Gesture Recognition: Hand Pose Estimation

Ubiquitous computing seminar FS2014
Student report

Adrian Spurr
ETH Zurich
spurra@student.ethz.ch

ABSTRACT

In this report, different vision-based approaches to solve the
problem of hand pose estimation are reviewed. The first
three methods presented utilize random forest, whereas the
last tackles the problem of pose estimation of two strongly
interacting hands. Lastly, an outlook at the future of the field
is given.

ACM Classification: HS5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Algorithms, Human Factors.

Keywords: Ubiquitous computing, gesture recognition, hand
pose estimation, human computer interaction.

1. INTRODUCTION

In today’s environment, computers have become ubiquitous.
They are so seamlessly integrated in the lives of people, that
we barely notice their presence and influence. Efficient inter-
action with these devices is vital for a productive society. To
avoid having to spend too much time on learning on how to
properly interact with them, it is vital that the interfaces are as
natural to human action as possible. This is where hand pose
estimation comes into play. Due to being a natural part of
human interaction, as well as being the most dexterous body
part human beings possess, there has been a great empha-
sis on enabling the computers to recognize and understand
hand gestures. This ability can be used for a wide area of
application, such as virtual/augmented reality, gaming, robot
control/learning, and even medical applications. One of the
first attempts to solve this problem was the data glove. Even
though being highly accurate and having the possibility to
provide haptic feedback, its disadvantages are too many for
wide and practical use. These include, amongst others, the
long calibration time, invasiveness and hindrance of natu-
ral movements being cabled, therefore unsuitable for mobile
use. Vision-based systems are believed to be a promising
alternative, not possessing any of these disadvantages. How-
ever, these systems bring with them an array of challenging
problems, which need to be solved to achieve widespread

utilization. These include self-occlusion, viewpoint change,
noisy data, accuracy and performance. The field of hand pose
estimation has made a rapid progress in recent years, mainly
due to the availability of cheap enabling hardware, such as
RGB-D cameras, or high powered GPUs. In this report, ap-
proaches on how these problems can be solved with the help
of state-of-the-art algorithms are provided. Each approach
will be summarized in detail and its extent of accuracy pre-
sented.

2. OVERVIEW

The general approach is similar for each algorithm assisted
by a RGB-D camera, which provide the computer with either
colour or depth images, or both. Normally the depth image
is preferable, as it is easier to segment. However, inclusion
of the colour image into the estimation process helps to per-
form more accurate prediction. The images are then prepro-
cessed to assist in the estimation step. The main prediction
is performed and the result is an output, in the form of the
hand skeleton. This computer-usable form is a succinct and
convenient way to represent the current configuration of the
hand.

Difficulties

Pose estimation, specifically hand pose estimation comes
with challenging difficulties, which need to be considered to
have an accurate and robust classifier.

Noisy Data and segmentation. Noisy data, which include
low resolution images from low resolution cameras or if the
person is far away. Noise also includes anything else in the
image that is not of interest for pose estimation, in other
words, the background. This can be seen as well as a segmen-
tation problem. One would like to have the hand segmented
without any additional noise. There are several approaches
to solving this, such as a simple threshold on the depth, dis-
playing only close up body parts, which ideally would be the
hand. Or alternatively, one can segment based on the skin
colour, with help of the colour image.

Self-Occlusion and Viewpoint change. Frequently, fingers
will be covering other fingers and not all hand parts will be
visible from the depth image. One has to therefore infer the
position of occluded hand parts from what is visible. The
change of viewpoint introduces additional occlusion, which
have to be accounted for. Accurate approaches are able to
deal with these situations.

High Degree of Freedom per Hand Each hand has 27 de-
grees of freedom, which account for about 280 trillion hand
poses. These either have to be learned, or should be able to
generalize to do so.

Performance. Low computational cost is critical. Any prac-
tical application of hand pose estimation requires real time
performance. This is an issue for many approaches, which
generally have high computational cost due to sophisticated
algorithms. However, with today’s widespread availability
of high powered GPU’s and CPU’s, these are becoming in-
creasingly more applicable for real time application.

Approaches

In general, there are two main approaches used in today’s al-
gorithms and both have their advantages and disadvantages.

Discriminative Approach This approach maps the input di-
rectly to a hand skeleton configuration, with the help of the
knowledge it gained through a training phase. This is both
an advantage and a disadvantage, as often the quality of the
prediction depends on the quality and quantity of the train-
ing data and not only on the actual approach. Access to good
training data is laborious. For supervised methods, one has
to either utilize synthetic data as proposed by [1] or manually
label all the realistic data. It is hard to compare discrimina-
tive approaches with each other, as they are trained and tested
on different data. Nevertheless, the advantage of the discrim-
inative approach is that it is reasonably robust, both to noisy
data and rapid change of hand movement.

Model-Based Approach In this approach, the algorithm keeps
track of the hand pose internally, called hypothesis, and es-
timates the current hand pose with the help of the hypoth-
esis and the observation delivered by the RGB-D camera.
It therefore naturally exploits temporal information and re-
quires no training. This is a huge advantage over the dis-
criminative approach, as the accuracy of it is only dependent
on the implementation of the algorithm and not on training
data. However, due to using temporal information it is also
very sensitive towards rapid changes in pose. In other words,
the approach tends to be especially prone to errors during
rapid hand movements.

Random Forests

Random Forests were first proposed by [5]. They consist
of decision trees that performs regression or classification.
The final result of the Forest is the average of all the trees
contained within. It belongs to a class of machine learning
algorithm called ensemble method. These methods are par-
ticularly robust to noise due to the averaging step done to
perform the final decision. They can be implemented effi-
ciently on GPUs and are therefore fast. To classify an input
x, one starts at the root of the tree and assigns it to the either
left child or the right child, based on the feature §(x) and
a threshold 7. Once a leaf node is reached, the containing
learned distribution is used as the output of that tree. To per-
form the final classification, the distributions of each tree are
then averaged over all the trees, and a final classification is
performed, according to equation 1:

1 T
P(c,x):TZPt(C,m) (1
t=1

To build such a tree, a training phase is required. One can
use either synthetic or realistic training data, provided that
they are labelled. Each tree is trained on a separate random
subset of the training data. On each split node the training
set is separated according to formula 2 and 3.

Q1(0,7) = {]0(x) < 7} 2)

Qa(0,7) = {]0(2) > 7} 3)

The feature 6 and the threshold 7 chosen for the split is the
pair which maximizes the information gain, computed by a
quality function. They are selected out of a random subset
sampled from the full set of features and thresholds. This
node splitting is recursively applied to each child node, until
a maximum tree depth is reached or until the child nodes
are pure enough, with respect to the quality function. The
distribution of the leaf node is computed according to the
labelled training data reaching the node. Random Forests
are utilized in many discriminative approaches. They can be
used to classify elements according to body parts, creating a
body label distribution out of which a 3D joint proposal can
be done. This is applied in [1, 2]. Alternatively they can be
used to perform regression, such as in [3], to directly infer
the position of the joints.

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a method to optimize
an objective function defined over a parameter space. To
make use of the algorithm, one needs to define a parameter
space and an objective function f to optimize. To initial-
ize, n particles are randomly sampled across the parameter
space, each assigned a velocity, uniformly distributed over
a defined region. These particles iterate over the parameter
space according to their velocity. Once a maximum num-
ber of iterations is reached, the algorithm is terminated and
the best position found is output. At each iteration k, each
particle ¢ updates their position xj, ; according to 4:

Thtli = Thyi + Uk 4)
At the same time, the velocity vy, ; gets updated according to

5:

Vkt1,i = Vi +71(Pryi — Thyi) +12(Gr — 2ri) (5)

Where P, ; is the best position found by particle ¢ and Gy, is
the best position found over all particles, both until genera-
tion k. In terms of equations:

% L

front 1 side

depth image =& bodyparts =% 3D joint prc;p;_osals

Figure 1: First the depth image is obtained. After pass-
ing through the random forest, a body label distribution
is returned, with which the 3D joint proposals can be
formed with help of mean shift algorithm.

Py = Dri if f(Pri) > f(@kt1,0)
FHLE= N 2y else

Gry1 = Pry1i, where i = argmax; f(Pri1,:)

The advantage of PSO over other optimization methods is
that it makes very little assumption over the objective func-
tion used. However, neither convergence nor finding the op-
timal position is guaranteed. One can assume that having
enough particles and allowing the algorithm to iterate enough
times, a sufficiently close position can be found. PSO is used
in the last method presented in this report, a model-based ap-
proach using a objective function to penalize the discrepancy
between the hypothesis and the observation.

3. METHODS

The first three methods described here all utilize random
forests for the first part of the estimation step. The excep-
tion is the last method, which attempts to estimate the hand
pose of two strongly interacting hand with the help of PSO.

Real-Time Human Pose Recognition from Depth Image

[1] provides a solid basis for many, at that time, future pa-
pers to come. They were the first to propose the use of syn-
thetic training data, that makes methods which have a train-
ing phase a lot easier. The idea is to use Random Forests to
classify the depth image into body parts, resulting in a body
part label distribution. These are then used to form the final
joint proposals.

Synthetic Training Data. The idea is as simple as it is pow-
erful. To have an accurate classifier, one needs enough vari-
ation in the training data to generalize well to all possible
poses and to do so, one can vary real data. These are typi-
cally variations in body height, weight or clothing and hair.
The advantage of this approach is, that one does not have to
manually label the entire training set, as it suffices to have
one labelled element upon which the variation bases on. A
general overview can be seen in Figure 1.

&

B

Figure 2: An example of a failed prediction of [1] due
to occlusion.

Training and Prediction. To perform classification with ran-
dom forest, the following feature is used.

U v
I(x) I(x)
Where I(x) is the depth value at location of pixel .. The off-
sets u and v are normalized to provide 3D translation invari-
ance. This function compares two depth values with respect
to z. This aims to convey spatial context of . These features
are very efficient to compute, but are weak individually, yet
when used in conjunction with random forest, they provide
sufficient spatial information. When training the random for-
est, the trees randomly sample a set of u, v and 7, bounded
within an interval, and select the best according to the equa-
tion 7

S 1@ Do, w0, @)
se{l,r} |Q|

G(ua v, T) = H(Q) -
where H(Q) denotes the Shannon entropy function and Q
are the sets or subsets respectfully. Once the random forest is
trained one can acquire the body part distribution. The mean
of each distribution is computed with help of the mean shift
algorithm [10]. Depending on the body part, the 3D joint
proposals are set at the mean of each distribution or averaged,
that average being then the proposal. However, because the
mean lies on the surface of the body, it is pushed within it by
a learned offset \.

Accuracy. Accuracy of the random forest for body part la-
belling depends on a variety of different parameters. First,
increasing the number of training images results in a loga-
rithmic increase of label accuracy. This is intuitively clear,
as the random forest has more information on how to clas-
sify. Allowing the trees of the random forest to have a greater
maximum depth leads to a positive increase in correct la-
belling. By having deeper trees, we allow more splits to be
performed, thus the end nodes can be more pure with respect
to their labels. However, when using a smaller test set, over-
fitting is observed after a certain depth. This effect is coun-
teracted by training on a bigger test set. Lastly, by having
a larger interval to choose the offsets v and v of function
6 from, we allow the classifier to use more spatial context

Figure 3: Keskins approach. Similarity can be seen to

(1]

to perform its splitting decisions. The joint prediction ac-
curacy using the predicted body parts suffers slightly when
compared to the accuracy using the ground truth labels. Nev-
ertheless, this occurs mainly for smaller body parts, such as
the elbows and the arms. Overall, the body position is pre-
dicted fairly accurately. Miss-predictions occur mainly for
heavily occluded body parts or for unseen poses, which dif-
fer by a lot from the training set, as shown in Figure .

Multi-layered Random Forests

Building up on [1] and proposed first by [2], this approach
tackles the problem of having a big training set and applied
for hand pose estimation. It divides the hand part label clas-
sification into two layers by first clustering the training data
based on similarity, then training a random forest on and for
each of these clusters. To perform prediction, the input is
taken and fed into the first layer, which assigns it to the cor-
rect cluster. The assigned cluster performs the final hand part
label classification. The first layer can be seen as a rough
classification, the second a more fine tuned one. Once the
hand part distribution is obtained, mean shift can be used to
acquire the mean of each distribution, where the hand joint
proposal get set, resulting in the hand skeleton. An overview
is shown in Figure 3

Clustering Clustering is performed with the help of the
spectral clustering algorithm. This separates the training data
based on weighted difference, which can be fine tuned to re-
duce the workload on the second cluster, increasing the over-
all accuracy of the method. The procedure is based on dis-
tance of two skeletal configuration v;,v; and the distance

Djj = [W(v; — vj)] (8)

Where D;; is the diagonal weight matrix. To perform the fi-
nal clustering, k-means gets applied on D. These clusters
are assigned their own label, after which a random forest
is trained using these labels. The same features and quality
function gets used as in [2]. This forms the first layer.

Second Layer. The second layer formed by training a ran-
dom forest for each cluster, this time using the hand part la-
bels, but using the same features and quality function. Each
random forest is called expert.

Prediction. Predicting can be performed using one of two
methods. Global Expert Network (GEN) assigns the input
into the first layer, which outputs the votes for each cluster.
This is averaged and the entire input is assigned to the top
three clusters. The outputs get averaged and the final hand
part label classification is performed. Local Expert Network
(LEN) goes through the first layer, but assigns each pixel to
the cluster it voted for. This results in LEN being able to
generalize better than GEN, however GEN is more robust to

RDF
ClassificationG Mean Shift @ Scoring %

noise due to the averaging step. Then, one can get the mean
of each distribution utilizing mean shift algorithm, resulting
in the 3D joint proposals, with which we can form the final
hand skeleton.

Accuracy. The accuracy of the first layer is high. More-
over, it is very fast due to utilizing random forest, and can
be trained using real images as well, as the clustering step
is a form of unsupervised learning. An accuracy of 84 %
on a testing set is reported. The second layer accuracy de-
pends on similar parameters as in [1]. Additionally, two new
factors are introduced: The number of clusters K and the
weight matrix W. By increasing K, it is ensured that only
similar configurations fall into the same cluster. Therefore,
it has a positive effect on the accuracy of both layers, reduc-
ing the complexity of them. On the other hand, W can be
determined in such a way that variations which are harder
to detect are already clustered in the first layer, reducing the
workload the second layer has. The accuracy difference of
LEN and GEN are negligible, both having high accuracy of
roughly 90%, with GEN being slightly better.

Semi-Supervised Transductive Regression Forest

The approach described in [3] aims to reduce the accuracy
errors which occur when using synthetic training data during
the training phase, such as in [1, 2], due to realistic-synthetic
discrepancies. This is performed with help of transductive
learning, which means one can learn from a target domain,
in our case a labelled set of images, and apply knowledge
transform onto a unlabelled image set. With this, the algo-
rithm learns how to train with both labelled and unlabelled
training data. The random forest used performs regression.
The multi-layered aspect of [2] is combined into one layer, by
utilizing different quality functions while growing the tree,
and subsequently controlling what kind of classification is
performed. The final output of the regression forest is the
3D joint location. One can utilize kinematic refinement on
the output, to enforce bio-mechanical constraints of the hand,
thus further increasing the accuracy of the prediction.

Training. Training is performed with both labelled realistic
and synthetic training data, as well as with unlabelled real-
istic training data. The labelled elements consist of image
patches, each label being a tuple (a,p,v), with a being the
viewpoint, p being the label of the closest joint and v being
a 16z3 vote vector, containing the 3D location of all joints
of that image. Additionally, realistic-synthetic associations
1) are established by comparing their 3D joint location, con-
tained in v:

10 else

W(r, s) = { 1 if r matches s

Where r € Ry, the labelled realistic training data and s € S,
the synthetic training data.

When trees of the random forests are being grown, they ran-
domly choose between two quality functions

Qapv = aQa + (1 - a)ﬂQp + (1 - a)<1 - B)Qv (9)

Viewpoint Classification: Viewpoint

classification 1s first perfromed at he
_top levels, controlled by the viewpont
term 0, .

Joint Classification: At mid levels,
(, determunes classification of
joints, when most viewpoints are
classified.

Regression: To describe the
distribution of realistic data,
nodes are optimised for data
compactness via {,and @,
towards the bottom levels.

Figure 4: A tree in the regression forest of [3]. First,
classification is performed based on the viewpoint la-

bel, then the joint label, and finally regression is done
with the help of the vote vectors v

Where equation 9 is the classification-regression term, which
controls the classification and regression performed in the
tree, and equation 10 is the transductive term, performing
transductive learning. Equation 9 consists of three terms:

Q. is the viewpoint classification term, measuring the infor-
mation gain with respect to the viewpoint label a.

@y is the joint classification term. Similar to (), it measures
the information gain with respect to the joint label p.

@, is the regression term. It measures the compactness of
the vote vector v. This is defined as

|Ll6‘
L]

‘Llr|
L]

Qv = |1+ /\(J(Llc)) +)‘(J(Llr)) (11)

Where A(x) = trace(var(x)).
@ represents the transductive term, preserving the cross-
domain association):

[{r,s} C Lie|+ {r,s} C Lr|
Q=
[{r,s} C L|
V{r,s} C L where ¢(r,s) =1

@, is the unsupervised term, evaluating the appearance sim-
ilarities of all realistic patches R within a node:

12)

|RZC‘
|R|

| Brel
R

The parameters o and § are dynamically set according the
purity of the child nodes of the tree. With help of these and
w, which can be set to weigh Q; against (),,, one can choose
based on what the tree classifies on each layer. The chosen
mode for the approach is shown in Figure 4

Prediction and Kinematic Joint Refinement. When forming
the prediction, the input is directly fed into the Regression
Forest, returning the 3D joint location of the image directly.
However, the results lack structural information to recover
poorly detected joints due to occlusion. To avoid having an
explicit hand model, a kinematic model is created with help

of large hand pose data base K, which is specifically made
for this cause. To create the models, K gets split with re-
spect to the viewpoint label A, i.e K= {K7,...K| 4 }. Then,
for each viewpoint i in A, a N-Part Gaussian Mixture Model
G, of the dataset K; gets fit, so that G; = {,u},...,ﬂ?,...,,uﬁv;
ol,ol.,oN }, where u? and o' denote the mean and
diagonal variance of the n-th Gaussian component in G; of
view i. After obtaining the models, the Kinematic Joint Re-
finement step can be applied to compute the final joint loca-
tion. To perform this step, the set of votes received by the j-
th joint is fitted a 2-part GMM G = {uj, o}, pj, pf, o3, 07},
where p is the mean, o the variance and p the weight of the
Gaussian components. If a joint prediction has high confi-
dence, it forms a compact cluster of votes, which is shown
by a high weighting and low variance of the GMM. On the
contrary, a joint prediction containing distributed votes is a
sign of low confidence. In mathematical terms, a strong de-
tection is a joint having the Euclidean distance between u}

and u? below a threshold ¢,. These high confidence predic-
tions remain as the final position and the joint refinement pro-
cess is applied to the low-confidence votes. To perform this,
a nearest-neighbour search (NN-search) is done, using only
the high confidence joint location. The final joint position
gets computed with respect to the weak joint location and
the high confidence joint position found in the NN-search.

Accuracy. This approach has a high reported accuracy. In
combination with kinematic joint refinement, it represents
state-of-the-art accuracy. Testing was performed in many
scenarios, including rapid changing and heavily occluded
hand poses, each resulting in accurate prediction.

Estimating the Pose of Two Strongly Interacting Hands
This approach, proposed by [4] aims to solve the interesting
problem of detecting the position and configuration of two
strongly entangled hands. It does this with a model-based ap-
proach in mind, utilizing PSO described earlier. It is not suf-
ficient to utilize a single hand pose estimator twice for each
hand, as the additional occlusion resulting from the hand in-
teraction must be accounted for. Its important to note that
this approach does not run in real time.

Tracking. Tracking utilizes both depth and RGB image. From
the RGB image, a skin map is obtained, with which the depth
image is segmented, obtaining the hand part of the depth im-
age. To use particle swarm optimization, a parameter space
needs to be defined. Because the hand contains 27 degrees
of freedom, a 54-dimensional parameter space, representing
all the possible configuration of both hands, is used. The
range of each dimension is linearly bounded, according to
bio-mechanical constraints of the hand. Each point in the
parameter space represents a configuration of both hands.
These are appropriately artificially skinned, so that a skin
map can be obtained for later use in the objective function.
This function is essentially a penalty function to be mini-
mized, defined as:

E(O,h,C) = P(h) + \:D(O,h,C) (14)
Where)\, is a regularisation parameter, O is the observation
delivered by the RGB-D Camera, h is the current hypothesis

held and C is calibration information of the camera, to syn-
thesize more accurately the skin map from h.

P(h) penalizes invalid articulation hypothesis. Because the
linear constraints on the parameter space are not sufficient
enough to avoid such configurations, P(h) is needed.

D(O, h,C) penalizes the discrepancies between the O and
h. This is performed with help of the skin maps, as well as
the depth images. Essentially, it measures the differences be-
tween both, summing and clamping them. Clamping is nec-
essary to make the function robust to noise which could dom-
inate and produce false high penalties. Additionally, through
clamping, the function results in being smother. When utiliz-
ing PSO, function 5 gets adjusted to:

Vkt1,i = W0k +c1r1 (Pri— ki) +ear2(Gr—xg,i)) (15)

It introduces three new weight parameters ci, co and w. As
proposed in [8], w is set as

(16)

2
YT ey o4y

where 1) = ¢1 + co.

A new instance of PSO is performed by each observation de-
livered by the RGB-D camera. Each instance delivers h, s,
so that:

himin = argming E(O, h, C) 17

To exploit temporal information, the hypothesis h,,;, gets
stored. When a new instance of PSO starts, the particles
are sampled randomly in and around h,,;,, boosting perfor-
mance and accuracy of method. However, this approach re-
sults in bad accuracy when the hands rapidly changes pose.
Additionally, it needs to be initialized at the beginning. The
nature of PSO allows for easy parallelization, increasing per-
formance. Some example prediction can be seen in Figure
5.

Accuracy. Utilizing PSO, this approach has two main pa-
rameters to choose from: Number of particles and maximum
number of iterations. Naturally, increasing either has a pos-
itive effect in accuracy. In the first case, we have more par-
ticles searching for the optimal position, therefore a higher
probability of finding a sufficient close point in the parame-
ter space. In the latter case, we allow the algorithm to search
longer, again increasing the chances of finding the best or a
sufficient close enough position. However, increasing both
parameters has a detrimental effect on performance and a
flat-off of accuracy can be observed after a certain thresh-
old of the parameters is reached. It is important to note here
that unlike the previous methods, this approach does not run
in real-time.

. \. Lk
l LY l \‘
-

Figure 5: Some example results of [4].

4. FUTURE OUTLOOK

Research in the area of hand pose estimation has shifted
its focus to recovering more information than just the hand
pose. For example, there is a growing interest in recover-
ing the hand and skin model, for use in areas like Telepres-
ence or Virtual Reality. Conducting is required further re-
search in areas of new features, as these heavily influence
accuracy and robustness of estimation algorithms. Addition-
ally semi-supervised approaches or unsupervised methods,
not presented here, show a lot of potential in reducing the
amount of synthetic training data needed, hence reducing the
realistic-synthetic discrepancies, further increasing accuracy.

5. CONCLUSION

With all the different approaches presented here, tackling the
problem of hand pose estimation. [1] was an essential build-
ing block for future methods, and was the first to utilize syn-
thetic training data. This solves the problem of body pose
estimation and is used in today’s Kinect system. It uses ran-
dom forest to assign a body label distribution over the depth
image, and then places the 3D joint proposals based on the
distribution. The next method, [2], tackles hand pose esti-
mation. It introduced multi-layered random forests, a tool to
divide the problem into sub-problems by clustering the train-
ing data and having a random forest trained on the clusters
and for each cluster. This approach takes inspiration from
[1], by assigning the depth images a hand label distribution
and then, using the same approach, form the 3D joint propos-
als of the hand. [3] implements random regression forests,
and combines the multi-layer aspect of [2] into one layer
through varied use of different information gain function.
The output of the regression forest directly form the 3D joint
proposal. To further enhance the accuracy and robustness
to occlusion, kinematic refinement is employed. This en-

forces somewhat bio-mechanical constraints which normally
discriminative approaches lack. Lastly, [4], a model-based
approach tries to solve the problem of pose estimation of two
hands, which could be strongly interacting. It uses PSO to
seek for a minimum of the objective function defined over
the 54-dimensional parameter space. This objective function
penalizes the discrepancies between the observation and the
currently held model of the hand, the hypothesis, and invalid
hand configurations, such as two fingers occupying the same
physical space. However, this approach does not run in real
time.

REFERENCES
1. J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finoc-
chio, R. Moore, A. Kipman and A. Blake. Real-Time
Human Pose Recognition in Parts from Single Depth Im-
ages. In: CVPR, 2011.

2. C. Keskin, F. Kirac, Y. E. Kara, and L. Akarun. Hand
pose estimation and hand shape classification using
multi-layered randomized decision forests. In ECCV,
2012.

3. D.Tang, T. Yu, T. Kim. Real-time Articulated Hand Pose
Estimation using Semi-supervised Transductive Regres-
sion Forests. In ICCV, 2013.

4. 1. Oikonomidis, N. Kyriazis, A.A. Argyros. Tracking the
Articulated Motion of Two Strongly Interacting Hands.
In CVPR, 2012.

5. L. Breiman. Random Forests. 1999.

6. A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, X.
Twombly. Vision-based hand pose estimation: A review.
2005

7. S. S. Rautaray, A. Agrawal. Vision based hand gesture
recognition for human computer interaction: a survey.
2012. 11

8. M. Clerc and J. Kennedy. The Particle Swarm - Explo-
sion, Stability, and Convergence in a Multidimensional
Complex Space. Transactions on Evolutionary Compu-
tation, 6(1):58? 73, 2002

9. J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lem-
pitsky. Hough forests for object detection, tracking, and
action recognition. PAMI, 2011.

10. D. Comaniciu and P. Meer. Mean shift: A robust
approach toward feature space analysis. IEEE Trans.
PAMI, 24(5), 2002.

