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Problem 

 Timing-sensitive and performance-sensitive systems (for 

example, data centers) are very complex 
 Manual tuning is imprecise, costly, and time-consuming 

 Hence: automation 
 

 Automation calls for adaptive capabilities 
 Hence: adaptive components 

 Self-managing, self-calibrating, self-healing, self-tuning SW blocks 
 

 Composition of locally stable adaptive components can 

lead to a globally unstable system 
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How to identify 

potential 

incompatibilities? 



Adaptive components – Feedback loops 
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FEEDBACK CONTROL 
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Stability – Some insights 

Open-loop vs. closed loop control 

 

 

 

 

 

Open-loop control: 
 without feedback 

 the effects of known disturbances are compensated (unknowns not) 

 in case of a stable process always stable 
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r: reference value 

d: disturbance(s) 

u: control variable(s) 

x: state variable(s) 

y: output variable(s) 

Controller Process 
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Stability – Some insights (2) 

Open-loop vs. closed loop control 
 

 

 

 

 
 

Closed-loop control: 
 with feedback 

 slower 

 the effects of disturbances AND parameter changes of the process 
are fully compensated 

 the loop can become unstable even in case of a stable process 
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d: disturbance(s) 

u: control variable(s) 

x: state variable(s) 

y: output variable(s) 



Stability – Some insights (3) 

Positive vs. negative feedback 

 Positive feedback tends to strengthen the event that caused it 

(e.g., nuclear reaction) 

 

 Negative feedback tends to reduce the input signal that caused it 

(e.g., heating control) 
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All stable 

feedback is 

negative 



COMPOSITION OF ADAPTIVE POLICIES 
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Adaptive policy – a feedback loop 
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Composition of adaptive subsystems 
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Composition of adaptive subsystems 
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Adverse policy interactions – 

an example of a Web server 
 

 Dynamic Voltage Scaling (DVS) 
 in an underutilized server, DVS decreases frequency, hence 

increasing delay 

 Admission Control (AC) 
 responds to increased delay by admitting fewer requests 
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DETECTION OF POSSIBLE CONFLICTS 
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Adaptation Graph Analysis 

 Nodes – key variables in the system 

 Arcs – direction of causality 
 “+” arcs – changes in the same direction 

 “-” arcs – changes in the opposite direction 

 normal arcs – natural relationship 

 policy arcs – programmed behavior 

 Sign of a directed circle – multiplication of the signs of all 

edges 

 

Adaptation graphs determine which adaptive policies conflict 

(if they do) 
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Checks for potential incompatibility 
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D: delay of processing 

U: utilization of the server 

R: requests admitted 

F: frequency of processing 



DESIGN METHODOLOGY FOR INTEGRATING 

ADAPTIVE POLICIES 
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Co-adaptation 

 co-adaptation guides the design of a combined module – it 

outputs jointly optimized knob settings that increase utility 

 constrained optimization (necessary condition) + feedback 

control  
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Step 1: Casting the objective 

 Find a common objective function – minimize cost or 

maximize utility 
 Same objective  ok 

 Different objective functions  Find common function 
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Step 2: Formulating the optimization problem 

 Decision variables – settings of adaptation knobs 

 Subject to two types of constraints: 
 Performance specifications 

 Resource constraints 
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where f is the common objective function, 

xi are the set of adaptation knobs for policy i (these sets may overlap) 

gj are the constraints 



Step 3: Necessity conditions for optimality 

 Lack of accurate model for computing systems 

 Augmented by feedback loops to move closer to the point 

that increases utility 

 Use the Karush-Kuhn-Tucker (KKT) optimality condition 

 

 

 

 Necessary condition: 

 

 
 Define  
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Γxi 



Step 4: Feedback control 

 Periodic measurements to estimate Γxi 

 

 Try to meet the necessary condition Γx1=  …  = Γxn  

by hill climbing   
 Pick one with the largest or smallest value of Γxi 

 Search through the neighboring knob settings (values of xi) 

 Reduce the error Γx – Γxi 

 Maximum increase in utility  
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xi are the sets of adaptation knobs for policy i 



A SERVER FARM CASE STUDY 

Energy minimization in server farms 
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Energy minimization in server farms 

 Two adaptive policies in 

conflict 
 On/Off policy 

 DVS policy 

 

 Co-adaptation finds the 

knob settings 

(m1,m2,m3,f1,f2,f3) such 

that energy consumption is 

reduced 

17.05.2011 23 Distributed Systems Seminar 

Tier1 Tier2 Tier3 

Request 

On/Off DVS 

m1 
m2 m3 

f1 

f3 

f2 

co-adaptation 



Step 0: Incompatibility detection 
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Combined together, the loop 

is still negative. 

 

But potentially unstable: 
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control of D! 
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Step 1: Casting the objective 

 In this case, both policies have the objective to minimize 

energy consumption.  
 Hence, energy is the common cost function 
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Step 2: Formulating the optimization problem 

 Decision variables:  
 Number of active machines in each tier 

 Frequency level of the machines in each tier  
(or, equivalently, the utilization of each tier) 

 Approximations: 
 M/M/1 queuing model 

 Number of computers in each tier is a real number 
(relaxation of the integer problem) 

 Power consumption is equal for all machines in a tier 

 Machines are load-balanced (same U, same F) inside the tier 
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Step 2: Formulating the optimization problem 
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Power estimation of a machine at tier i 

Queuing equation using number of machines and 

arrival rate 

Power estimation function 

of a machine at tier i 

Constraint: No. of machines in a tier 

Constraint: end-to-end delay 

Formulation of the problem: 

find best composition of  

(m1, m2, m3, U1, U2, U3) 



Step 3: Necessity conditions for optimality 

 Karush-Kuhn-Tucker condition 

 

 

 

 

 

 

 

Try to find (m1, m2, m3, U1, U2, U3) tuple 

that balance this condition 
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Step 4: Feedback control 

 Goal: to balance the necessary condition in the direction to 

reduce energy consumption 

 When delay constraint violated 
 Pick the most overloaded tier – the one with lowest Γ(mi,Ui) 

 Choose (mi,Ui) pair that makes the error within a bound 

and yields the lowest total energy 

 Error = Γx - Γ(mi,Ui), where Γx is the average of Γ(mi,Ui) 
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Local control decisions, based on a globally 

obtained system snapshot 



EXPERIMENTAL RESULTS 

Evaluation on a 3-tier server farm 
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Experimental results 

17.05.2011 31 Distributed Systems Seminar 

DVS alone 

On/Off alone 

DVS + On/Off without 

co/adaptation: more 

energy consumption 

than DVS or On/Off 

alone! 

Together with co-

adaptation: successfully 

resolves conflict! 



Summary 

This paper 

 presents a simple mechanism for identifying potentially 

adverse interactions between policies at component 

composition time,  

 describes a methodology for designing co-adaptation, 

where the adverse interaction is eliminated, and 

 evaluates the method with a Web server farm case-study. 
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Questions? 
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