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Why speech recognition? 

Source: http://www.freepixels.com/index.php?action=showpic&cat=20&pic | Google Voice Search Android  
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§  User claims identity 
§  Binary decision 

§  Either identity claim is correct 
§  or «access» denied 

§  Enrollment 
§  Text dependent vs. independent 
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Speaker verification 
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§  No apriori identity claim 
§  Enrollment 
§  Open vs. closed group 
§  Text dependent vs. independent 

13.5.2014 Niklas Hofmann 5 

Speaker identification 
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§  Recognize spoken language 
§  Speaker independent vs. dependent 
§  Restricted input vs. «speech-to-text» 
§  No predefined usage 

§  Commands 
§  Data input 
§  Transcription 
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Speech recognition 
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Signal 
generation 

Signal 
capturing Preconditioning 

Feature 
extraction 

«Pattern 
matching» System output 
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Speech processing stages 
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Signal generation 

Source: Discrete-time speech signal processing | T. Quatieri | 2002 
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§  Simplified vocal tract 
§  Time invariant for a short time 
§  Source modeled as 

§  Periodic signal 
§  Noise 

§  Speech as overlay of source 
and resonance 
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Signal generation 

Source: Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 2011 
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§  Microphone 
§  Bandwidth 
§  Quality (better quality à easier to detect features) 

§  Ambience 
§  Noise 
§  Echo  

§  Start / Endpoint detection 
§  Normalization 
§  Emphasize relevant frequencies 

§  Similar to human hearing 
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Signal capturing / preconditioning 



| | 

§  Signal framing 
§  Vocal tract static for small frame (20-40ms) 

§  Performed on either 
§  Waveform 
§  Spectrum 
§  Ceptstrum 
§  Mix of all 

§  Techniques used 
§  Linear Prediction 
§  Cepstral Coefficients 
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Feature extraction 
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Framing 
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Framing 
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Waveform 
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§  Transform sample from time domain to frequency domain 
§  Invention of FFT very helpfull (1965) 
§  Gives insight in periodicity of a signal 
§  Sensitive to framing (à window functions) 
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Spectrum 
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Spectrum 
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Linear prediction 

Source: Linear Prediction | Alan O Cinnéide | Dublin Institute of Technology | [2008] 
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Cepstral coefficients 
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§  «Detect» speech units (phonemes / words) out of series 
of feature vectors 

§  Two main ideas 
§  Template matching 

§  «Simple» matching 
§  Dynamic time warping 

§  Statistical 
§  Hidden markov model 
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«Pattern matching» 
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§  Calculates distance from sample to template 
§  Simple to implement 
§  Assumes sample and template of same length / speed 

§  Very sensitive to different speech patterns (length, pronounciation) 
§  No widespread use anymore 
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«Simple» matching 
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§  Tries to «correct» slower/faster sample with respect to 
template 

§  Uses metrics to disallow too much «warping» 
§  Still calculates «distance» between sample and template 
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Dynamic time warping (DTW) 
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Dynamic time warping (DTW) 

Source: Speech Synthesis and Recognition | John Holmes and Wendy Holmes | [2nd Edition] 
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§  Models speech as process with hidden states and 
observable features 

§  Each unit (e.g. word) matched to own process 
§  Gives probability that sample generated from a certain 

process 
§  Described by: 

§  Set of 𝑛 States 𝑆↓𝑛  
§  State transition matrix 𝐴 
§  (probability density function for the observations for each state, 
𝑏↓𝑖 ) 
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Hidden markov model (HMM) 
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§  Example: Weather 
§  State 1: rain / snow 
§  State 2: cloudy 
§  State 3: sunny 
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Hidden markov model (HMM) 

Rain 

Cloudy Sunny 
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§  State not necessarily mapped to observation 
§  Multiple observations possible in one state 
§  Each observation has different probability to be seen 
§  E.g. Series of «head» and «tails» can be generated by single coin 

or by two or more different coins (we do not know which coin is 
thrown when) 
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Hidden markov model (HMM) 

Source: Tutorial on Hidden Markov Models | L. R. Rabiner | 1989 
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§  Idea: generate one HMM per word 
§  Very complex for longer words 
§  Recognition of words not in training set impossible/improbable 

§  Divide word into subunits (phonemes) 
§  E.g. Cat à /k/ + /a/ + /t/ 

§  Train one HMM per phoneme (~45 for english) 
§  Chain HMM together to recognize words / sentences 
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Applying HMM to speech recognition 
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§  One possible model: 
§  1 State for transition in: /sil/ à /a/ 
§  1 State for the middle: /a/ 
§  1 State for transition out: /a/ à /sil/ 

§  Phoneme level HMM still not accurate enough 
§  Context can alter sound of phoneme 
§  Use context dependent models 
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Applying HMM to speech recognition 
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§  Triphone: e.g. Cat 
§  First triphone: /sil/ à /k/ à /a/ 
§  Second triphone: /k/ à /a/ à /t/ 
§  Third triphone: /a/ à /t/ à /sil/ 

§  Solves context sensitivity but high computation cost: 
§  45 phoneme à 45↑3 =91125 different models (not all needed) 
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Applying HMM to speech recognition 
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§  Performed with 16 speakers (8:8 male:female) 
§  Utterance of digits 0 – 9 
§  Also compared linear prediction to cepstral coefficients 
 

13.5.2014 Niklas Hofmann 29 

DTW vs HMM 

Source: Comparison of DTW and HMM | S. C. Sajjan | 2012 
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Signal 
generation 

Signal 
capturing Preconditioning 

Feature 
extraction 

«Pattern 
matching» System output 
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Speech processing stages 
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§  Limited power supply 
§  Prevent frequent unneeded activation of system 

§  Limited storage 
§  Tradeoff between size and performance of speech and language 

models 
§  Limited computing power 

§  Tradoff between accuracy and speed 
§  Long training undesirable 
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Speech recognition on mobile devices 
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§  Comparison of DTW to HMM on mobile device (2009) 
§  500 MHz CPU 

§  Detection of keywords of specific user 
§  Data set of 30 people 

§  7 females and 23 males 
§  Speaking 6 words (4-11 phonemes) 
§  Each word repeated 10 times 
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Performance on mobile device 
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Real time factor 

Source: Voice Trigger System | H. Lee, S. Chang, D. Yook, Y. Kim | 2009 
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§  Meassured «equal error rate» 
§  Acceptance threshold set to get equal 

§  False posivite rate 
§  False negative rate 

§  Dynamic Time warping: ~14% error rate 
§  Hidden Markov model: down to ~9% error rate 

§  Heavily dependent on ammount of training data 
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Error rate 
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Hidden markov model 

Source: Voice Trigger System | H. Lee, S. Chang, D. Yook, Y. Kim | 2009 
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§  Multiple «consumer grade» systems deployed 
§  2008 Google Voice Search for Mobile App on iPhone 
§  2011 Apple launches Siri on iOS 
§  2011 Google adds Voice Search to Google.com 
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What about modern cloud based systems? 
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§  Experiments done with 39-dimensional LP-cepstral 
coefficients 

§  Uses triphone system 
§  Relies heavily on a language model to decrease 

computation and increase accuracy 
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A closer look on Google Voice Search  
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§  Learned from typed search queries on google.com 
§  Trained on over 230 billion words 

§  Also accounts for different locales 

(Out-Of-Vocabulary rate : percentage of words unknown to the language model) 
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Language model 

Training 
Locale

Test Locale

USA GBR AUS
USA 0.7 1.3 1.6
GBR 1.3 0.7 1.3
AUS 1.3 1.1 0.7

Source: Google Search by Voice: A case study | Google Inc. 
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§  Modern capabilities of computers enable more complex 
systems than ever 

§  Rediscovery of artificial neural networks 

§  But problem still not solved: 
§  No automatic transcription of dialog 
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A look into the future 
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