

Distributed Institute for Systems Pervasive Group Computing

Interactive 3D Displays

Shaban Shabani

sshabani@student.ethz.ch

i

HoloDesk

Vermeer

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Interaction with displays

Old technique, still in use

- Several drawbacks
- High adaption
- Isn't this already perfect?
- Why do we need more?

HoloDesk

Vermeer

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Touch screens

- Displays show dynamic data
 - Heavy content
 - Requires efficient interaction by the user

Touch-screens

- Direct interaction on the screen
- Controlling content with great enthusiasm
- Multi-touch feature
- Wide application

Drawbacks

- Single screen
- Limited to the physical extent of the display

Beyond touch screens

LightSpace

- Move interactivity off the display and into environment
- "Office of the future"

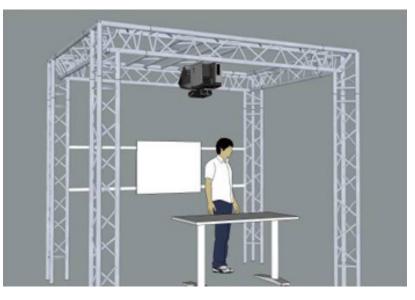
HoloDesk

Vermeer

"The office of the future: A unified approach to image-based modeling and spatially immersive displays" R. Raskar et al.

HoloDesk

Vermeer


LightSpace – "smart room"

"Once, computers were the size of entire room. Today, the entire room is turned into a computer."

Small room installation

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Use of depth cameras and projectors
- Interactions on, above and between surfaces
- Merge of techniques
 - Surface computing
 - Augmented reality

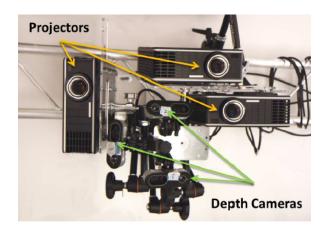
LightSpace configuration

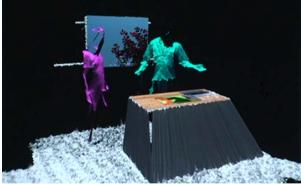
"Combining multiple depth cameras and projectors for interactions on, above and between surfaces" A.Wilson and H.Benko

HoloDesk

Vermeer

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich


Overview


Depth-sensing cameras

- Calculate depth of the objects in the scene
- Track user's position and interactions
- Capture in real-time 3D mesh model of the sensed space

Projectors

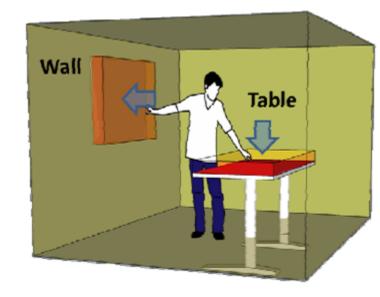
 Virtual objects projected in the real space on top of real objects

HoloDesk

Vermeer

Interactive displays

Surface everywhere

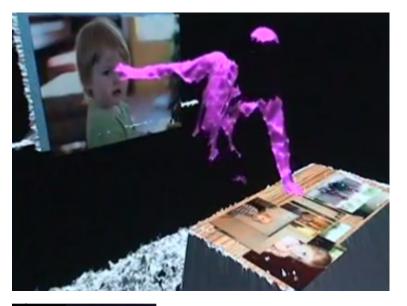

- Room physical surfaces should be interactive "displays"
- e.g. interactive wall and interactive table

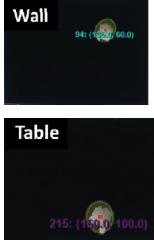
• The room is the computer

Space between surfaces is active as well

Body as display

Graphics projected on user's body


HoloDesk

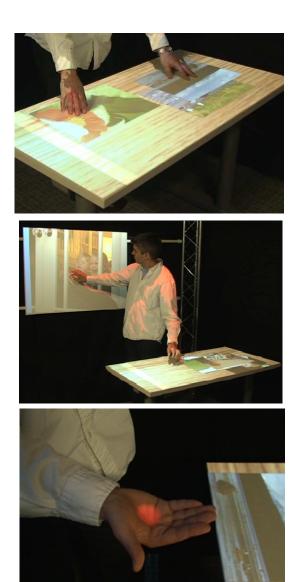

Vermeei

Operation

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Depth cameras provide
 3D mesh model
- Implementation of interactions
 - Avoids calculations directly on 3D mesh model
 - Transform data to an image generated by a "virtual camera"
 - 3 orthographic virtual cameras "wall", "table" and "plan"

HoloDesk


Vermeer

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Interactions

Interactive surface

- Manipulate with projected objects in the surfaces
- Through-body transitions between surfaces
 - Move objects between surfaces
- "Picking up" objects
 - Drag an object and pick it up with hand

LightSpace

HoloDesk

Vermeer

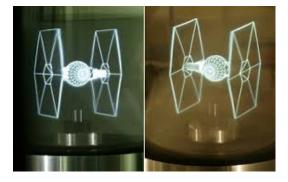
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

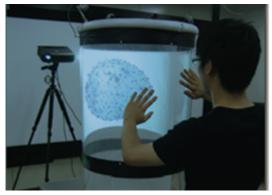
Video

E

http://www.youtube.com/watch?v=gc Xj7Z8aLU

HoloDesk


Vermeer


More than surfaces

The world is 3D

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- More DOF for tasks with such demands
- More visual information
- Exciting and more realistic than 2D

HoloDesk

Vermeer

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

3D displays

- Require the wearing of special glasses
- Non interactive
- Interactive ones mainly require additional hardware
 - Data gloves
 - Head-mounted display
 - Gamming controllers

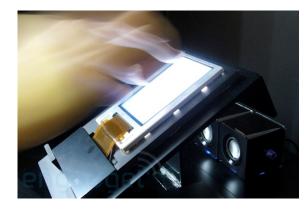
HoloDesk

Vermeer

BiDi Screen

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Bidirectional screen
- Turn an LCD in a thin display to support:
 - Image capture and display
 - On-screen 2D multi-touch
 - Off-screen 3D interaction
- No need for glasses or HMD


"BiDi Screen: A Thin, Depth-Sensing LCD for 3D Interaction using Light Fields" M.Hirsch et al.

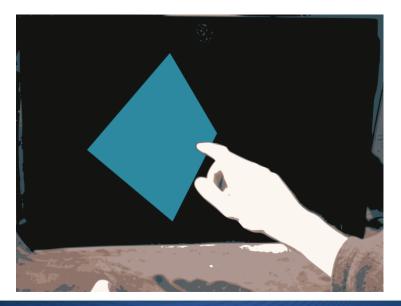
HoloDesk

Vermeer

BiDi - Inspiration

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

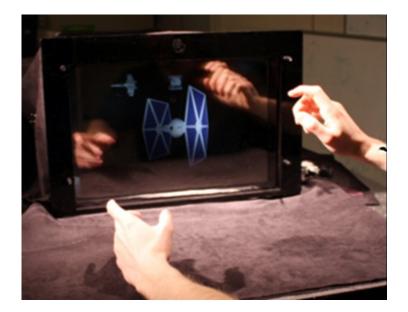
Light sensitive display



Depth camera

Multi-touch display

 Combine in a single device


HoloDesk

Vermeer

BiDi - Challenges

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Build a thin portable device
- Enable multi-touch and 3D gesture interaction
- Collocated image capture and display

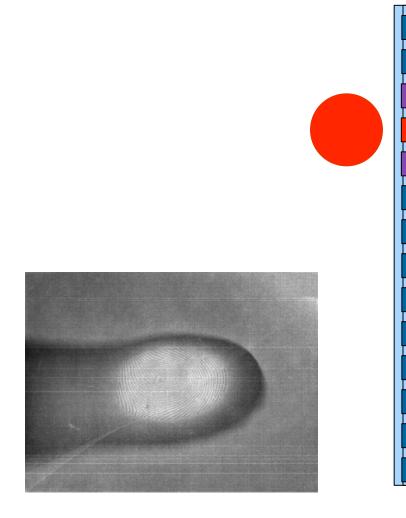
How to capture depth from an LCD?

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Background - Traditional touch?

- Resistive and capacitive multi-touch displays
 - Only sense the surface of the display

LightSpace


BiDi

HoloDesk

Vermee

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motivation – Optical multi-touch device

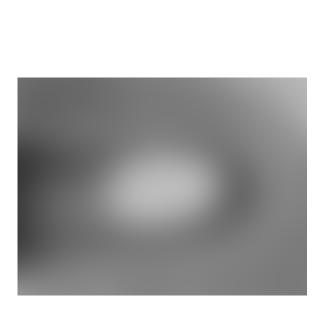
LCDs from Sharp and Planar

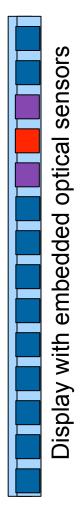
Optical sensors

- Capture sharp image of objects when in contact with the surface of the screen
- As objects move away from the screen, the images are blurred

Display with embedded optical sensors

LightSpace


BiDi


HoloDesk

Vermeer

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

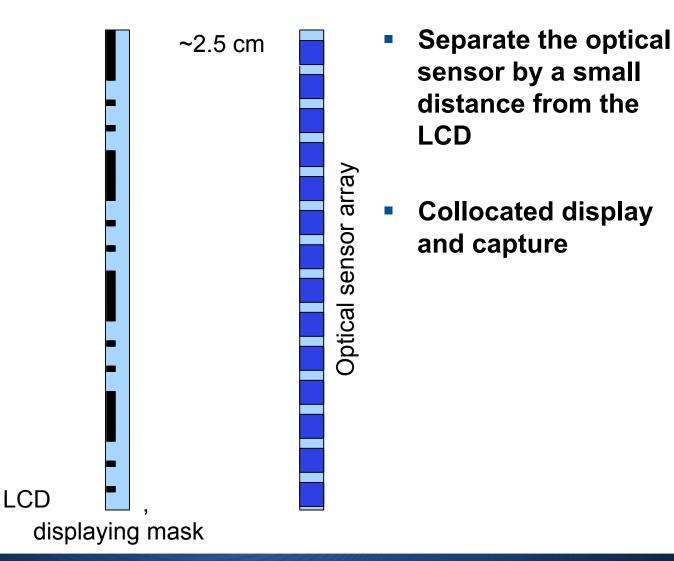
Motivation – Optical multi-touch device

LCDs from Sharp and Planar

Optical sensors

- Capture sharp image of objects when in contact with the surface of the screen
- As objects move away from the screen, the images are blurred

LightSpace

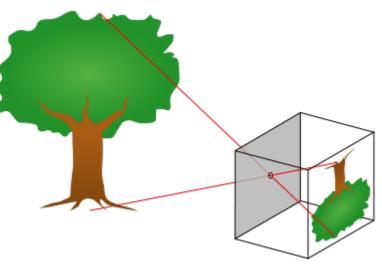

HoloDesk

Vermeer

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Design vision

~50 cm



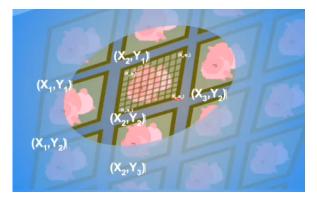
Swiss Federal Institute of Technology Zurich

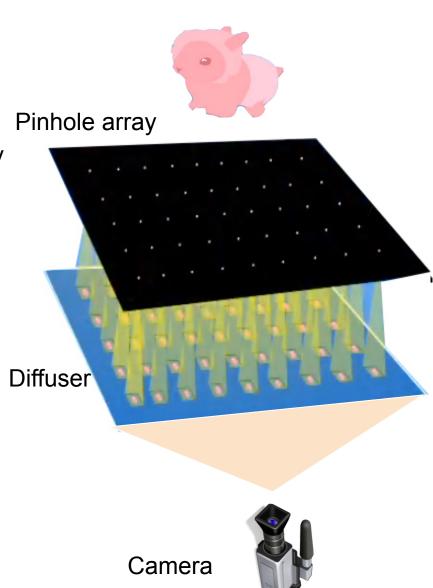
Eidgenössische Technische Hochschule Zürich

Pinhole camera

- Simple camera without lens and small aperture
- Light passes through the single point
- Projects inverted image on the opposite side of the box

HoloDesk


Vermeer


Swiss Federal Institute of Technology Zurich

Eidgenössische Technische Hochschule Zürich

- Display a pinhole of arrays
 - Creates tiny images on the sensor array each with different angle view
- Camera captures images
- Analyze patterns of the images
 - Decode depth

HoloDesk

Vermeer

Swiss Federal Institute of Technology Zurich

Interactions

Eidgenössische Technische Hochschule Zürich

On-screen multi-touch interactions on objects

- Resize
- Rotate
- Off-screen 3D gestures
 - Move objects in 4 directions
 - Zoom in/out objects in 2 directions

LightSpace

Vermeer

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

E

http://www.youtube.com/watch?v=kXuxK6leQfo

Summary

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Benefits

- A modified LCD that supports multi-touch and 3D gestures
- No special hardware
- Real-time interaction

Limitations

- Size
- Lighting
 - Requires external lighting
 - Not functional in case of absence of illumination

HoloDesk

Vermeer

In-volume 3D interaction

Direct interaction on the 3D content not possible

Behind glass

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Some require special glasses and data gloves

HoloDesk

Vermee

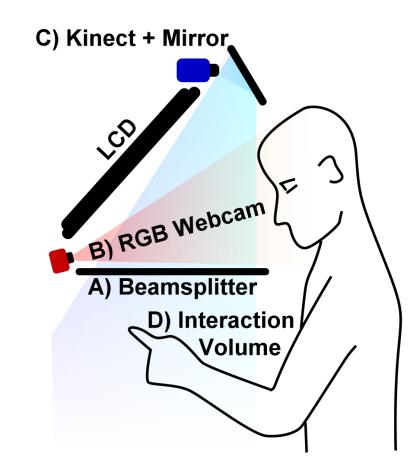
HoloDesk

- An interactive Augmented Reality system
- Interact with 3D virtual objects
 - 'Inside' the display
 - No need for body-worn hardware
- Physically realistic interactions
- 'Walk-up-and-use'
 - No user instrumentation

"HoloDesk: Direct 3D Interactions with a Situated See-Through Display" O.Hilliges et al.

14.05.2013

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich


Design overview

Interaction volume

- Seen through beam splitter
- Optical see through mirror (Beam splitter)
 - Reflects light to the user from the LCD
 - Forms a virtual image on interaction volume

RGB Webcam

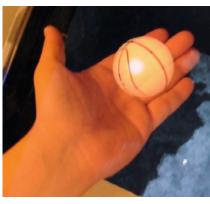
- Tracks user's head 6DOF
- Kinect + mirror
 - Mirror fold the Kinect's optic
 - Sense the interaction volume

Vermeer

Operation

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Correctly virtual graphics


- Tracking and estimating 3D position of head
- Continuously updating the rendering

Kinect

- Real-time depth data
- Occlusion
- Inter-shadowing

Virtual scene

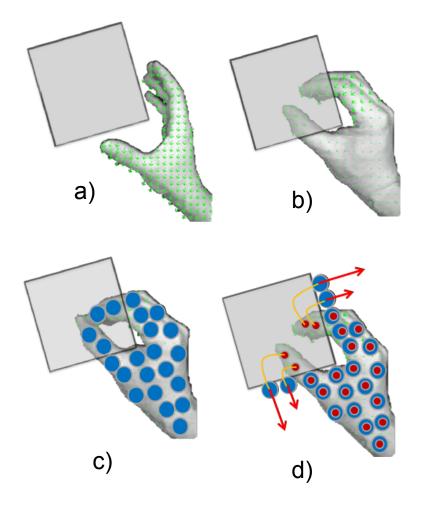
Occlusion

Inter-shadowing

14.05.2013

iDi

HoloDesk


Vermeei

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Implementation

Simulating human grasping

- Accurately model collision and friction forces exerted onto virtual objects
- Kinect depth data approximated by small spherical rigid bodies
- Approximate the shape, motion and deformation of 3D physical objects
- Model interpenetration of objects

BiD

HoloDesk

Vermeer

Applications

- Mix of real and virtual content
- Gaming

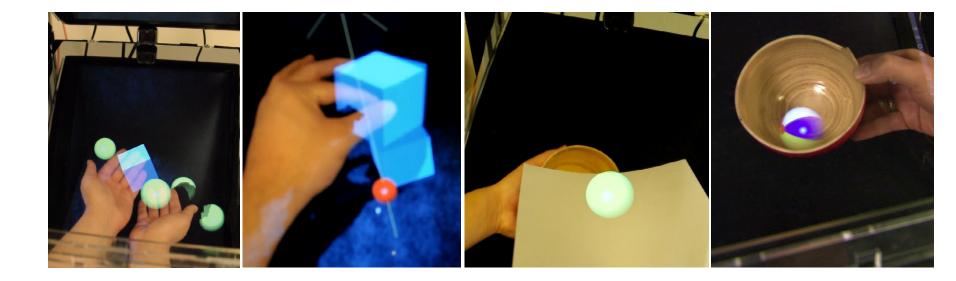
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Virtual prototype
 - Smartphone
 - Touch-enabled

Telepresence

- Users share single virtual 3D scene
- Interactions relayed to a remote unit

HoloDesk


Vermeer

Swiss Federal Institute of Technology Zurich

Eidgenössische Technische Hochschule Zürich

Interactions

- Physics-enabled interactions
 - Interact with virtual in realistic way
- Rich free interactions
 - Juggling, grasping

LightSpace

HoloDesk

Vermeer

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

E

Video

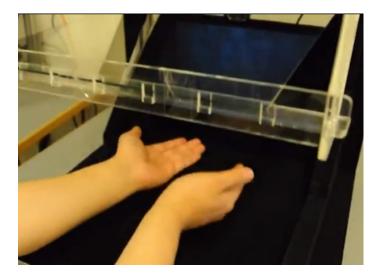
http://www.youtube.com/watch?v=JHL5tJ9ja w

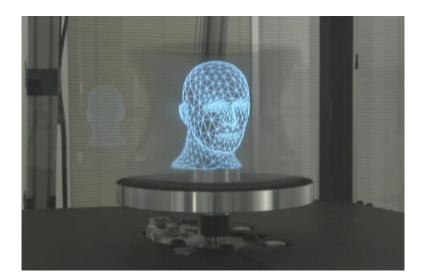
Summary

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Benefits

- Novel system which supports full 3D interactions
- No user instrumentation
- No head-worn sensors
- Direct interactions with 3D objects
- Rich physically inspired interactions
- Various applications


Limitations


- Does not provide full simulation of object motion in the interaction volume
- Failures in case of occlusion of physical objects
- Finger grasping requires visible fingertips

Towards 360-degree viewing displays

LightSpace

- Previous displays have user restrictions on interacting with volume
 - Limited viewpoint
 - Glass separates the physical display from user

HoloDesk

LightSpace

HoloDesk

Vermeer

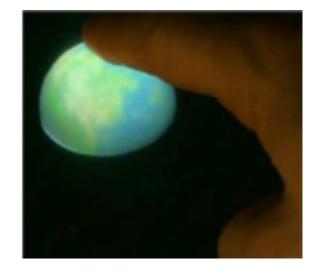
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Video

http://www.youtube.com/watch?v=YKCUGQ-uo8c

"Rendering for an Interactive 360° Light Field Display" A.Jones et al.

14.05.2013


HoloDesk

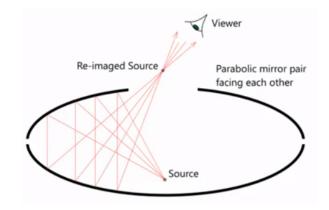
Vermeer

Vermeer

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- A new enabling technology for in-volume interaction
- 360°viewable 3D display
 - Viewpoint corrected
 - No need for eyewear
 - No user instrumentation
- Directly touch and interact with
 3D objects inside the display volume

"Vermeer: Direct interaction with a 360-degree viewable 3D display" A.Batler et al


14.05.2013

Motivation

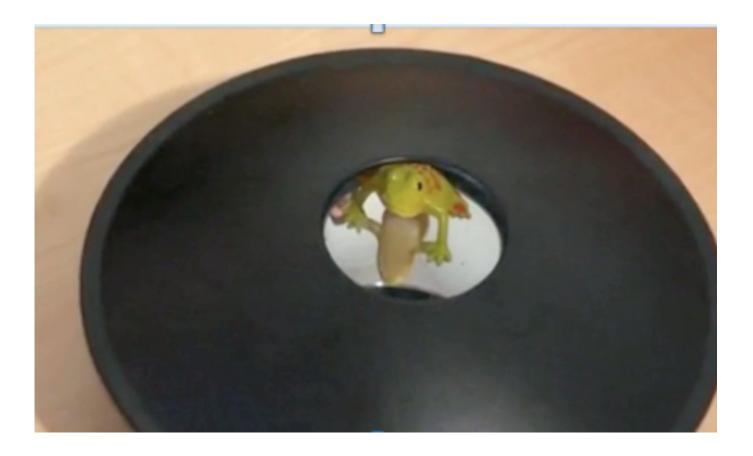
Optical illusion using 2 parabolic mirrors

LightSpace

- Object placed at the bottom of the mirror reimaged as it was real, above the unit
- Provides 360°view
- Allows free interaction without encumbering the projection

Vermeer

HoloDesk


Di

HoloDesk

Vermeer

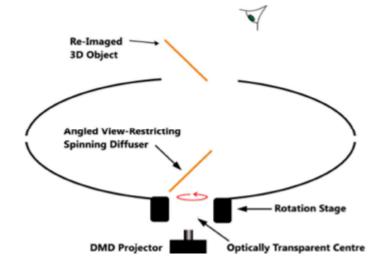
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Video - Parabolic mirrors

Design overview

An extended 360 viewable 3D display

LightSpace


- Projection
- Imaging from below

View restrictive spinning diffuser

- Provides the narrow viewing angle
- Different views to multiple users

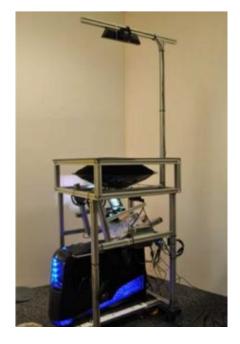
High speed DMD projector

- Displays multiple viewpoints of the 3D scene at high rates
- 2880 images/second
 192 different views per rotation

Vermeer

HoloDesk

Sensing interactions using Kinect


Kinect depth camera positioned above

LightSpace

- User places finger inside the volume
- Contour of the hand detected and *fingertips* tracked
- Animate 3D scene

Physics simulation (nVidia PhysX)

- More realistic interaction
- Control visual objects with real-world concepts: forces, collisions and frictions

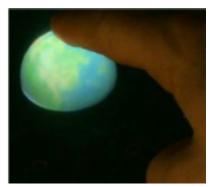
Vermeer

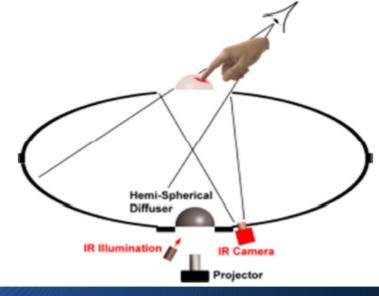
HoloDesk

Vermeer

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Sensing interactions using infrared


LightSpace


Enabling interactions with Kinect

- Increases complexity
- Suffers from bulk and occlusion

Infrared reimaging

- Parabolic mirror reimage light in the near IR-range
- An object reimaged using IR, floats in the display area
- Fingertips intersecting with objects detected with an IR camera
- Sense intersections between physical objects above and IR illuminated inside
 - e.g. spinning sphere
 - Distinguish finger touching object from others

LightSpace

HoloDesk

Vermeer

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

E

Video

http://www.youtube.com/watch?v=IW7k-6FUxoo

Summary

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Benefits:

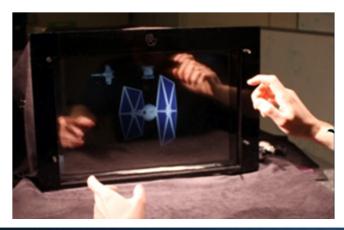
- Novel technique in interacting with 360°viewable 3D displays
- Supports multiple users
- No need for glasses and instrumentation

Limitations

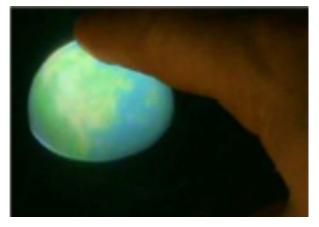
- Small dimensions of the viewable volume
- View constraints when viewpoint too high or too low
- Distortion of the displayed image
- Limited rendering fidelity

HoloDesk

Vermeer


Summary

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich


Interactions on 2D surfaces

3D off-screen interactions

360° viewable display

In-volume interactions

HoloDesk

Vermeer

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

Summary

	LIghtSpace	BiDi	HoloDesk	Vermeer
3D interaction	*	\checkmark	\checkmark	\checkmark
No need for glasses, gloves, HMD	\checkmark	\checkmark	\checkmark	\checkmark
Rich free interactions	¥	*	\checkmark	\checkmark
In-Volume interaction	*	*	\checkmark	\checkmark
Full 360-degree view display	*		*	\checkmark