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Agenda

= \What is Hand Pose Estimation?

= Why does it matter?

= How does it work?

= \What has been done?



What is Hand Pose Estimation?

= Estimate full Degree of Freedom (DOF) of a hand from
depth images

= This is a tough problem, especially to perform in real time!
= Not to be confused with “hand shape estimation”
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Why Does it Matter?

= More than just gestures

= |deal for continuous
iInput applications

= Links your hand
dexterity into a
computer model

= Will it redefine how we
interact with
computers??







Design / Engineering




Robot Hand Control- Surgery? Industry?
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Communication — Sign Language
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How Does it Work?

= |ts going to take some time to explain

= Starting from the ground up!
= Decision trees
= Ensemble techniques
= Random forests
= Body Pose estimation
= Hand Pose Estimation

= Assumption is that everyone has a very basic idea of what
machine learning is and does
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Machine Learning

= Goal:
= Given training data T with entries (x, y)
* Find a model that estimates y for unseen x
= This is called prediction

= Quality Measurement:
= Minimize the probability of model prediction errors on future data

= \What are some models?
= Linear Regression
= Support Vector Machines
= Decision Trees!
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Decision Trees

= Very intuitive
= Each node asks a question
about a feature of the data

= Propagates through the tree
depending on the answer to
each question

= When algorithm gets to the
end, the decision tree
makes a classification

{ Learned Categories
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How to grow a tree from data?

* |n what order do we ask the questions (test features)?
= Each possible tree has an amount of entropy

= Test out all possible questions for a node, and choose the one
that reduces the entropy the most (largest information gain)

= How do nodes make decisions based on the features?

= Same way!

= Choose a decision boundary that gives the largest information
gain
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How to grow a tree from data?
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Decision Trees: A Pretty Good Model!

Examples of weak learners
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Ensemble Learning

= Two competing methodologies:
= Traditional: Build one really good model
= Ensemble: Build many models and average the results

= Build a ton of “pretty good” models
= Combine them into one “pretty awesome” prediction!

= |mportant for individual models to not be correlated,
otherwise there is a strong tendency to overfit

= So we add randomness!
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Ensemble Techniques

= Bootstrap Aggregation (Bagging)
= Take a random subsample from the training set T, with replacement
= Train each model on a different subsample
= Classification is the majority vote; Regression is the average

= Random Forests: Multiple, randomized decision trees
1. Bagging
2. Randomized Node Optimization: choose random set of questions
=  Number of questions affects the correlation of the trees
3. Decision boundary of the decision trees: conic, linear, etc.

4. Depth of the component decision trees
=  More depth means there will be more overfitting
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Example: Different Trees

Training different trees in the forest
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Example: Different Trees
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Example: Different Trees

Training different trees in the forest
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Example: Random Decision Forest




Example: Multi-class Decision Trees




Example: Comparison to SVM Model




A quick look at body pose estimation

luete ixele ¢
capture infer oot oo fit model &
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remove bg per pixel body joint
positions

= Body Pose Estimation Pipeline
= Technology found in consumer devices, like the Kinect
= Very similar to hand pose estimation

24



Hand Pose Estimation Pipeline

Create a hierarchical skeleton model

NS

Segment the hand into parts

N/

Train RDFs and classify each pixel

N/

Estimate the joints for each hand part

N/

Connect the dots
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What makes Hand Pose tough?

= Hand is much smaller than the body, but still has 22 DOF
Self occlusion is very common and severe

= (Can be rotated in any direction (body is always upright)

= Real depth data can be difficult to label
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Some ideas..

= Restrict the viewing area of the hand
= One Advantage: Hands are fairly invariant among humans
= Train with synthetic data, rendered from 3D models
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Train based on Synthetic Data

= Use 3D hand models to
generate data

= Train the Random Decision
Forests using this data

¢
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Hand Pose Estimation Pipeline

Create a hierarchical skeleton model

NS

Segment the hand into parts

N/

Train RDFs and classify each pixel

N/

Estimate the joints for each hand part

N/

Connect the dots
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Pixel Classification

One Tree Two Trees Three Trees



Mean shift local mode finding

Algorithm used to determine where the joints are

= Each pixel is given a weighted Gaussian kernel

= Weight is determined by class probability times depth

= Gradient ascent from many points finds the local maxima
= Highest local maxima determines the joint

= Threshold the scores to filter out non-visible joints
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Joint Determination




Hand Pose Estimation Algorithm

Strengths

= Very fast

= Robust to fast movements and noise

= No initialization needed

= Can run on a GPU for interface applications or games

Issues
= Training must be done offline
= Number of images ~1-10M, takes 25-250 GB of data

= Number of operations is huge even with simple algorithm
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Limitations of Single Layer RDF

= Difficult to generate every possible hand pose

= Dataset size is huge!

= Hard to capture the variation in the data set

= More variation - deeper trees - more RAM/memory

= Solution: Divide into sub problems and solve with
separate RDFs

= |Lower variation - lower complexity - less RAM/memory
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Another/layer?

We must go deeper!/
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Multi-layered RDFs for Hand Pose
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Two Structures of Multi-layer RDFs

= Local Expert Network
= Hand Shape Classification gives each pixel a label
= Train local expert forests for each pixel label
= Expert forest depends on pixel label; each pixel is classified

= Global Expert Network
= Hand Shape Classification gives each pixel a label
= The hand shape is determined by pixel voting
= Train global expert forests for each pixel label
= Expert forest depends on hand shape label; each pixel is classified
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Local Expert Network
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Global Expert Network
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Training a Multi-layer RDF

= Given the same data as before (hand shape not given)

1. Cluster the data
2. Train Hand Shape Classifier based on all clusters
3. Train each Pixel Classifier based on a specific cluster
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Which is better? GEN or LEN

= Global Expert Networks average class distributions -
More robust to noise

= Local Expert Networks use info from each pixel =
Better at generalizing unseen data
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Test: American Signh Language

Generate synthetic dataset Train RDF from dataset :> Retrieve live stream

Fit a skeleton using RDF Train SVM for ASL digits ) Evaluate and classify

h
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Results

= Huge improvement over single-layer RDFs

Method |Single-layered RDF| GEN | LEN

Per Pixel 68.0% 91.2%190.9%
L0O
M Single Layered
- BLENQ=5
. MLEN Q=15
MLEN Q=25
40 MGENQ=5
P MGENQ=15
" GEN Q=25
0 -
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Results

= Remaining errors are concentrated on very similar poses

44



Summary

= What is Hand Pose Estimation?
Determine the joint positions to fix all DOFs of the hand

= Why does it matter?
Continuous Input Applications

= How does it work?
Randomized Decision Forests

= What has been done?
Add multiple layers for increased performance.
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Questions?



Appendix: Getting Hand Shape from Hand Pose

= Hand shape is just shape information “fist”, “flat”, etc.
= Hand pose is specific joint angles for every DOF

= With hand pose, can use SVM to determine hand shape
very robustly
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