How Routine Learners can Support Family Coordination

Scott Davidoff, John Zimmerman + Anind K. Dey
Carnegie Mellon Human-Computer Interaction Institute
by Gianluca Vinzens

Overview

- How Routine Learners can Support Family Coordination
- Learning Patterns of Pick-ups and Drop-offs to Support Busy Family Coordination
- Unremarkable Computing

How Routine Learners

can Support Family Coordination

Intention

- Discussion of conceptual feasibility
- Roadmap

- I. Analyze what families would find valuable

2. Come up with a solution

Data Collection (I)

- 6 dual-income families
- 6 months

Data Collection (2)

- Quantitative
- Six month of field observation
- Four families completed
- 528 unique interview sessions
- 2112 person days

Data Collection (3)

- Qualitative
- Evaluation of knowledge of others routines (Activity interviews)
- Identification of routine or non-routine

Contributions (I)

Routines and family life

Contributions (2)

Routine knowledge of others is incomplete or inaccurate

Contributions (3)

Calendars hold deviations not routine

90 \%

Contributions (4)

Small information gaps lead to stressful situations

Future Potential

- Access to routine
- Augmented calendars
- Augmented reminders
- Use of more sensors
- Better routine detection algorithms

Reviews (I)

- Rating: 2 (accept)
- Positive
- Extensive data collection
- Base for applications supporting family coordination
- Interesting to read with many examples

Reviews (2)

- Negative
- No technical aspects
- Only GPS location
- Children and mobile phones

Learning Patterns of Pick-ups and Drop-offs to Support Busy Family Coordination

STUDENT DROP-OFF AND
 PICK-UP AREA

Setup

- Dual-income families
- GPS location data (once per minute)
- Data from first paper

Intention

- Pick-ups and drop-offs
- Detect pick-ups and drop-offs
- Predict driver
- Infer if child will be forgotten

Recognizing Rides (I)

- States

$$
\text { States }=\left\{L_{n}, T \mid C o T, e l s e\right\}
$$

- People

$$
\text { People }=\{P, C\}
$$

Recognizing Rides (2)

- Pick-up

$$
\begin{aligned}
& \left(t_{1}, P, \neg C o T\right) \wedge\left(t_{1}, C, L_{n}\right) \wedge \\
& \left(t_{2}, P, L_{n}\right) \wedge\left(t_{2}, C, L_{n}\right) \wedge \\
& \left(t_{3}, P, C o T\right) \wedge\left(t_{3}, C, C o T\right)
\end{aligned}
$$

- Drop-off
$\left(t_{1}, P, C o T\right) \wedge\left(t_{1}, C, C o T\right) \wedge$
$\left(t_{2}, P, L_{n}\right) \wedge\left(t_{2}, C, L_{n}\right) \wedge$
$\left(t_{3}, P, \neg C o T\right) \wedge\left(t_{3}, C, L_{n}\right)$

Recognizing Rides (3)

- Precision 90.| \%
- Recall 95.5 \%

Predicting Drivers (I)

- Feature Vector

Name	Meaning	Values
L_{n}	Location of pick-up or drop-off	Place ID
RType	Ride type	Pick-up, Drop-off
DoW	Day of week	$0,1,2,3,4,5,6$
ToD	Discretized time of day $(15 \mathrm{~min})$	$1,2,3 \ldots 96$
driver $_{t-j}$	Driver for the last 5 rides to L_{n}	Mom, Dad
ϕ	Driver distribution model	$[0,1]$

- Labeling and weighting
- Weighted decision tree (LWDT)

Predicting Drivers (2)

- Accuracy
- Sliding window
- I week: 72.I \%
- 4 weeks: 87.7%

Forgetting Children (I)

- 10 minutes late
- Features

Name	Meaning	Values
R	Whether the parent remembers	True, False
J	Driver prediction model	Mom, Dad
T	If the parent is traveling	True, False
λ	Empirical cumulative distribution $($ ecdf $)$ of	$[0,1]$
	on-time arrivals to $L_{\text {child }}$ at time $T_{\text {now }} T_{\text {ideal }}$	
$L_{\text {child }}$	Location of the child	Place ID
$L_{\text {start }}$	Starting location of a parent	Place ID
$L_{\text {curr }}$	Ending location of a parent	Place ID
D	Destination of a parent	Place ID

Forgetting Children (2)

Bayesian Network

Forgetting Children (3)

ROC (Receiver Operating Characteristic)

Optimizations

- Increase GPS rates
- Other modes of transport
- other than one parent, one child, one car
- Better driver prediction model
- "only" 70-85 \%

Future Potential

- Awareness Systems
- Calendars
- Reminder Systems

Unremarkable Computing

Intention

- Analyze home / domestic life routines
- Make technology "invisible in use"

Scenarios

- Door as a means of communication
- Knocking, opening, context dependent
- Alarm clock becomes routine
- Failure would be noted
- Routines are unknown to yourself
- Can be noted by others

Conclusions (I)

Invisibility in use

$$
\neq
$$

perceptual invisibility

Conclusions (2)

Augment the action not artifacts per se

Conclusions (3)

Support the doing without description of activities

Thanks for your attention

Questions / Discussion

- Use of more sensors?
- Potential of routine detection algorithms?
- T-Patterns
- Eigenbehaviors
- Topic Models
- Data collection and children?

