Distributed Systems Seminar: Cyber Physical Systems

Wilhelm Kleiminger, Institute of Pervasive Computing ETH Zurich

Versatile Low Power Media Access for Wireless Sensor Networks

SenSys'04

Joseph Polastre, Jason Hill, David Culler

MAC Basics

Medium Access Control (MAC)

- Nodes share a physical medium
- Interference
 - Garbage, useless data, ...

ALOHA 1971 (ALOHAnet)

- Collision → back off and send later
- Slotted ALOHA: Discrete timeslots
- ▶ 37% channel utilisation for slotted ALOHA
- Does not scale to many nodes

© Kerne Erickson

WiFi

IEEE 802.11 - CSMA/CA

- Channel not full duplex
 - Cannot transmit and receive at the same time
 - Collision Avoidance Listen before send!
- Request to send Clear to send (RTS-CTS)
 - Only allowed to send after receiving a CTS
 - Solves hidden terminal problem -- other nodes wait
- Idle listening
 - Node continuously checking if channel is clear
 - Maximise bandwidth, minimise latency

CSMA/CA: Collision Avoidance

- I. A sends a message to B
- 2. Cexamines the medium
- 3. C sees As transmission backs off... (2)
- 4. Eventually, C transmits...

Note: In ALOHA, © sends first and then checks if there was a collision

Hidden Terminal Problem

- I.A sends a message to B
- 2. examines the medium (at the same time)
- 3. c starts transmitting...
- 4. B receives data from both interference!

RTS/CTS helps to overcome this as C would not start transmitting without first receiving a Clear-To-Send

Interlude:

MAC in Wireless Sensor Networks I

CSMA-CA?!

- Nodes run on battery
- Usually up for months/years
- Few transmissions (every second)

- Idle listening major component of energy consumption
 - $E = E_{rx} + E_{tx} + E_{listen} + E_{sampling} + E_{sleep}$
 - A good MAC protocol reduces E_{listen}

Interlude:

MAC in Wireless Sensor Networks II

- Critical issues
 - Low energy consumption
 - Scalability
 - Small code size
 - Zero configuration

- What about?
 - Low latency
 - High bandwidth
 - ▶ Fairness??

- Common problems
 - Overhearing
 - Idle listening
- Infrastructural problems
 - Adverse network conditions
 - Changing network conditions
 - Faulty nodes

B-MAC

Implementation

B-MAC (Polastre et al. 2004)

- Carrier Sense based system
 - With some ALOHA sugar (Preambles)
- Only link <u>layer protocol</u> (OSI <u>Layer 2</u>)
 - Organisation, synchronisation, routing build above
 - No hidden terminal support
 - No message fragmentation
 - No enforced power policy
- But... Interfaces
 - Allow services to tune B-MACs operation

B-MAC: Clear channel assessment (CCA)

A node wants to transmit...

B-MAC: Low Power Listening (LPL)

- Periodic channel sampling
 - ► Transmission of preambles → Indicate channel is used
 - Check every 100ms → Preamble length at least 100ms long (overhead)

B-MAC: Low Power Listening (LPL)

Other approaches

WiseMAC (El-Hoiydi et al. 2004)

- MAC for downlink in infrastructure networks
 - Between nodes and access point
 - Similar to ALOHA

- How it works
 - 1. Access point learns sampling schedule of nodes
 - 2. AP can predict when to send data for the nodes to receive it
- More (energy) efficient than 802.15.4 / ZigBee
 - Star network topology (no multi hop)

S-MAC (Heidemann et al. 2002)

- MAC Protocol for multi hop sensor networks
- How it works
 - Node wakes up (periodically)
 - ...listens to the channel (active period) 115ms
 - SYNC (Synchronising all nodes to a common schedule)
 - ▶ Transmission using RTS-CTS
 - ...returns to sleep variable time
- Duty cycle determined by sleep period

- Network Allocation Vector
 - Knowledge about length of transmission = How long can I nap?

S-MAC: Problems

- Protocol is complex
- > SYNCs can be a problem in a larger network
 - Higher maintenance cost (neighbours schedules)
 - Overhead (repeated rounds of synchronisation)

B-MAC

Results

LPL check time vs lifetime

B-MAC in comparison

Number of hops vs latency

B-MAC - Recap

- Link Layer MAC Protocol (with ACKs)
 - Low Power Listening
 - Clear Channel Assessment
- Modular approach
 - Control interfaces

- Already implemented in tinyOS
 - Free to be used/modified/extended

References

- Polastre J, Hill J, Culler D. Versatile Low Power Media Access for Wireless Sensor Networks. 2004.
- ▶ El-Hoiydi A, Decotignie J-D. WiseMAC: An Ultra Low Power MAC Protocol for the Downlink of Infrastructure Wireless Sensor Networks. 2004.
- Heidemann J, Estrin D. An Energy-efficient MAC Protocol for Wireless Sensor Networks. 2002.

