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INTRODUCTION
In general the term motion capture refers to the act of record-
ing the movement of objects in varying levels detail [17].
This report discusses the more specific task of capturing and
analyzing human full body motion. Note that the term mo-
tion capture is used both in the general sense and also when
referring only to human motion, especially in relation to
character animation for movies and video games.

The idea of capturing the motion of a human actor in order
to create more authentic computer animations of characters
has been adopted in the late 1970s [14]. And this contin-
ues to be one of the most important applications, with many
commercial systems being available by companies such as
Vicon [3] or Qualisys [4]. Motion capture is used for ani-
mating characters in movies with recent examples including
Avatar [6] and The Hobbit [13], but also in video games such
as Bioshock. There are also other applications such as in-
teraction with video games as enabled by the Xbox Kinect
system [2], as well as virtual and augmented reality applica-
tions. Motion capture techniques are also used in medicine
for example for gait analysis [9] or in sports.

This reports provides a survey of techniques for capturing
full body motion, and includes a discussion of three relatively
recent research projects in this area.

EXISTING SYSTEMS
Motion capture has been a very active area of research. A
survey of just the subset of computer vision based systems
by Moeslund et al. [10] lists more than 350 papers published
between 2000 and 2006. In order to get an overview of these
systems, different criteria are commonly used for classifica-
tion. One of the most commonly used criteria is based on
the physical medium and the types of sensors the respective
system is using. Welch and Foxlin published a survey [16]
of motion capture systems, where the usual advantages and
limitations of different system types are discussed. Another
criterion discussed by Welch and Foxlin is the classification
into inside-out and outside-in looking systems, depending on
whether the sensors are placed on the actor or fixed in the
environment. The remainder of this section will discuss the
different types of systems.

System types
Mechanical At the same time one of the most direct and
first approaches used [14] for motion capture is mechanical
sensing. The basic idea is to use mechanical sensors such
as potentiometers in combination with an exoskeleton to find
joint angles. While providing a way to directly measure the
relative position of the limbs without requiring a lot of post-

processing, global root motion (basically the movement of an
actor through a room) cannot be recovered usually. Also the
exoskeleton is uncomfortable to wear and can limit the range
of motion. There are commercial systems available such as
for example the Gipsy system by Animazoo [1].

Inertial Gyroscopes and accelerometers can be used for cap-
turing motion as well, usually multiple sensors are combined
into one inertial measurement unit or IMU. Multiple IMUs
are used to track different body parts. The main problem
with these systems is drift, since the sensors only report rel-
ative position changes but not the absolute position. Drift
is caused by inaccuracies in the sensors and possibly also
during post-processing. Drift can be eliminated by combin-
ing different techniques such as IMUs and ultrasound [15].
Commercially available systems include Xsens MVN [5].

Acoustic Sound can also be used as a basis for tracking mo-
tion, either by emitting acoustic waves from fixed positions
in the environment and placing trackers on the actor, or vice
versa, and using time-of-flight to get positions. Problems in-
clude reflections which cause a signal to be received repeat-
edly and in combination with the relatively slow propaga-
tion speed limit the number of sounds that can be sent out
and tracked per time unit. Other difficulties include ambient
noises (can be dealt with by using ultrasound), and the fact
that sound waves are affected by wind outside. One major
advantage of acoustic system is that sound waves do not re-
quire a direct line of sight between the source and the sensor.

Magnetic Another category of systems uses magnetometers
or electromagnetic coils to detect the orientation or move-
ment in a magnetic field. The magnetic field used as a basis
can either be the natural magnetic field of the earth or ar-
tificial. Magnetic fields have the advantage that they pass
through the human body without being affected, but on the
other hand metallic objects in the field can change the field
properties.

Optical In optical systems cameras and other optical sen-
sors are used to track light sources or reflections. The dom-
inant group of systems in this category today are camera
and marker based systems, where there are cameras fixed
in the environment, and the actors are marked with reflec-
tive (passive) markers or LEDs (active) markers that are
tracked using the camera. Usually multiple high-framerate
and high-resolution cameras, very specific lighting condi-
tions, and good contrast between markers and actor is re-
quired to achieve high accuracy. Common problems with
these systems are occlusion of markers (especially with mul-
tiple actors) and marker-swapping, meaning a difficulty of



reacquiring markers when multiple markers are temporarily
occluded. This can be addressed by using actively controlled
markers that allow the system to identify the markers, but
such systems are usually limited in the number of markers
that can be tracked. Occlusion is usually addressed by us-
ing more cameras. Note that also other optical devices can
be used such as e.g. rotating laser beams and photosensors.
Many Commercially available optical motion capture sys-
tems exist by companies such as Vicon [3] or Qualisys [4].
Two of the systems introduced later in this report fall into this
category.

Electromagnetic The final category discussed by Welch and
Foxlin is systems based on radio or microwaves and elec-
tromagnetic waves in general. A well known example on
a larger scale is GPS. The main difficulty with using radio
waves for accurate motion capture is their very fast propaga-
tion, which makes estimating time of flight challenging. But
these systems again have the advantage of not suffering from
occlusion. The last system introduced in this report is based
on electromagnetic waves.

PRAKASH
In contrast to most optical systems, the system developed by
Raskar et al. [11] does not rely on cameras observing a scene.
The components used are the two most basic optic building
blocks, LEDs as light sources and photosensors to receive
light. LEDs are combined with grey code slides to build pro-
jectors are used for space-labelling and are placed fixed in
the scene. The tags to be tracked on the other hand are built
from photosensors and a micro controller that is able to de-
termine the position of the tag using the pattern emitted by
the projectors. The resulting system allows for a high frame
rate and accuracy while keeping the cost much lower than
comparable camera and marker based systems, also issues
such as sensitivity to ambient light or marker swapping can
be avoided. Another benefit of the system is that more in-
formation is recovered for each tag than just the position, it
also allows determination of the orientation and illumination
of the tag.

Approach
As mentioned above, the instrumentation required for the
system consists of two parts: projectors and tags. A projec-
tor consists of multiple beamers which in turn consist of an
LED, an assigned gray code slide and some optics. Infrared
LEDs are used so the light is invisible, also the LEDs are
modulated at a high frequency to allow the tags to differen-
tiate between light from the projectors and ambient light. A
tag consists in its most basic form just of a photosensor and
a micro controller analysing the data it gets plus a transmit-
ter that can send the location of the tag to a central system.
Both a projector and a tag are shown in figure 1. Note that
the tag shown there consists of multiple photosensors besides
just the location sensor, which will be discussed below.

Location tracking The basic idea in this system is space-
labelling which is basically doing binary search in space us-
ing the gray codes (also shown in figure 1), by turning on one
LED (beamer) after another. This allows the tag to deduce its
position using just the photosensor since every LED cuts the
space in half where the tag can be located. A single projector

Figure 1: Projector (top) and tag (bottom) used in the
Prakash system [11].

Figure 2: Arrangement of beacons and projectors used
to recover 3D position and orientation [11].

only allows for determining the location in one dimension,
thus in order to recover a full 3-dimensional position at least
3 projectors are required to allow triangulation (one possible
arrangement of projectors is shown in figure 2).

Note that the projectors are not actively controlled by the
tags, and each tag can get its position independently of other
tags, thus allowing for an arbitrary number of tags, without
increase in latency. Another consequence of the tags find-
ing their own position is that there are no problems with tag
reacquisition when multiple tags vanish behind an object and
reappear, since every tag has a unique identifier.

Orientation and illumination In addition to the position the
tags are able to determine their orientation and the RGB illu-
mination information. The orientation is determined using a
number of bright IR beacons located in the scene (figure 2)
with known positions and a flat photosensor without a lens
on each tag. The beacons are again turned on one after an-
other, and the tag will compare the measured brightness of



Figure 3: Body-mounted cameras and skeleton [12]

each beacon which enables it to determine the position using
cosine-falloff. Note that a rotation around the optical axis
cannot be detected. RGB illumination is detected by another
group of 3 photosensors on the tag with different color filters,
which allow recovery of the light intensity and color.

Summary
The Prakash system allows for motion capture at a high
frame rate (500Hz for the prototype mentioned in the pa-
per) and very low latency (below 1ms) using cheap hardware.
Raskar et al. demonstrated the applicability in different sce-
narios that are at least challenging if not impossible for tra-
ditional optical motion capture systems, such as tracking an
actor moving in daylight wearing regular clothes with tags
imperceptible to the camera. Another experiment shows the
use of orientation and illumination data: an actor is mov-
ing an instrumented prop sword through a scene lit by differ-
ent colors, and the data is used to accurately render a virtual
sword with correct lighting and even showing slight rotation
across the axis of the sword as performed by the actor.

BODY-MOUNTED CAMERAS
Shiratori et al. [12] tried to avoid the need for instrumenta-
tion of the environment, to allow free capture outside, such
as for example jogging in a park. Their basic idea is to use
a number of cameras that are placed on the actor facing out-
ward and then using computer vision methods to recover the
motion of the actor from the footage captured by the cameras.
The system is able to provide both the global root motion of
the actor and the relative motion of body parts.

Approach
The actor is instrumented using 16 or more wide-angle cam-
eras strapped to different parts of the body. Multiple cameras
are used for body parts that are often occluded to increase
the chance of getting a usable image due to the bigger field
of view. A digital skeleton of the actor (see figure 3) with the
cameras is then created by performing a predefined range-of-
motion exercise and some manual tweaking if necessary.

Structure-from-motion Figure 4 shows the process used to
recover the whole body motion from the footage recorded by
the body-mounted cameras. The first step is to use structure-
from-motion (SfM) to get a 3D representation of the scene
using reference images of the scene that are taken before-
hand. Note that SfM could also be applied to the images
from the body-mounted cameras directly, but this approach
leads to substantial drift.

Camera registration This 3D representation is then com-
bined with the footage from the cameras to calculate the posi-
tions of the cameras, in a process called absolute camera reg-
istration. Since this won’t always yield positions for every
camera, for example when the viewpoints of the reference
images differ significantly from the viewpoints of the camera
in question, another step is used: relative camera registration.
The idea behind this step is to use commonalities between the
unregistered cameras i.e. the cameras with unknown poses,
and the registered cameras in order to estimate a pose. De-
pending on the number of unregistered cameras this has to
be iterated multiple times. Note that in case of occlusion or
motion blur there might still be unregistered cameras after
relative camera registration.

Global optimization The purpose of global optimization is
to make sure that the constraints imposed by the skeleton are
respected and the motion is temporally smooth. This is ex-
pressed as an optimization problem of minimizing the sum of
the reprojection error (calculated using the new camera poses
and the 3D structure) and the smoothness of the global root
motion and joint angles (roughly the differences of the an-
gles and positions between frames). A comparison of the
results with and without global optimization shows that it
significantly reduces noise in the output and also improves
the accuracy.

Summary
In a comparison with an industry standard Vicon camera and
marker based system Shiratori et al. show that their system
comes reasonably close while being much more portable.
Demonstrations include motions such as running outside or
swinging on monkey bars in a park, both of which are hard to
capture using existing optical motion capture systems. One
drawback of the system is the amount of calculation that is re-
quired for processing the raw footage and getting the output,
they report that a minute of capture requires about a day of
processing with their prototype system. Also their approach
will become more useful as cameras get smaller and cheaper.

HUMANTENNA
Cohn et al. [8] considered a totally different approach also
with different applications in mind. The goal of their system
is to allow gesture recognition for applications in a home,
where it is desirable to avoid the need for instrumentation of
every room, and a heavy instrumentation of the user should
also be avoided for everyday use. To achieve these goals
Cohn et al. have extended the idea of using the human body
as an antenna for electromagnetic noise present in the envi-
ronment which they explored in previous work for sensing
touch gestures on walls [7].

Approach
The goal is to recognize the 12 predefined gestures shown in
figure 5, also the system should be able to determine which
room the gesture was performed in. The required instru-
mentation consists of an electrode to be placed on the neck
and a small device that takes the measurements and transmits
them. This allows the system to use the human body as an
antenna to pick up EM noise from the environment emitted
from power lines and electrical appliances. If the actor per-
forms a gesture, the antenna characteristics and thereby the



Figure 4: Process used to process the raw video footage from multiple cameras into whole body motion [12].

Figure 5: Gestures to be recognized by the Human-
tenna system [8].

Figure 6: Measured signal for a rotate gesture [8].

measured signal change significantly, also these changes de-
pend on the type of gesture, thus making it possible to use
this signal to recognize gestures.

Gesture recognition Figure 6 shows the measured signal for
a rotate gesture. A machine learning approach is used to clas-
sify the gestures. The classification algorithm consists of 3
phases: segmentation, feature extraction and classification.

For the offline version of the algorithm described here, ex-
plicit notifications where given to the system when the ges-
ture starts and ends, but these are not accurate enough. So
the segmentation phase determines where a gesture actually
begins and ends. This can be determined by looking at the

DC waveform of the signal, which is obtained by applying a
low-pass filter to the signal. Afterwards the signal is divided
into fixed sized windows and for every window a metric is
calculated determining if the window is active i.e. the DC
signal shows significant changes. The first and last active
window are used as start and end of the gesture.

Feature extraction calculates a number of numerical values
that will be used to classify the gesture. To that end the ges-
ture is divided into a fixed number of windows. One set of
features describes the DC waveform that is consistent across
multiple repetitions of the same gesture. Another set of fea-
tures describes the amplitude of the AC wave that is clearly
also changing, and the last set of features describes frequency
domain features and is obtained by calculating a fast Fourier
transform and dividing the frequencies up into buckets.

In the last step a support vector machine (SVM) is used to
classify the gestures using the features calculated in the pre-
vious step. Experimental results show accuracies in the range
of 90% across multiple homes and participants. Confusion
mainly occurs between the symmetric right/left wave ges-
tures. Cohn et al. also extended the offline algorithm de-
scribed above to work online in real-time with a latency of
around 0.4s, allowing an actor to use the system to interact
with an application.

Location classification Also using a similar machine learn-
ing approach it is possible to determine in which room a ges-
ture was performed. Here it is not necessary to find out when
a gesture starts, it is sufficient to take the first 0.5s of a gesture
and calculate frequency domain features. Experimentation
showed that the most important part for classifying the loca-
tion are higher frequencies, since these are mostly emitted by
appliances. The evaluation showed an accuracy of over 99%.

Summary

Clearly this is a significantly different approach than the ones
previously discussed. The goal is not to catch whole body
motion as accurately as possible, but to recognize a fixed set
of gestures. Also note that the system has to be trained since
it is based on machine learning, although the authors suggest
that some models could be used across actors reducing the
training time. On the positive side this system only requires
minimal instrumentation of the user and no instrumentation
of the environment.



DISCUSSION
These three systems are all significantly different from each
other and also based on different ideas than existing motion
capture system. Both the Prakash and the body-mounted
camera (BMC) system are optical systems, but other than
most optical systems they can be classified as inside-looking-
out since both of them use sensors placed on the actor look-
ing at the scene. The Humantenna system is also inside-
looking-out and falls into the category of the electromagnetic
wave based systems.

Generality While the Prakash system is intended to just
track tags on any kind of object, the Humantenna and BMC
systems are specifically tailored to tracking human full body
motion relying on properties of the human body such as the
characteristics as an antenna or biomechanical structure. Hu-
mantenna differs significantly from the other systems in the
respect that it does not try to capture the exact motion of the
actor but only recognizes predefined gestures. Prakash al-
lows almost arbitrary precision when tracking tags.

Instrumentation One aspect that is shared by both BMC and
Humantenna is the fact that they avoid the use of any instru-
mentation of the environment with signal (or light) sources.
On the other hand Humantenna uses much lighter instrumen-
tation of the actor. Prakash instruments both the environment
and the actor, but the tags can be placed (almost) impercepti-
bly in the clothing.

Latency In terms of latency, that is the time from when the
actor performs some movement until the system has captured
and processed the input, there are also significant differences.
Prakash is the fastest system of the three with latency below
1ms, and should also scale well to a higher number of tags.
Also operating fast enough for real-time interaction is Hu-
mantenna, that recognizes gestures with a delay of around
0.4s. The BMC system is in a whole other league in this re-
gard with processing times of about a day for one minute of
footage, due to the complex analysis and processing.

Cost All three systems are on the low end of the scale in
regards to cost, at least compared to existing commercial op-
tical system, especially if fabricated using commercial pro-
cesses. Humantenna would probably be the cheapest system,
since it basically only requires an electrode and some elec-
tronics to amplify and digitize the measured signal. Prakash
is also fairly cost-effective since it is based on cheap compo-
nents such as LEDs and photosensors, but it also requires a
larger set of components with projectors and tags that need
to be installed. The most expensive system of the three is
probably BMC due to the large number of cameras that are
required. Cost can be reduced by using cheaper cameras, but
this will also be reflected in the quality of the output.

CONCLUSION
Looking at these fairly recent research projects (2007-2012)
and their features it seems that the observation made by
Welch and Foxlin and used as a paper title in 2002 [16] ”Mo-
tion Tracking: No Silver Bullet but a Respectable Arsenal”
still holds. All three systems focus on different tasks and
have different weaknesses. There is no general purpose mo-
tion capture system that can be applied in any situation to

capture full body motion, but there are many systems that
address different challenges, and more research can be ex-
pected to come in this area.
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