Pervasive Displays

Reto Achermann acreto@student.ethz.ch

PART I: PERVASIVE DISPLAYS

Pervasive Displays

Just "screens everywhere" ?

Not really...

Pervasive Displays

- Pervasive
 - "spreading widely throughout an area or a group of people"
- Display
 - "electronic device for visual presentation"
 - "printing the arrangement and choice of type in a style intended to attract attention"
 - "a collection of objects for public viewing"

- Oxford English Dictionary

Pervasive / Ubiquitous Computing

- Pervasive displays as part of pervasive / ubiquitous computing
- Principles of Ubiquitous Computing
 - "The purpose of a computer is to help you do something else."
 - "The best computer is a quiet, invisible servant."
 - "The more you can do by intuition the smarter you are; the computer should extend your unconscious."
 - "Technology should create calm."

- Mark Weiser (1952-1999)

"Today's public display systems are largely closed and isolated, with tightly controlled screen access."

Analogy:

Old mobile phones – current public display systems

- Nigel Davies et al.

In the early days...

Public Information

Advertisement

... and today

Information / News Display

Electronic Advertising

- Information presented to the user interleaved with ads
- Content is very repetitive:
 User gets bored
- No interaction or possibility to change content
- Showed content may be moving / flickering to attract the attendance

... and today

- Interaction needs application (tag reader) or sending SMS
- Augmentation is sometimes inaccurate / impossible without location service
- Maps just show "Here are you" indicator (hard to find)

Poster Advertising

Augmentation

Display Types

- Static Displays:
 - Cannot change the content shown
 - Provide no direct feedback
 - Cheap (big surface)
 - Require no energy

Posters, Maps, Objects

- Dynamic Displays:
 - Can change content shown dynamically
 - Can provide direct feedback
 - Relatively expensive
 - Require energy and actively driven input
 - LCD Screens, Projectors

Both may be location / environment aware

- "Yes" in the sense of Oxford dictionary
- No in the sense of ubiquitous computing
 - People have adapted to ignore the displays
 - Fast moving pictures distract calmness
 - Almost no interaction / non-intuitive interaction
 - Interaction / augmented reality is "plug-and-play" instead of "arrive-and-operate"
 - Displays provide no / too less help in doing something

tp://www.springwise.com/img/uploads/2012/09/dandeacon.jpg

Observation: Smartphones are everywhere

"The first truly pervasively available interaction devices" - Robert Hardy

Observation: Smartphones are everywhere

- Equipped with various sensors, radio interfaces, acoustic & haptic feedback and touch displays
- Problem: Interaction with displays using smart phones today is inconvenient, not always working and clumsy
- Idea: use of technology provided by the smartphone in a smart way for interaction

The vision in the movies

Minority Report,
DreamWorks Pictures

Avatar 20th Century Fox

Interactive Street Map

- Intuitively select an element on the map
- Get related information of selected object
- Query / Filter:
 Get list of all restaurants
 in a specific area
- Show directions to object

http://a5.mzstatic.com/us/r1000/103/Purple/ef/b1/26/mzl.jlmdxofp.320x480-75.jpg

Interactive Mensa Menu

- Show additional information:
 - Menu ratings
 - Alternative Menus at other location
 - Filter according to preferences
- Example: Diet help
 - Caloric values directly added to diary
 - Do not show menu which do not fit
- Example: Allergic / Health
 - Hide menus containing certain ingredients
 - Show warnings

Passive Interaction with Displays

- No need for taking the phone out of the pocket
- Walk-by / be present as interaction event
- Display spontaneously react to your presence and shows content you like (pictures, videos)
 Privacy?
- Example: Screen at CAB Foyer
 - You like to see images of D-INFK events
 - Your phone tells the screen wirelessly
 - Screen displays selection of photos

.google.com //i.telegraph.co.uk/multimedia/archive/01655/flags-street1_1655777i.jpgc

Personalized Content

- Content is chosen according to personal preferences
 - Switch paintings of e-gallery
 - Show news you're interested in / weather of your location
 - Show tailored advertisement
- Showing related information to query
- Several social issues
- Example: Team Support
 - A group of soccer fans meet
 - The displays show the colors of the favorite team

Augmented Displays

- A tablet's display augment the view of the current display
 - Different angle / layer
 - Annotations
- Show additional information of the elements shown
- Example: Doctors
 - Different experts analyze a patient
 - Cardiologist
 - Sinologist
 - Surgeon
 - All have different interests concerning the patient's health state

http://jordster4000.blogspot.ch/2011/09/layout-design-research.html

Houses as Displays

Using the façade of a house as a game display

Projected Displays

Video:

http://www.youtube.com/watch?feature=player_embedded
 &v=df1NO7MoAUY

PART II INTERACTION WITH DISPLAYS

1. Physical Buttons

- Select elements by pressing buttons
- Buttons can be marked to distinguish them blindly

- Drawbacks:
 - Not always clear what different buttons do
 - Unclear element highlighting
 - No button adaption to different content
 - Button interface is not extensible

2. Touch Screens

- Interact by touching the element directly on the screen
- More intuitive than physical buttons, adaptable interface
- Drawbacks:
 - Indistinguishable buttons (no blind navigation)
 - Dirty displays
 - Not well suited for very large screens
- Not working with
 - Displays behind security glass
 - Displays far away
 - Wet fingers / gloves

3. Bluetooth Device Names for Interaction

- Idea: send service requests to displays wirelessly
- Issues tackled:
 - SMS: untrusted number (premium service), need to know display ID
 - App: download necessary (inconvenient)
 - Touching may not be possible
- Observation: many users have device supporting
 Bluetooth and have set a custom USB device names
 [Nigel Davis et al]
- Approach: Use of Bluetooth device discovery and Bluetooth device names to send requests

Bluetooth Device Names as Commands

- No need for additional software
- Users set the device name to a special command string, to send a request command to the system

- Identifier followed by service name
- Examples:

ec youtube: eth

ec map: CAB H52

Scanning Area

Smart Phone

Smart Phone

Phone

Problem:

reading the device ID takes time discovery happens too early / late

Phone

Serving the Requests

Each request (recognized command) is put into a queue

Each request is served for a maximum specified time

If a user leaves the display area, the requests is marked as

served

Social issues arise ec youtube: puke

://www.idea.org/blog/wp-content/uploads/2011/09/gr-code-01.ip

4. Visual Markers

5. Mobile Interaction with NFC enabled displays

- Near field Communication
 - Wireless communication technology, Point-to-Point
 - Small Range: < 0.2m</p>
 - Frequency: 13.56 MHz
 - Bandwidth: 424 MHz
 - Set-up time: <0.1s</p>
 - Low-Power, tag is unpowered

- Payments (Credit Cards, ...)
- Keys
- Data Exchange (Business Cards)

NFC enabled displays

- A mesh of NFC tags attached to the rear, no need for visual markers
- Interaction by "touching" i.e. holding the device close
- Mobile device reads content of the NFC tag:
 - Object ID to look up on internet
 - Self contained information (no lookup)
- Mobile device may augment the display by showing information

Robert Hardy, Enrico Rukzio, Paul Holleis, Matthias Wagner Mobile interaction with static and dynamic NFC-based displays

Resolution Problem of NFC Enabled Displays

Resolution Problem: Mesh grid of NFC tags is coarse.
 One tag covers many elements

- Dynamic Solution:
 - "Zoom in": Show pop up
- Static Solution:
 - Show list on mobile phone
- Generic Approach: Filtering
 - Enable filter to reduce the result set

6. Accelerometers: PhoneTouch

- Goal: Distinguish multiple users interacting with a touch screen at the same time
- Touchscreen registers location of touch event
- Phone registers movement using accelerometer
- Tabletop server matches touch event with phone movement to identify user

PhoneTouch: A Technique for Direct Phone Interaction on Surfaces

Dominik Schmidt, Fadi Chehimi, Enrico Rukzio, Hans Gellersen Computing Department, Lancaster University, Lancaster, UK

7. Touch Projector: Touch Screen from Distance

Observation:

- Not all display support touch input
- Displays may be out of arm's reach
- Elements cannot be moved between displays easily

Idea: interaction through live video

Sebastian Boring, Dominikus Baur, Andreas Butz, Sean Gustafson, Patrick Baudisch TouchProjector: Mobile interaction through video

Touch Projector Usage

 All touch events are routed through a server (the environment manager)

- Basic Usage:
 - User points at display and touches element
 - User moves element within / between screens
 - User releases touch and element is placed on new location

Touch Projector Implementation Issues

- Screen too small on mobile device: Automatic zoom in when display is recognized
- Device needs to be pointed on screen: Freeze image on mobile device for stability and fine tuning
- Display identification based on computer vision may result in incorrect identification

Figure 9. The different Touch Projector interfaces: (a) Original camera interface. (b) Manual zoom capabilities. (c) Automatic zooming. (d) Freezing the camera image with temporary overlay for precise interaction.

http://qvectors.net/downloads/images/fullpreview/vector-Business-Presentation_full.jpg

8. Augmented Displays

Problem:

One screen – different people and different interests

Idea: Augment main display with different views / layers

The Magic Lens Metaphor

- Show alternate view of the data
- Show annotations / information on the object

7. Gesture Recognition using Kinect

Improved hygiene: no need to touch

Security

Content

Privacy

March 12, 2013 Distributed Systems Seminar 40

nttp://mobhappy.com/blog1/wp-content/uploads/2006/03//sweetrelief.jpg nttp://1.bp.blogspot.com/http://www.t-online.de/handy/smartphone/id_61301376/falsche-qr-codes

Security: SMS / QR Codes

- Sending an SMS can end in a premium service
- QR codes may refer to phishing sites
- QR codes / SMS numbers may be forged

Privacy Concerns: Unveiling Personal Data

- Personalized display content unveil personal data
 - e.g. advertisement of products recently bought
 - e.g. support for political party / sports team
- User may need to fill in his preferences
- Scanning QR code / sending SMS unveils phone ID
- Technology may be used to track the user where he goes

http://helpdesk.nex-tech.com/print.php?id=657 http://tutznet.com/2966-fix-google-play-store-error-403-android/

Effort Needed to Use the Displays

- Must be kept as low as possible
- No plug-and-play but arrive-and-operate: the use has to be intuitive

Effort needed is percept as cost;

Content

- User decides what to display
 - May be inappropriate (e.g. offensive views)
 - May distract other people (e.g. music styles)

Sunrise Demonstration Incident

- The content providers must be trusted
 - Not all display owners want all contents on their display
 - Concept of "Trusted Store" like an app store
- Content war between users

Summary of Today

- Today's displays are not really pervasive (not helpful)
- Intuitive interaction with displays needed to turn them into helping assistants
- There are many technical & social issues to solve
- Most of the basic technology is already available

THANKS

Questions?

References

- Nigel Davies, Marc Langheinrich, Rui Jose, Albrecht Schmidt
 Open Display Networks: A Communications Medium for the 21st Century
 IEEE Computer, Volume 45, Issue 5, Pages 58-64, 2012.
- Florian Alt et al.
 - Designing Shared Public Display Networks: Implications from Today's Paper-Based Notice Areas
 Proceedings of the 9th international conference on Pervasive computing (Pervasive'11), San Francisco, CA, USA, 2011.
- Sebastian Boring, Dominikus Baur, Andreas Butz, Sean Gustafson, Patrick Baudisch
 TouchProjector: Mobile interaction through video
 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'10), Atlanta, USA, 2010.
- Robert Hardy, Enrico Rukzio, Paul Holleis, Matthias Wagner
 Mobile interaction with static and dynamic NFC-based displays
 Proceedings of the 12th international conference on Human computer interaction with mobile devices and services (MobileHCl'10), Pages 123-132, Lisboa, Portugal, 2010.
- Claudio S. Pinhanez
 - The Everywhere Displays Projector
 - Proceedings of the International Conference on Ubiquitous Computing (UbiComp'01), Pages 215-331, Atlanta, USA, 2001.
- Gabor Soros, Peter Rautek, Hartmut Seichter, Eduard Groller
 - Augmented visualization with natural feature tracking
 - Proceedings of the 10th ACM Conference on Mobile and Ubiquitous Multimedia (MUM'11), Beijing, China, 2011.
- John Hardy, Jason Alexander
 - Toolkit Support for Interacitve Projected Displays, MUM'12
- Dominik Schmidt, Fadi Chehimi, Enrico Rukzio, Hans Gellersen
 - PhoneTouch: A technique for Direct Phone Interaction on Surfaces
- Sebastian Boring, Sven Gehring, Alexander Wiethoff, Magdalena Blöckner, Johannes Schöning, Andreas Butz Multi-User Interaction on Media Facades Through Live Video on Mobile Devices CHI'11