained
classifiers leads to very small accuracy improvement for the
leisure activity. However, even if our approach does not
always increase the detection accuracy under failures, it can
still be used to detect node failures and decrease the MTTF
of the application and the number of necessary repairs.

V. CONCLUSIONS AND DISCUSSION

We presented a general repair assessment approach for
failures in activity detection applications. Even though the



Activity Accuracy improvement
House A NB HMM HSMM SMART
breakfast 307% 50% 33% 33%
House A NB HMM HSMM SMART
dinner 239% 13% 15% 262%
House B NB HMM HSMM SMART
breakfast 12% 20% 34% 9%
House B NB HMM HSMM SMART
dinner 65% 79% 58% 112%
PlaceLab NB C 4.5 decision tree SMART
leisure 1% 0% 0%

Table III
WE EVALUATE HOW USING CLASSIFIERS TRAINED FOR FAILURES

INSTEAD OF ONES TRAINED ON ALL NODES AFFECTS THE DETECTION
ACCURACY OF THE SYSTEM. THE AVERAGE ACCURACY IMPROVEMENT

UNDER THE PRESENCE OF FAILURES FOR ALL FIVE ACTIVITIES WE
EVALUATE IS 70.6%.

datasets used in our evaluation do not directly address fault
tolerance or redundancy, our approach still achieves signifi-
cant gains. SMART decreases the number of maintenance
dispatches by 45% and almost triples the MTTF of the
application on average. It also maintains sufficient activity
detection accuracy in the presence of failures by dynamically
updating the classifiers at run time so they can adapt to the
failures that occur. SMART detects all severe sensor failures
that affect the application-level behavior and over 60% of all
sensor failures at run time. Further, SMART improves the
activity detection accuracy under the presence of failures by
more than 70% on average.

In a deployment where there is absolutely no node re-
dundancy in the system and all of the activities of interests
are simple, i.e. for each activity there is just one designated
sensor whose readings can be used to infer the occurrence
of that activity, SMART performs just as well as the best
classifier in its classifier ensemble. However, in such a sce-
nario all node failures are severe and maintenance is needed
after each failure. Therefore, SMART will not improve the
MTTF of the application or the number of maintenance
dispatches, but it can be used to detect fail-stop or transient
node failures.

As long-lived sensor network applications become more
common in real homes, the need for fault tolerance and
ground truth validation will lead to increased node re-
dundancy. We expect that applying SMART to moderately
and highly redundant systems will result in much higher
gains. In the future, we plan to evaluate SMART on a
deployment designed with better fault tolerance features. We
would also like to integrate our approach with the design of
an activity recognition system and evaluate how providing
appropriate node redundancy at design time can further aid
fault tolerance, reduce dispatches, and improve accuracy.
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