ETHzürich

Speech recognition in systems for humancomputer interaction

Ubiquitous Computing Seminar FS2014 Niklas Hofmann

Why speech recognition?

Speech processing

Speaker verification

- User claims identity
- Binary decision
 - Either identity claim is correct
 - or «access» denied
- Enrollment
- Text dependent vs. independent

Speaker identification

- No apriori identity claim
- Enrollment
- Open vs. closed group
- Text dependent vs. independent

Speech recognition

- Recognize spoken language
- Speaker independent vs. dependent
- Restricted input vs. «speech-to-text»
- No predefined usage
 - Commands
 - Data input
 - Transcription

Speech processing stages

Signal generation

Signal generation

- Simplified vocal tract
- Time invariant for a short time
- Source modeled as
 - Periodic signal
 - Noise
- Speech as overlay of source and resonance

Signal capturing / preconditioning

- Microphone
 - Bandwidth
 - Quality (better quality \rightarrow easier to detect features)
- Ambience
 - Noise
 - Echo
- Start / Endpoint detection
- Normalization
- Emphasize relevant frequencies
 - Similar to human hearing

Feature extraction

- Signal framing
 - Vocal tract static for small frame (20-40ms)
- Performed on either
 - Waveform
 - Spectrum
 - Ceptstrum
 - Mix of all
- Techniques used
 - Linear Prediction
 - Cepstral Coefficients

Framing

Framing

Waveform

Spectrum

- Transform sample from time domain to frequency domain
- Invention of FFT very helpfull (1965)
- Gives insight in periodicity of a signal
- Sensitive to framing (\rightarrow window functions)

Spectrum

Linear prediction

Cepstral coefficients

«Pattern matching»

- «Detect» speech units (phonemes / words) out of series of feature vectors
- Two main ideas
 - Template matching
 - «Simple» matching
 - Dynamic time warping
 - Statistical
 - Hidden markov model

«Simple» matching

- Calculates distance from sample to template
- Simple to implement
- Assumes sample and template of same length / speed
 - Very sensitive to different speech patterns (length, pronounciation)
- No widespread use anymore

Dynamic time warping (DTW)

- Tries to «correct» slower/faster sample with respect to template
- Uses metrics to disallow too much «warping»
- Still calculates «distance» between sample and template

Dynamic time warping (DTW)

Hidden markov model (HMM)

- Models speech as process with hidden states and observable features
- Each unit (e.g. word) matched to own process
- Gives probability that sample generated from a certain process
- Described by:
 - Set of *n* States *S*↓*n*
 - State transition matrix *A*
 - (probability density function for the observations for each state, b↓i)

Hidden markov model (HMM)

- Example: Weather
 - State 1: rain / snow
 - State 2: cloudy
 - State 3: sunny

ETH zürich

Hidden markov model (HMM)

- State not necessarily mapped to observation
 - Multiple observations possible in one state
 - Each observation has different probability to be seen
 - E.g. Series of «head» and «tails» can be generated by single coin or by two or more different coins (we do not know which coin is thrown when)

Applying HMM to speech recognition

- Idea: generate one HMM per word
 - Very complex for longer words
 - Recognition of words not in training set impossible/improbable
- Divide word into subunits (phonemes)
 - E.g. Cat → /k/ + /a/ + /t/

Hzürich

- Train one HMM per phoneme (~45 for english)
- Chain HMM together to recognize words / sentences

ETH zürich

Applying HMM to speech recognition

- One possible model:
 - 1 State for transition in: $/sil / \rightarrow /a/$
 - I State for the middle: /a/
 - 1 State for transition out: $|a| \rightarrow |si|/$
- Phoneme level HMM still not accurate enough
- Context can alter sound of phoneme
- Use context dependent models

Applying HMM to speech recognition

Triphone: e.g. Cat

E *H zürich*

- First triphone: $/sil / \rightarrow /k / \rightarrow /a /$
- Second triphone: $/k/ \rightarrow /a/ \rightarrow /t/$
- Third triphone: $|a| \rightarrow |t| \rightarrow |si|/$
- Solves context sensitivity but high computation cost:
 - 45 phoneme \rightarrow 45 \uparrow 3 = 91125 different models (not all needed)

DTW vs HMM

- Performed with 16 speakers (8:8 male:female)
- Utterance of digits 0 9
- Also compared linear prediction to cepstral coefficients

Types of	Frame	Recognition	Recognitio
features	length	Accuracy in	n Accuracy
		% using DTW	in % using
			HMM
LPC	13	69	86
$LPC+\Delta+\Delta^2$	39	76	91
MFCC	13	77	90
MFCC+ Δ + Δ^2	39	86	94

Speech processing stages

Speech recognition on mobile devices

- Limited power supply
 - Prevent frequent unneeded activation of system
- Limited storage
 - Tradeoff between size and performance of speech and language models
- Limited computing power
 - Tradoff between accuracy and speed
- Long training undesirable

Performance on mobile device

- Comparison of DTW to HMM on mobile device (2009)
 500 MHz CPU
- Detection of keywords of specific user
- Data set of 30 people
 - 7 females and 23 males
 - Speaking 6 words (4-11 phonemes)
 - Each word repeated 10 times

Real time factor

Error rate

- Meassured «equal error rate»
 - Acceptance threshold set to get equal
 - False posivite rate
 - False negative rate
- Dynamic Time warping: ~14% error rate
- Hidden Markov model: down to ~9% error rate
 - Heavily dependent on ammount of training data

Hidden markov model

What about modern cloud based systems?

- Multiple «consumer grade» systems deployed
 - 2008 Google Voice Search for Mobile App on iPhone
 - 2011 Apple launches Siri on iOS
 - 2011 Google adds Voice Search to Google.com

A closer look on Google Voice Search

- Experiments done with 39-dimensional LP-cepstral coefficients
- Uses triphone system
- Relies heavily on a language model to decrease computation and increase accuracy

Language model

- Learned from typed search queries on google.com
 - Trained on over 230 billion words
- Also accounts for different locales

Training Locale		Test Locale		
	USA	GBR	AUS	
USA	0.7	1.3	1.6	
GBR	1.3	0.7	1.3	

(Out-Of-Vocabulary rate : percentage of words unknown to the language model)

A look into the future

- Modern capabilities of computers enable more complex systems than ever
- Rediscovery of artificial neural networks
- But problem still not solved:
 - No automatic transcription of dialog

Thank you

