

Integrated Coverage and Connectivity Configuration in Wireless Sensor Networks

Xiaorui Wang, Guoliang Xhing, Yuanfang Zhang, Chenyang Lu, Robert Pless, Christopher Gill

March 29, Stefan Jucker

OUTLINE

- Introduction: Conserve Energy in WSNs through combined Coverage and Connectivity Configuration
- Relationship between Coverage and Connectivity: Geometric Analysis
- Coverage Configuration Protocol (CCP)
- Experiments and Results
- Conclusions

Introduction

Xiaorui Wang

Guoliang Xing (

Chenyang Lu Robert Pless

Christopher Gill

- Washington University, St. Louis
- Lots of related work already available concerning coverage or connectivity in WSNs
 - But: both topics treated separately
- Published in ACM Transactions on Sensor Networks, 2005

Problem Formulation

- Goal: Energy conservation in wireless sensor networks
 Longer lifetime
- Solution: Scheduling sleep intervals for some nodes
 - Which ones?
 - How many?
- **Problem**: Active nodes must provide continuous service
 - Coverage
 - Connectivity

Sensing Coverage

- Coverage describes the monitoring quality provided by a sensor network
- Definition: Coverage degree of K (K-covered)
 - Every location is covered by at least K nodes
- Required degree of coverage can differ / change
 - Depending on region, application

Sensing Coverage

R_s: sensing range

Connectivity

- Connectivity guarantees communication
- Affects robustness and achievable throughput
 - Avoid communication bottlenecks
- Definition: K-connected graph
 - If any possible K-1 nodes fail, network will remain connected

Connectivity

R_c: communcation range

Same Problem, new Formulation:

- Maximizing the number of passive nodes under the constraint that remaining nodes guarantee:
 - All active nodes are connected
 - Region is at least K-covered

RELATIONSHIP BETWEEN COVERAGE AND CONNECTIVITY

Does Coverage Imply Connectivity or Vice Versa?

- Connectivity does not guarantee coverage
 - Regardless of ranges
- But coverage guarantees connectivity
 - I-covered sensor network guarantees 1-connectivity
 - Condition: $R_c \ge 2R_s$
 - Only configure network to guarantee coverage to satisfy both

Relationship between Degree of Coverage and Connectivity

- Condition: $R_c \ge 2R_s$
- Nodes that K-cover a convex region form a K-connected communication graph
- For set of nodes that K-cover a convex region, the interior connectivity is 2K

Number of sensors that must be removed to disconnect any two interior sensors

COVERAGE CONFIGURATION PROTOCOL (CCP)

CCP Key Benefits

- Variable coverage degree
 - As requested by application

Decentralized protocol

- Only depends on local states of sensing neighbors
- Scales effectively
- Change coverage degree at run-time
- Provides guaranteed degrees of coverage

March 29 2011

All active nodes within twice its sensing range

Node States of CCP

- Node can be in one of three states: SLEEP, ACTIVE, LISTEN
- Initial state: ACTIVE
- Redundant nodes switch to SLEEP
 - If required degree of coverage exceeded
- Reenter ACTIVE if coverage below desired level
- Changes based only on local information

State Transitions of CCP – Detailed View

- Randomized timers
 - Avoid collisions

K-Coverage Eligibility Algorithm

- Each node runs algorithm
 - Determine if it is necessary to become active
- With requested coverage of degree K, node ineligible if:

Its whole coverage range is already K-covered

can stay

passive

Simpler Argument for Ineligibility

- Assumption: $R_c \ge 2R_s$
- Sensor is ineligible if all intersection points inside its sensing range are at least K-covered

K-Coverage Eligibility Algorithm

- Important steps in the algorithm
 - Find all intersection points inside node's sensing circle
 - For each intersection point compute its coverage degree
 - If one intersection point is not K-covered, node is eligible
 - Otherwise, node becomes ineligible
- Computational complexity: O(N³)

Number of nodes in sensing neighbor set

CCP When $R_c < 2R_s$

CCP does not guarantee connectivity if R_c < 2R_s

• **SPAN** [1]

- Existing connectivity maintenance protocol
- Decentralized coordination protocol
- Turning off unnecessary nodes while maintaining communication backbone

communication range R

 SPAN's eligibility rule: Become eligible if at least one pair of its neighbors can't reach each other either directly or via one or two active nodes

Combination of SPAN and CCP

- Eligibility rule for inactive nodes
 - Become active if eligible according to eligibility rule of SPAN or CCP
- Eligibility rule for active nodes
 - Withdraw if node satisfies eligibility rule of neither SPAN nor CCP
- CCP guarantees coverage
 - Active nodes might not communicate with each other
 - SPAN activates extra nodes (if needed)

EXPERIMENTS

Experiment: Coverage Configuration

- Performed on Coverage Simulator
 - Assumes perfect wireless communication
- Compared to Ottawa Protocol [2]
 - Preserves coverage while turning off redundant nodes
 - Does not support different coverage configurations
- CPP makes decisions based on twice the sensing range, Ottawa only within sensing range

Coverage Configuration: Results

- CCP guarantees requested degree of coverage without unnecessary redundancy
- CCP is proportional to degree of coverage

Experiment: System Life Time

- SPAN+CCP compared to original network with all nodes on
 Significant improvement expected
- Tested with different node deployment densities
 - Randomly distributed in area of same size

System Lifetime: Results

- Increases system lifetime as expected
- Coverage lifetime dominates overall system lifetime
- Lifetime doesn't increase much with higher node density
 - Wake up to listen to 802.11 beacons consumes considerable energy

CONCLUSIONS

Conclusions

- Sensing coverage implies connectivity
 If R_c ≥ 2R_s
- CCP can achieve different degrees of coverage on request
- CCP maintains both desired coverage and connectivity
 - $R_c \ge 2R_s$
 - CCP + SPAN

References

- [1]: B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, "Span: An Energy-Efficient Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks"
- [2]: D. Tian and N.D. Georganas, "A Coverage-preserved Node Scheduling scheme for Large Wireless Sensor Networks"