TagSense

A Smartphone-based Approach to Automatic Image Tagging

Chuan Qin, Xuan Bao, Romit Roy Choudhury, Srihari Nelakuditi University of South Carolina and Duke University

Presentation by Philippe von Bergen

Overview

- Tagsense
 - Introduction, Problem Space, System
 - Who, What, Where, When
 - Evaluation
 - Limitations, Conclusion, Contributions
- Reviews
- MyState & What did you do today?
- Summary & Discussion

Overview

- Tagsense
 - Introduction, Problem Space, System
 - Who, What, Where, When
 - Evaluation
 - Limitations, Conclusion, Contributions
- Reviews
- MyState & What did you do today?
- Summary & Discussion

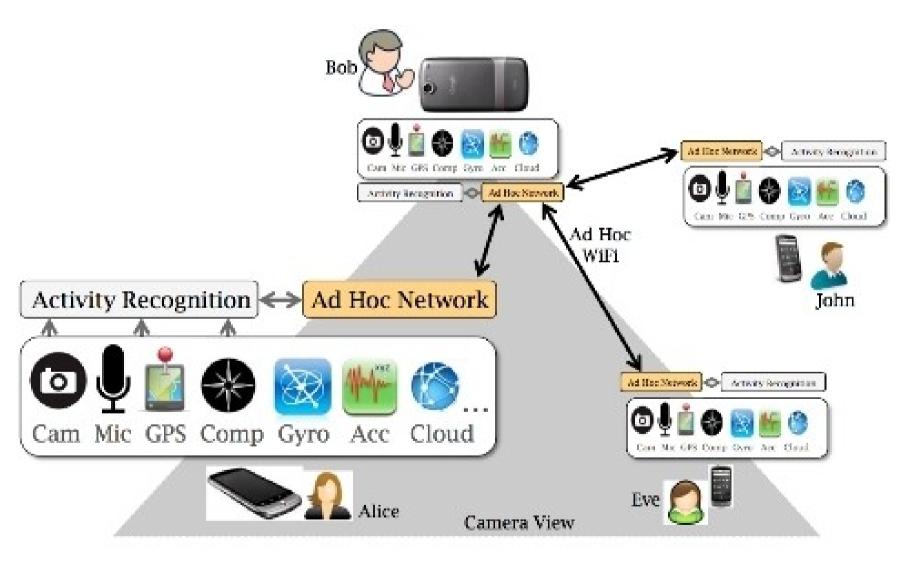
Introduction

- Automatic image tagging system
- Distributed
- Collaborative
- Multi-dimensional
- Who What Where When

Problem Space (1/3)

- Date, time
- Location
- People present
- Action
- Ambience
- Tags:

November 21st afternoon, Nasher Museum, indoor, Romit, Sushma, Naveen, Souvik, Justin, Vijay, Xuan, standing, talking


Problem Space (2/3)

- Location: Location services, reverse look up
- Indoor/Outdoor: Light sensor
- Names: Present phones
- Action: Accelerometer
- Ambience: Microphone
- Date, time: Internal clock

Problem Space (3/3)

- Humanly assigned tags complementary
- Complementary to existing solutions (Picasa, iPhoto, Google Goggles)
- TagSense needs electronic foot print
 → Not applicable to objects and subjects
 without devices

System (1/2) – Overview

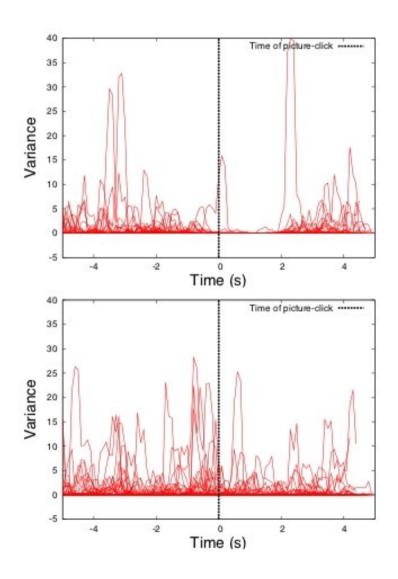
System (2/2) – Cloud, Privacy

- Local recognition of tags, if possible
- Cloud service
 - CPU-intensive calculations
 - (Laughter recognition)
 - External databases

(Reverse GPS)

Password and encryption to ensure privacy

Overview


• Tagsense

- Introduction, Problem Space, System
- Who, What, Where, When
- Evaluation
- Limitations, Conclusion, Contributions
- Reviews
- MyState & What did you do today?
- Summary & Discussion

Who (1/6) – Overview

- Several systems
 - Accelerometer \rightarrow Posing signature
 - Compass heading \rightarrow Personal compass offset
 - Movement \rightarrow Multiple snapshots and heuristics
- Serial application of all three techniques

Who (2/6) - Posing signatures

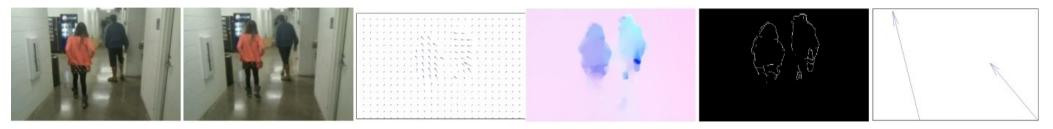

- Detection via accelerometer
- Several seconds of posing
- Used to detect
 people outside
 picture

Who (3/6) – Compass direction

- Posing signature sufficient, but not necessary
- Using compass direction to detect people "facing" the camera
- Personal compass offset compensating phone heading:

UserFacing = (CameraAngle + 180) mod 360 PCO = ((UserFacing + 360) – CompassAngle) mod 360

Who (4/6) – Compass direction



- Recalibrated using posing signature and anchor pictures
- Revisit pictures
 containing possible
 errors
- Partly offline

Who (5/6) – Moving subjects

- Multi-dimensional sensing heuristic
- Multiple snaphshots to detect pixel movement
- Compared to accelerometer data
- Coarse bucket matching

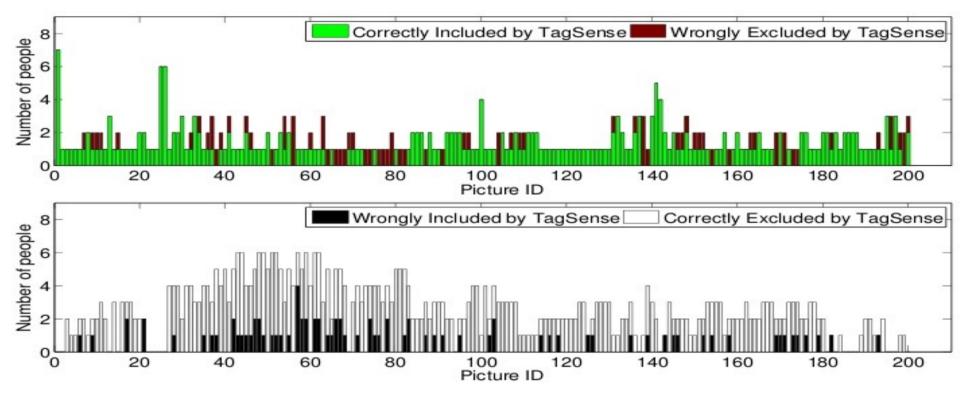
Who (6/6) – Moving subjects

- 1. Optical Flow
- 2. Camera movement substracted
- 3. Movement coloring
- 4. Edge finding
- 5. Motion vector based on center pixels
- 6. Coarse bucketing

What

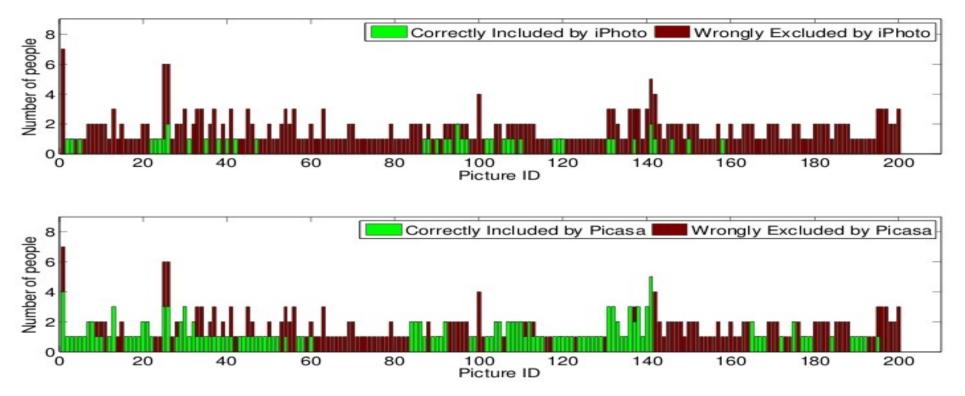
- Distinct physical activities
 - Accelerometer data
 - Location information
- Ambience classified using microphone
 - Talking
 - Music
 - Silence

Where / When

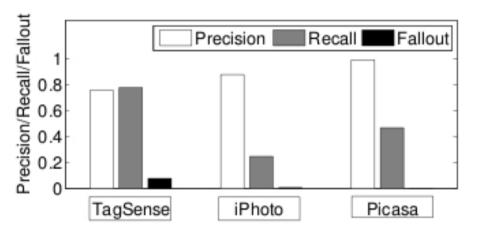

- Location based on reverse GPS look up
- Indoor/Outdoor recognition using ambient light sensor
- Objects near or in picture detected using location/orientation database
- Date and time enriched with weather conditions

Overview

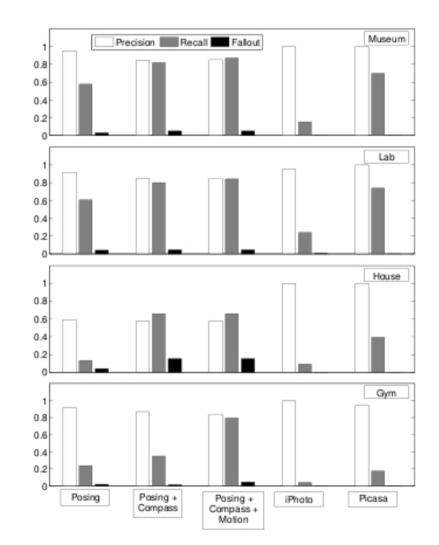
• Tagsense


- Introduction, Problem Space, System
- Who, What, Where, When
- Evaluation
- Limitations, Conclusion, Contributions
- Reviews
- MyState & What did you do today?
- Summary & Discussion

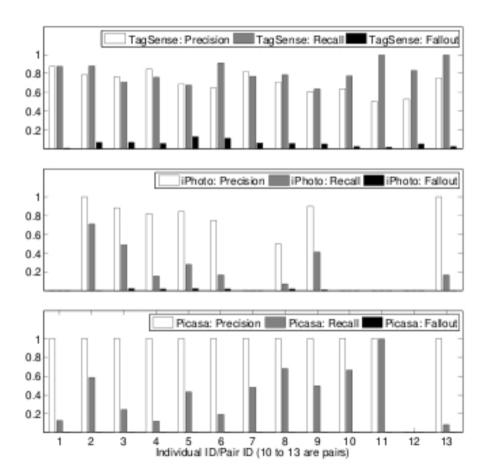
Evaluation (1/6) – Detection


- Reasonably well performance on test set
- Precision needs to be increased

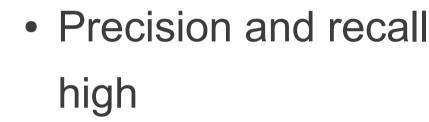
Evaluation (2/6) – Detection

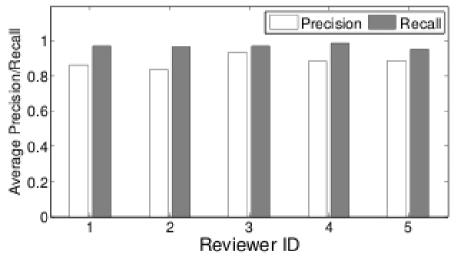


- More false negatives based on one training face
- More training might improve results


Evaluation (3/6) – Overall

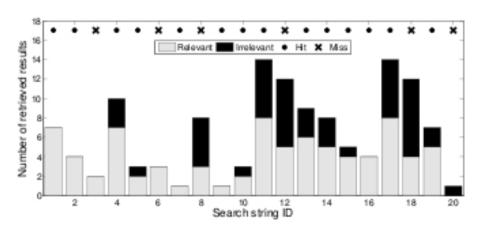
- Better recall
- Increased fall-out
- Reduced precision


Evaluation (4/6) – Name search


- More consistent
- Better recall
- Improvements possible
- Combination might further increase precision

Evaluation (5/6) – Tagging

 Limited to TagSense vocabulary



 Improvement needed for vocabulary

Evaluation (6/6) – Tag search

NameAvg. RelevantAvg. IrrelevantHit rateUser 12.754.850.85	to
User 1 2.75 4.85 0.85	UC -
User 2 5.6 1.8 0.65	
User 3 4.05 2 0.5	
User 4 4.05 2.35 0.7	
User 5 2.55 1.6 0.55	

- Volunteers search previously shown pictures
- Sufficient precision,
 depending on user
 and picture
- Average hit rate:

TagSense

0.7

Overview

• Tagsense

- Introduction, Problem Space, System
- Who, What, Where, When
- Evaluation
- Limitations, Conclusion, Contributions
- Reviews
- MyState & What did you do today?
- Summary & Discussion

Limitations

- Limited vocabulary
- No captions can be generated
- Past pictures can not be tagged
- Cumbersome session management
- Complex system for people detection

Conclusion

- Leverages automatic tagging of picture
- Prototype implementation
- Evaluation shows lower precision, but higher recall and fall-out
- Complementary approach might produce best results

Contribution

- New, alternative, multi-dimensional approach to automatic image tagging
- TagSense architecture
- Evaluation of TagSense

Overview

- Tagsense
 - Introduction, Problem Space, System
 - Who, What, Where, When
 - Evaluation
 - Limitations, Conclusion, Contributions
- Reviews
- MyState & What did you do today?
- Summary & Discussion

Review (1/3) – Numbers

- Overall rating
 - Average: 1.9 (Accept)
 - Standard deviation: 0.7
- Confidence:
 - Average: 2.1 (Medium)
 - Standard deviation: 0.3
- Contribution:
 - Average: 3.9 (Strong)
 - Standard deviation: 0.54

Review (2/3) – Compliments

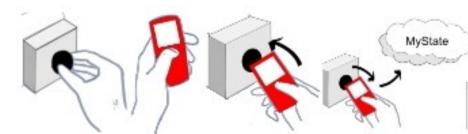
- PoC comparison to Picasa, iPhoto
- Invisible content captured
- Fair assumptions
- Off the shelf hardware used
- Privacy addressed and implemented
- Fallback methods for person recognition
- Aware of limitations
- Good presentation

Review (3/3) – Critiques

- Extended evaluation required
- Not applicable to old pictures
- Simplified assumptions
- All participants need the application
- Complicated session management
- CPU and power consumption not addressed
- Manual editing missing
- Redundancy

Overview

- Tagsense
 - Introduction, Problem Space, System
 - Who, What, Where, When
 - Evaluation
 - Limitations, Conclusion, Contributions
- Reviews
- MyState & What did you do today?
- Summary & Discussion


MyState

Hardy, Rukzio, Holleis, Wagner Lancaster University, University of Duisburg-Essen, DOCOMO Euro-Labs

Physical tags

containing textual information

- Placed at arbitrary location
- Posting content to Facebook
 Application

MyState & TagSense

- Reading RFID-Tags to determine
 - Objects
 - Locations
 - Additional tagging information, context
 - People not having a phone
- Limited to short ranged

What did you do today?

Farrahi, Gatica-Perez

- Routines and behavior detection
- Based on GSM information
- Latent Dirichlet Allocation and Author Topic model

Wdydt? & TagSense

- Increase presence detection precision using a local cell tower representation
 - Use smart phones to triangulate positions
- Improved approach for moving subjects identification and activities

Overview

- Tagsense
 - Introduction, Problem Space, System
 - Who, What, Where, When
 - Evaluation
 - Limitations, Conclusion, Contributions
- Reviews
- MyState & What did you do today?
- Summary & Discussion

Summary

- TagSense uses distributed systems approach
- Sensors enrichen picture with tags
- Problem driven idea
- Use of behavior inference for tags
- Results could be used to determine behavior
- Performance improvement by combination with face recognition
- Limitations to overcome

Discussion

- Did they took realistic assumptions?
- How to combine TagSense with face recognition?
 - Or increase precision otherwise?
- Is machine learning able to increase precision?
- How to integrate TagSense with social media?
- How to simplify session management / privacy?
- What additional information could be tagged?