Touch Technologies Touching the World

by Sara Kilcher

Distributed Systems Seminar 30. April 2013

sakilche@student.ethz.ch

Motivation

Overview

- Skin as touchscreen
 - Skinput

Overview

- Skin as touchscreen
 - Skinput
 - OmniTouch

Overview

- Skin as touchscreen
 - Skinput
 - OmniTouch

- Touchscreen for virtual 3D
 - Toucheo

Skin as Touchscreen Introduction

- Mobile phones like computers
- Small screen/keyboard size

Harrison et al. 2010 Skinput

Purpose

Extend interface

Using skin

Video

Video: 01_skinput.avi

Difficulty

Touch → where?

How it works The Waves

Skinput

OmniTouch

Toucheo

How it works Processing the Waves

How it works Training SVM

Video: 02_skinput.avi

How it works Recognition

Video: 03_skinput.avi

How well it works

- User study with 13 participants
- Touch event errors "negligible"
- Position not very accurate
 - Overall 87.6% (5 to 10 locations)
 - Up to 95.5% (5 locations)

How well it works

Video: 04_skinput.avi

Personal Opinion

- Very innovative
- Requires lots of calibration
 - Did not work well in demos
- Lots of "magic" that isn't entirely understood
 - Hard to tune → gesture recognition?
 - Completely individual

Vision

Armband will get smaller

- Use cases without projector
 - Car
 - Jogging
 - Audio Feedback?

Harrison et al. 2011 OmniTouch

Purpose

- Like Skinput, but
 - Needs a projector
 - Needs a depth-camera
 - Can be used on additional flat surfaces

Video

Video

Video: 05_omnitouch.avi

Difficulties Projection

- Surface is uneven
 - Distortion
 - Focus

- Surface is moving
 - Tracking

Difficulties Input Recognition

- Touch event recognition
 - Touch → when?
 - Touch → where?

How it works The Hardware

Step 1: Depth map of scene

Step 2:
Derivatives

Step 3: "Template matching"

Step 4:
Group slices & find fingertips

How it works Recognition of Touch Events

Flood fill the finger

How it works Recognition of Surfaces

How it works Displaying Interfaces

Projective texturing

How well it works Click Accuracy

User study with 12 participants

Click recognition: 96.5%

How well it works Location Accuracy

Omnitouch, hand: 25mm

Personal Opinion

- Fascinating paper
- Popular on web
- No real applications yet
- Use self-made algorithms
 - possible to improve

Vision

Entire world as touchscreen

Device will get smaller and more comfortable

Skinput

OmniTouch

Touch accuracy

 Use cases without projector Location accuracy

Use more surfaces

More applications

Skinput OmniTouch

Skinput

OmniTouch

- "Impact" press needed
 - No long press
 - No dragging
- Setup & calibration
- Stable arm position
- Predefined points

- Finger detection
- Where to place hardware?
- Bright light

Touchscreen ⇔ World

Hachet et al. 2011 Toucheo

Purpose

- Merge trends
 - Multitouch touchscreen
 - Stereoscopic screen

Easy interaction with virtual 3D objects!

- Solve difficult tasks
 - e.g. 3D docking task

Video

Video

Video: o6_toucheo.avi

Video: o7_toucheo.avi

Difficulties 3D and the Hands

Occlusions

Depth collision

Difficulties Eye Related

Contradiction

Difficulties Eye Related

Contradiction

3D usefulabove/below plane

Difficulties Eye Related

Contradiction

- 3D usefulabove/below plane
- Touchscreen only in plane

Difficulties Usable Interface

Typical smartphone has 3+1 DOF,
 Toucheo has 9+1

Intuitive interface?

Translation: 3 DOF

Rotation: 3 DOF

Difficulties Smartphone: 3+1 DOF

OmniTouch

Toucheo

Skinput

3D Screen

Mirror

Mirrored 3D Screen

Touchscreen

 Occlusion problems eliminated

 Depth collision problems reduced

How it works 3D to 2D - "Virtual Ray"

How it works The 9+1 DOF

How it works The 9+1 DOF

Video: o8_toucheo.avi

How well it works

- User study, 16 participants
 - Bulky, quite big
 - 3D-docking task solved well
 - Feedback used to improve interface

Personal Opinion

Clever setup to solve common problems

Interface: independent achievement

Vision

- Interface used in other applications
- New generation less bulky

Toucheo	OmniTouch / Skinput
Touchscreen	
Touch of non-planar objects	
Virtual 3D objects	Real 3D objects
Input from traditional touchscreen	Input from camera / vibration sensors
How to use touch events	How to get touch events
Novel GUI	Standard GUI
Display with	Display with pico-

stereoscopic screen

Static / big

projector

Mobile / small

Displays of the Future

- Assumption
 - Increase in screen size = increase in device size

- Alternative
 - Displays → non-planar surfaces
- Market direction?

Displays of the Future

Video: 09_future.avi

Video: 10_future.avi

Video: 11 future.avi

Video: 12 future.avi

Video: 13_future.avi

Video: 14_future.avi

