ETH zürich

Smart Heating

Energy Savings Through Occupancy Sensing and Prediction

Ubiquitous Computing Seminar 2014

Motivation

- Heating, Ventilation and Air Conditioning (HVAC) systems consume lots of energy
- Residential HVAC systems account for 9% of total energy consumption in U.S. *
- Cost can be reduced by optimization
- Minimal cost for maximum comfort

* Gupta et al, Adding GPS-Control to Traditional Thermostats...

Thermostat - History

- 1620
 - Cornelis Drebbel
 - Mercury thermostat for egg incubator
- 1830
 - Andrew Ure
 - Bimetallic thermostat for textile mills
- 1885
 - Warren S. Johnson
 - First electric room thermostat

www.wikipedia.org

Thermostats Today

- Manual Thermostat
 - Manually adjust setpoint to desired temperature
 - Adjust everytime when leaving/coming home
 - Sacrifice comfort
- Programmable Thermostat
 - Define a schedule for heating/cooling
 - Often complicated interfaces
 - Schedule changes

Thermostat Numbers

Table 1. Thermostat usage statistics in the U.S (summarized from [4]).

(In millions)		Estimated no. of homes not using setback when away
Manual Thermostat	ちち しら	40.46
Programmable Thermostat		14.60
Total		55.06

U.S. DOE Residential Energy Consumption Survey [cited 08/15/2008]

Smart Heating

- Sense occupancy
- Predict occupancy
- Adjust heating and cooling devices accordingly
- Users don't have to manually adjust thermostat or define schedules

Occupancy Sensing – Devices

- PIR (Passive infrared occupancy sensors)
- Ultrasonic occupancy sensors
- Microwave sensors
- Audible sound/passive acoustic sensors
- Light barriers
- Video cameras
- Dual technology

Occupancy Sensing - Examples

- Active RFID tags
 - Send signal when in range
 - One per resident
 - \$22 per tag and \$30 for receiver*
 - Per house
- GPS Location
 - Phones
 - GPS loggers
 - Per house

*prices and picture from www.ananiahelectronics.com

Occupancy Sensing – Smart Thermostat

- Combining PIR and a magnetic reed switch on entrance door
- \$5 per sensor (select set 3-5 sensors <\$25, full set 12-20 <\$100)</p>
- Currently house level

(a) Motion Sensor

(b) Door Sensor

Figure 3. The smart thermostat uses motion sensors (left) and contact switches on doors (right).

Lu et al, Smart Thermostat

Occupancy Sensing – Smart Thermostat

iii. Binary features indicating presence of specific sensor firings

Lu et al, Smart Thermostat

Occupancy Sensing – Smart Thermostat

- Trained using data trace from home with known occupancy states
- P(y_t|y_{t-1}) and P(x_t|y_t) represented in discrete conditional probability table
- Calculated using frequency counting
- To accommodate for the bigger domain in ii (number of sensor firings) use generative Gaussian model

Occupancy Sensing - Results

- 15-minute intervals
- Percentage of the whole day

Lu et al, Smart Thermostat

institute for pervasive computing

12% wrong
 → 2 hours

Occupancy Prediction

- Analyze recorded occupancy data
- Derive probabilities for occupancy in future time slots or make guesses for return time
- Lots of different models for calculations

Occupancy Prediction – Neurothermostat

- Using neural network
- Inputs

pervasive computing

- Time of the day
- Day of the week
- Occupancy in next 10,20,30 minutes from past 3 days and 4 past same day of the week
- Occupancy in past 60,180,360 minutes

Occupancy Prediction - Neurothermostat

- Trained by backpropagation
- Number of hidden weights determined by cross validation over several models
- Needs a long time to train
 - 150 days

Mozer et al, The Neurothermostat

pervasive computing

Occupancy Prediction - PreHeat

- Occupancy represented as a binary vector
- Current day (up to current time) is compared to previous days
- Use K most similiar days to derive occupancy for future timeslots

Scott et al, PreHeat: Controlling Home Heating...

Occupancy Prediction - PreHeat

Scott et al, PreHeat: Controlling Home Heating...

institute for pervasive computing

Occupancy Prediction - PreHeat

- Minor adjustments to algorithm
 - Padding at beginning and end of the day
 - Differ between weekdays and weekends
- Set threshold to individual preference
 - Lower threshold → more comfort
 - Higher threshold → more savings
- Limitations
 - Only daily patterns are compared
 - Could we change the weights?

Occupancy Prediction Results

90-Minute Prediction Accuracy vs. Humans

Scott et al, PreHeat: Controlling Home Heating...

institute for pervasive computing

institute for

pervasive computing

Occupancy Prediction - GPS – Travel-to-hometime

- Use GPS sensors to keep track of current location of residents
- Evaluate minimal time to get home using MapQuest
- House is guaranteed to be at desired temperature upon return
- Benefit increases for residents having longer commute times

Gupta et al, Adding GPS-Control to Traditional Thermostats..

pervasive computing

Occupancy Prediction - Krumm and Brush

- GPS data from logger carried by residents for occupancy sensing
- Linear matrix problem

$$A\begin{pmatrix} \boldsymbol{p}_{week} \\ \boldsymbol{p}_{generic \ weekday} \end{pmatrix} = \boldsymbol{b}$$

(0 0 ... 1 ... 0 0 | 0 0 ... 1 ... 0 0) $\cdot \boldsymbol{p} = \frac{n_{away}}{n_{away} + n_{home}}$

Krumm & Brush, Learning Time-Based...

pervasive computing

Occupancy Prediction - Krumm and Brush Improvement

- Adding travel-to-home-time information
- Rule out return times deemed impossible by travel-tohome-time
- Effiency gain by creating drive time zones

90 minutes

Krumm & Brush, Learning Time-Based...

Occupancy Prediction – Krumm and Brush Results

Accuracy of Algorithms

- True positive rate over confusion matrix
- Better than self-reported schedules by participants
- Takes weekly and daily patterns into account
- Compared to PreHeat...

Krumm & Brush, Learning Time-Based...

Occupancy Prediction – Future Work

- Training of the models
 - Warm up time?
 - Pre-trained systems?
 - Complete schedule changes (new jobs)?
- House based to room/zone based?
 - How much can we apply directly?
 - What needs adjustment/new approaches?
- Combination of systems
 - Where does which algorithm work best?

E *zürich*

Apply gained information to Heating

- General Idea
 - Go to setback temperature when occupants leave
 - Have house at desired setpoint when occupancy expected
- Can we do more?
 - Deep setbacks

• ...

Results and Evaluation

- Measuring heating-cost depends on a lot of factors
 - Isolation
 - Heating method
 - Outside temperature
 - Price of oil, gas etc.
- What about comfort?

Comfort Model – Ashrae 55

Comfort factors

- Air temperature
- Mean radiant temperature
- Air speed
- Humidity
- Metabolic rate
- Clothing level
- CBE Thermal Comfort Tool

Comfort Model - MissTime

- Amount of minutes an occupied home is not at desired temperature
- Evaluated over a day
- Allow for values within a difference of 1°C to account for sensor discrepancies
- Does not take size of difference into account
- How about degree-hours? (How many degrees off for how long)

Comfort Model - Neurothermostat

Misery Cost

- Express misery in dollars
- Always 0 when not occupied
- Enables direct comparison to energy/oil cost
- New optimization problem:
- Minimize Total Cost = Misery Cost + Heating Cost

Comfort Model - Neurothermostat

$$\widehat{m}(o,h) = o\alpha \frac{\delta}{24 \times 60} \frac{\max(0,|\lambda-h|-\epsilon)^2}{25}$$

- Variables
 - o = occupancy(0/1)
 - h = temperature
 - α = conversion from misery units to dollars
 - δ = time interval
 - λ = setpoint

Mozer et al, The Neurothermostat

Comfort Model - Neurothermostat

$$\widehat{m}(o,h) = o\alpha \frac{\delta}{24 \times 60} \frac{\max(0,|\lambda-h|-\epsilon)^2}{25}$$

- $\rho = loss$ in productivity in 24 hours (in paper 1 or 3)
- γ = hourly salary
- $\alpha = \gamma \rho$
- In CH: 1 hour home at 15°C (instead of 20°C)
- Hourly salary ~ 35CHF → Misery Cost of 1.50CHF

Mozer et al, The Neurothermostat, www.admin.ch

Results - SmartThermostat

Lu et al, Smart Thermostat

institute for pervasive computing

(b) Home Miss Time Benchmark

Results - SmartThermostat

- More sophisicated occupancy prediction can improve miss time
- How does it work with other heating systems

Results - PreHeat

Scott et al, PreHeat: Controlling Home Heating...

institute for pervasive computing

Potential Savings for the US

Dividing the US in to 5 climate zones

Climate Zones	Locations	
Zone 1	Minneapolis / St. Paul, MN	
Zone 2	Pittsburgh, PA	
Zone 3	Washington, D.C. / Stirling, VA	
Zone 4	San Francisco, CA	
Zone 5	Houston, TX	

 Table 3. Weather conditions used in our analysis

Total Savings

- 113,9 billion kWh (~22 billion CHF)
- 38.22% of electricity used for heating and cooling

Lu et al, Smart Thermostat

institute for pervasive computing

Summary

- Great potential in energy saving
- Eliminates problem of people not using setbacks
- Algorithms better in prediction than humans
- Low cost high reward

Future Work

- Which demographic is most suited for these approaches?
- Combination of different algorithms and implementations?
- What else can be done to make heating smarter and more efficient?
 - Comfort Models (Ashrae 55)
 - Weather Data

Thank you for your attention

Bibliography

- Mozer et al, The Neurothermostat: Predictive Optimal Control of Residential Heating Systems, 1997
- Scott et al, PreHeat: Controlling Home Heating Using Occupancy Prediction, 2011
- Gupta et al, Adding GPS-Control to Traditional Thermostats: An Exploration of Potential Energy Savings and Design Challenges, 2009
- Lu et al, The Smart Thermostat: Using Occupancy Sensors to Save Energy in Homes, 2010

Bibliography (1)

- Krumm & Brush, Learning Time-Based Presence Probabilities, 2011
- Guo et al, The performance of occupancy-based lighting control systems: A review, 2010

