
Dis Algo 94, F. Ma. 1

Time in Distributed Systems,
Distributed Simulation,

and

Distributed Debugging

Friedemann Mattern
Technical University of Darmstadt, Germany

Germany

Darmstadt

S95 Dis Algo 94, F. Ma. 2S95



Dis Algo 94, F. Ma. 3

- Machines, persons, processes, “agents”...
   are located atdifferent places.

communication
network

- The processescooperate to solve a single problem

by exchanging messages

- loosely coupled
- often asynchronous

process

message

- arbitrary delays
- no global clock

Distributed System
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About the Lectures...

The lectures concentrate onconcepts (and algorithms)

- they are not about (practical) details

- they are not about (theoretical) formalisms

Goal:

Gain insight into the underlying problems, aspects...

==> apply this to practical problems

==> formalize the concepts to get nice models
“homework exercise”

S95
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Observer

A Typical Control Problem:

- Observation is only possible viacontrol messages

control
messages

"Axiom": Several processes can "never"
be observed simultaneously

"Corollary": Statements about the
global state are difficult

   (with undetermined transmission times)

Observing Distributed Computations

S95
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Consequences for monitoring, debugging...?
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Deadlock...
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1 2

43

Four single (partial!) observations of the cars N, S, E, W
1) N waits for W
2) S waits for E
3) E waits for N
4) W waits for S

atdifferent instants in time
yields wrong impression
as if there were a cyclic
wait condition for asingle
instant in time (--> Deadlock).

An Example: Phantom Deadlocks

S

N

E

W

N

W S

E

E
N

W
S

- Required: causal consistency  ==> as if simultaneous.

unique
resource
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Phantom Deadlocks

A

B
C

A

B
C

A

B
C

==> B waits for C

==> A waits for B

==> C waits for A

(C holds exclusive
resource)

Deadlock!
wrong
conclusion!

observe B:

observe A:

observe C:

wait-for
relation

B C

A

t = 1

t = 2

t = 3

S95
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- Can this problem be solved?

- Is it an important problem?

(and if so, how efficiently?)

(--> consistent snapshots)

S95

account       $

A
B
C
D

4.17
17.00
25.87
3.76

Σ = ?

- How much money exists in total?

- no global view
- no notion of common time

An Example: Communicating Banks

(if constant; lower bound if monotonically increasing)

(Perhaps at least if message transmission is instantaneous?)
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red
green red

green

?

red

Obs. 2

Obs. 1

L2

L1

Synchron.
message

Example: Even More Problems

- Which observer is right?

- Each traffic light may switch to red autonomously

- A traffic light may only switch to green if it has
   learned that the other one is red (“now”)

- State switching is anevent
(Atomic: takes no time, action cannot be interrupted)

time

Distributed traffic

--> safety conditions
(mutual exclusion)

- do we need a notion of global time?
- how can we determine the truth of global predicates?
- in which sense is observer 2 wrong?

light control

With Many Observers!

S95

(Token “right to become green” is transmitted by syn. messages)
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Copies of an Electronic Newspaper

- New instances (“copies”) might be created

generated on
March 7th, 2012

copied on

March 9th

May 5th

April 9th

deleted on
March 8th

March 7th

March 7th

   from a local instance and then be distributed.

- Instances might be deleted.

March, 7 time ---> constantly 0 from there on

1

Total number

- Interesting question (after March 7, 2012):

Is the total number of instances = 0 ?

of instances

==> newspaper “died out”
Termination
detection
problem

March 7th
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Counting Instances?
- Idea: Observer is informed about

- uniquecreate event
- eachcopy action
- eachdelete action

create copy delete delete

copy copy delete

delete

=1 +1 +1 -1 +1 -1 -1 -1

1 2 3 2 3 2 1 0 !

create copy

delete

=1 +1-1

1 0 ?

Observer:

- Note: delete event is a
causal consequence of the
copy event (“no delete
without preceding copy").

- However: Observer sees
consequence before its cause!

- But: observation is not necessarily causally consistent!

==> Observer may draw wrong conclusions (e.g., “no more instances exist”)

location 1

location 2

location 3

- Something (namely “causality”) isout of order!

S95
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Copying by (Remote) Reference

- With high speed networks "copy by reference”
   is more sensible than "copy by value".

- Hence: Newspaper instances are read-only, and only a
reference to the unique storage location is copied
- Similar to hyperlinks in WWW, e.g.  nptp://nyt.ny.us/2012-03-07

- Copy -->transmit a reference (=address, access path)

- Delete --> remove thereference

storage

- Newspaper “died out” ifno more references exist

- Garbage collection problem in distributed systems!

location

- Seems to be “related” to the termination detection problem!

- Reference counter = 0  ==>  can no longer be accessed

- Reference counting must be done in a causally
   consistent way! (--> Distributed reference counting)

   (In fact, the two problems are equivalent!)
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Example: Prehistoric Society

- Organized in local tribes

- Limited technological knowledge
--> Can’t make fire
--> Keep the fire burning!

- Local fire extinguishes

- Only local view (is there a burning fire somewhere ?)

- If all fireplaces are extinguished and no messenger with
a burning torch is in transit --> wait for next thunderstorm

(lightning strikes and a tree catches fire...)

- Termination detection is important
(no warm meals till next thunderstorm...)

S95

   --> fetch fire from a remote fireplace with a torch
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Wrong Observations

Two initially
burning fire
places

Observation
point

Messenger
keeping fire

Messenger
going back

time

For all fire places visited (at some instant in time):

- no fire is burning
- no messenger is in transit

But: There is nosingle instant in time
        for which no fire is burning.

==> Observation iswrong!

What can we do to get only correct observations?

Space-time diagram

(Impossible to observe all processes simultaneously!)

--> General answer later!  Now: specific solution.

S95
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Message driven distributed (“reactive”) computation:

passive

active

(1) passive --> active  only on receipt
     of a message
(2) active --> passive  spontaneously

(3) only active processes may send messages

Distributed Termination Detection

message

active

passive process

process

- Problem: Determine wheter a computation has terminated

The model:

(no spontaneous reactivations!)

Terminated (at t) iff
(1) no messages in transit
(2) all processes passive

S95 Dis Algo 94, F. Ma. 20

Behind the Back Activation Problem

observer’s

reactivation
message

becomes
passive soon

control message

Problem: Implement faithful observer
- usingcontrol messages (e.g., on a ring) which

visit the processes andreport their states

- superimposition of a control algorithm  upon the
    underlyingbasic computation.

S95
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The Atomic Model

Idea: Let the duration of activity phases tend to 0.

not terminated
(process is active)

not terminated
(message in transit)

terminated

big bang
(only once)

time

P1

P2

P3

Model: Process sends (virtual) message
             to itself when it is activated.
             Message is in transit while process is active.

P1

P2

P3

Terminated (atomic model) <==>
No message is in transit.

message

atomic action

==> Check whether there are messages in transit

Termination detection problem
S95 Dis Algo 94, F. Ma. 22S95
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Global Views of Atomic Computations

process

message

Messages quietly move
towards their targets...

...but suddenly a process
"explodes" when it is
hit by a message.

Terminated if no     exists in the global view

idealized observer
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Counting Messages?

- Is it correct to count sent and received messages?

- Simple counting is not sufficient!  Counter-example:

P1

P2

P3

non-vertical cut line
1 message sent,
1 message received.

In total:

One does not ob-
serve all processes
simultaneously

But: not
terminated!

Reason:
- Message from the "future"
- Inconsistent cut

NB:  counting would be
correct for a vertical cut!

(1) Detect inconsistent cuts
(2) Avoid inconsistent cuts

- Possible strategies to “repair” this defect:

- Determine whether 0 or >0 messages are in transit.

S95
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The Four Counter Method

P1

P2

P3

W1 W2

S, R S’, R’

t second waveafter
the end of the first

claim: S=R=S’=R’ ==> terminated

Proof (sketch):

S=S’ ==> no message sent between W1 and W2.
R=R’ ==>                   received
==> values S and R at t = values of W1.

Hence: S=R ==> at global time instant t:
      # of messages received = # of messages sent
      ==> no message in transit at t
      ==> terminated at t
      ==> terminated after W1

There exists a more formal proof...
But how does one find such an algorithm?
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P
1

P
2

P
3

P
4

t1 t2 t3 t4

(S*,R*) (S’*,R’*)

(t3>t2)

Notation:
- local send counter of process Pi at time t:  si(t)
- local receive counter of process Pi at time t:  ri(t)

(1) t ≤ t’ ==> s
i
(t) ≤ s

i
(t’), r

i
(t) ≤ r

i
(t’)   [Def.]

(2) t ≤ t’ ==> S(t)≤ S(t’), R(t)≤ R(t’)  [Def., (1)]

- S(t) :=∑ si(t)    R(t) :=∑ ri(t)

(3) R* ≤ R(t2)   [(1), r
i
 is collected before t2]

(4) S’* ≥ S(t3)   [(1), s
i
 is collected before t3]

(5) For all t: R(t)≤ S(t) [induction on the number of actions]

Proof:
R* = S’* ==> R(t2)≥ S(t3)  [(3), (4)]
               ==> R(t2)≥ S(t2)  [(2)]
               ==> R(t2)= S(t2)  [(5)]

Lemmata:

==> terminated at t2

A Formal Proof

Two
counters
suffice!

S95
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Termination Detection for
Synchronous Communications

= ? ("same-time": is that possible?)

- Synchronous communication (e.g., CSP or Occam):

- Message arrows can be drawn vertically:

- Abstract underlying computation modeled with

statep takes valuesactive orpassive

Xp/q: {statep = active}
stateq := active {"instantaneous” activation}

Ip: statep := passive
messages are of

P1

P2

P3

P4

(this is indeed justified but it isnot obvious!)

   two atomic actions:

no concern here

- Terminated iff all processes are passive
“dual” to the
atomic model

messages
are never
in transit

S95 Dis Algo 94, F. Ma. 28

The Global Snapshot Problem

Coordination
of partial
views  -->
consistent
image?

Dynamic scene too vast to be
captured by a single photographer

In reality:

- Population census: fixed time instant

- Inventory: freeze (not practical).
 (does not work here).

S95
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Consistent Snapshots of Global States

Global state (at a given instant in time)

State = a set of circumstances or attributes
characterizing a person or thing
at a given time.

Webster:

But do we have “global
time” in a distributed system?

All local process states +
all messages in transit.

Problem:The states of the processes cannot  be
observed simultaneously!

How can we guarantee consistency?
As if everything
were observed
simultaneously

Applications:
- Recovery points for distributed data bases
- Debugging of distributed systems

- ...

S95

Consistent observer: sequence of consistent snapshots
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P1

P2

P3

ideal
(vertical)
cut

5

5

5

3

2

8

1

4

2

4

3

8

0

4

7

consistent
cut

inconsistent
cut

--> 15
--> 15 --> 19 (+4 ?)

not attainable

equivalent to a vertical
cut (can be made vertical)

cannot be made
vertical (msg

"rubber band
transformation"

from the future)

time

Consistent Snapshots

--> changes metric
--> keeps topology

- How can we guarantee that the local observations
   form a consistent cut?

- How can we observe the messages in transit?

cf. communicating banks example!

instant of local
observation

connect local ob-
servation points
by a (zigzag) line

S95
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The Snapshot Problem

Goal: "Instantaneous" snapshot of the global state
           without "freezing" the distributed system.

In reality:

- Population census: fixed time instant

- Inventory: freeze (not practical).

Applications:

- Recovery points for distributed data bases
- Debugging of distributed systems

 (does not work here).

- ...
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Space-Time Diagrams

Process 1

Process 2

Process 3

internal event
messageglobal time

send event

receive event

A different picture of thesame computation:

Why is it thesame computation?

Abstract fromreal time -->
Elastic deformations (“rubber band transformation”)

Preserves thecausality relation: Message arrows must ne-
ver go backwards in time!
(--> no cycles possible)

e < e’ if there is a left-to-right
path from e to e’

e1

e2 e3

e3e2

e1

Example: e1 < e3, butnot e1 < e2 partial order!

e || e’ (“concurrent”, “causally independent”)
if not ‘<‘ and not ‘>’.

stretch /
compress e4

e4

S95

vertical
cut line
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The Causality Relation

- Define the relation ‘<‘ on the set E of all events:

“Smallest” relation on E such thatx < y if:

(causally) precedes

1) x andy happen at thesame process and
x comes beforey, or

2) x is asend event andy is the
     correspondingreceive event, or

3) ∃ z such that:x < z ∧ z < y.

- Why is it a partial order?
(i.e., why is it cycle-free?)

- Terms “happened before” or “causal order” should
   be avoided (--> confusion)

S95
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Consistent and Vertical Cut Lines

P1
P2
P3
P4

P1
P2
P3
P4

rubber band-
transformation

- If no message goes from the “future” to the “past” of a cut
   line, then this cut line can be drawn vertically in such

past
future

- Move all cut events to the vertical position of the righmost cut event.

- Events to the left of the cut line keep their position.

- Events between the old and the new cut line are moved just over
  the new cut line.

- Corresponding receive events of send events which are moved can
  also be moved ==> no message arrows go backwards in time!

cut
event

 such cut lines are calledconsistent

informal
graphical
proof!

- as if a corresponding wave had visited all processes simultaneously
- obviously useful for termination detection and similar applications

   a way that no messages go from right to left!

- Formal proof without graphical means: Formally define “cut”...
S95

- Another informal, but “constructive” proof: Cut along the line with a
   pair of sicors, move right part far to the right; repair cut arrows...
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The Snapshot Algorithm

P1

P2

P3

Processes and messages:black or red.
Snapshot instant: black --> red

then: report local state to the observer.
Process becomes red if  a) it is visited
                                       b) receives a red message.

Proposition: Snapshot is consistent.
Proof.: No "message from the future"

Yields a consistent view without freezing the system

observervisits all
messenger of the

processes in sequence

S95

or several
messengers do
this inparallel
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!

“Do not read tomorrow’s newspaper today”

S95 Dis Algo 94, F. Ma. 38

Initiator

receipt of the
last (black) copy
(snapshot complete)

copy

The Snapshot Algorithm - Messages

copy

red

?

x := 1

y := 2

x := 0

y := 1

But, then: Do we get x = y or x ≠ y for our computation?
(i.e., which “possible” state do we get with the algorithm?)

How many consistent
global states does this
computation have?

termination de-
tection problem

- Messages in transit?
- Black messages received by a red process.
- Send acopy of it to the initiator.
- Problem: When does the initiator receive the last copy?

black

S95

Can we simplycount the number of
sent and received black messages?
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s2

s1

Detecting Predicates with Snapshots
- Of what value is a (repeated) snapshot algorithm
   that first yields s1 and then s2?

predicate is
true here

- Makes sense if the predicate is stable, but otherwise?

NB: The snapshot algorithm is also useful for other
purposes, such as determining recovery points,
allowing consistent monitoring etc.
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Distributed Computations

- n-fold distributed computation (with asynchronous

1) [Events]  All Ei are pairwise disjoint.

5) < is an irreflexive partial order on E

3) < is a linear order on each Ei

     ForΓ ⊆ S×R with S,R⊆ E and S∩R = ∅ one has:
- for all s ∈ S there isat most one r ∈ R s.t. (s,r) ∈ Γ

4) (s,r)∈ Γ ==> s < r

6) < is the smallest relation which fulfills 3) - 5)

- Counterexamples:

not possible because of (5)

not possible because of (2)
not possible because of (2)

(i.e., there are no other events related by ‘<‘)

- for all r ∈ R there isexactly one s ∈ S s.t. (s,r) ∈ Γ

   message transmissions) = (E1,...En,Γ,<) such that:

S95

2) [Messages]  Let E = E1∪...∪En.
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Remarks

- The causality relation ’<’ is often called "happened before"

- Representation of a computation defined in that way
  is possible with space-time diagrams

- Definition enables (because of "at most" in item 2) to
   modelin-transit messages:

m1

m2

e < e’: - there is a causal chain from  e to e’
- e may influence e’
- e’ (potentially) causally depends on e
- e’ "knows"  e

end

interpretations

- s∈ S are calledsend events, r ∈ R receive events
- other events are calledinternal events

- Distributed computations withsynchronous message
   transmissions are modeled in a sligthly different way:

- not possible for synchronous message
   transmissions (--> deadlock)

- Γ induces a different partial order ‘<‘

P1

P2

S95

Lamport, 1978
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a b c d

f g

P1

P2

a b c d

f

a b c

f g

a b

f g

a b c d

e

e e

e e

?

a

f ge

Prefixes of Computations

distributed
computation A

distributed computation B
as a prefix of A

distributed computation C
as a prefix of A

distributed computation D
as a prefix of B

E, prefix of D

no computation

a b c

fe

F, prefix of B and D

(receive event without corresponding
send event - message was never sent!)

S95
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Prefixes and Consistent Cuts
- Prefixes are essentiallyleft-closed subsets E’ of E
   with respect to ‘<‘:

∀ x ∈ E’, y ∈ E:   y < x  ==>  y∈ E’

- Such subsets are calledconsistent cuts.

associated cut line

consistent
cut E’

- But: not all lines cutting a time diagram in two
   parts define a consistent cut!

The set of events to the
left of the cut line is not
left-closed -->
inconsistent cut

r

s

x
y

- General cuts (consistent and inconsistent) are subsets
   of E which are “locally left closed” (‘<‘ restricted on Ei).

==> a local predecessor of an
event is also in the cut

==> also the send event corres-
ponding to a receive event

- Cuts can be represented by theirlocally rightmost events.
- add an initialdummy event⊥ for each process
- Example: (r, y,⊥) --> time vectors!

(with cut events     )
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The Prefix Relation

A

B C

FE

- Graph is directed and

==> Prefix relation is
apartial order!

event
    g

event
d

g d

   contains no cycle.

- Prefix relation istransitive

- Each consistent cut corresponds to a prefix computation.

- Such a (finite) computation has a final global state.

- Hence one canassociate a global state to a consistent cut.

- Consider computation A.

- Was the final state of B or the final state of C an
   intermediate state of computation A?

- Equivalently: Didd happen beforeg or vice-versa?
- Note: Both cases are mutually exclusive (no simultaneous events)

==> (Executions of) distributed computations arenot
sequences of global states (or of events)!

- But what then? Is there an adequatesubstitute?

--> nototal order

S95
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The Prefix Lattice
- Pictorial and mathematicallatticeof “happened” events.

M N

K L

I JH

F G

D E

B C

α

ω "maximal"

"minimal" computation
(no event has yet been executed)

Here we would
have an “imposs-
ible” space-
time diagram

computation

- An intermediate state usually hasseveral direct
   predecessor and successor states!

- Execution moves upwards in a vague and indefinite way!

(More “dimensions”

   ==>Uncertainty about the “true” global state!

For two (or more) consistent
cuts (i.e.,≈ global states),
there is always a common
later and a common
earlier consistent cut.

Lattice property:

dim 1 dim 2

processes)
for more than two

(i.e., apartial order with some additional properties)

(--> Substitute for “sequence”,

S95

 ---> new notion of time)
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Parallel and Distributed Simulation

- Computer based simulation =
Executing aprogrammed dynamic model.

- Simulation = Experiment with amodel of the reality.

- Used when experiments with reality are

- not possible
- too costly
- too dangerous
- ...

real
system

input

output

parameter model

input

output

parameter
abstraction

interpretation

correspondence

S95
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- Simulations are often very time consuming

- large, complex models
- many parameters
- long runs to reduce the variance in stochastic experiments

- Speeding up simulations is very important!

- How can one use parallel computers for that?

- many applications in science, engineering ...

Parallel Simulation?

S95

shared memory

distributed memory

distributed simulation
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Simulation Principles

- Usually: analyze development of a system in time
--> State of the model is advanced “step by step” in simulation time

simulation

continuous discrete

time driven asynchronous

quasi- event activity process transaction
driven oriented oriented orientedcontinuous

(synchronous)

- Simulation paradigm

  - methods, strategies, modeling styles
  - typical simulation languages
  - typical application classes
  - "world view"

- Classification of simulation schemes

S95
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Example of an Event-Driven Simulation

“Booking planes by telephone in a travel agency”

System specification:

1. 5 clerks wait on the phones.
2. 18 phone lines (i.e., at most 13 clients are waiting).
3. “Please wait” when all clerks are busy.
4. Clerk becomes ready --> longest waiting client is served.
5. Clients wait 4 minutes on the average (norm. distrib.).
6. Clients give up if no line is free or if they have been

 waiting too long.
7. Arrivals are exponentially distributed (mean 20 sec.).
8. Service times are exponentially distributed (mean

 1 min for one way, 2 minutes for round trip ticket).
9. Probability for round trip ticket = 0.75.

32 4 5 6 min.

relative
number

normal distribution
Typical arrival and
service rates

S95 Dis Algo 94, F. Ma. 50

1) More clerks--> effects?

2) Less clerks --> consequences?

3) Consequences of reducing the service time to 55 sec.?

4) ...

Simulation Experiments

Possible experiments:

Analysing the system:

- average waiting time of a client (--> 70 seconds)
- idle times of the clerks (--> 9%)
- utilization of the phone lines (--> 45%)
- percentage of immediately served calls (--> 88%)
- number of clients who gave up (--> 2160 of 18000)
- ...

S95
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Event Driven Simulation

Basic assumption:

    Model state remains constant between two events
     -->

- time “jumps” from event to event

- only events change the state of the model

- Events propel the simulation

- Events drive simulation time (i.e., the
   advancement of the simulation clock)

Typical events

- call of a client
- enqueue at a waiting line
- starting an action
- ...

Event:

- has an associated time (when it will happen)

- if it happens, it  “instantaneously” (in simu-
   lation time!) changes the state of the model
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The Experiment

08:00 18 5

end of
service

08:03

call

client 1

08:03

call

client 1

08:09

client 1

08:05

call

client 2
08:03 17 4

end of
service

08:09

client 1

08:05

call

client 2
08:05 16 3

08:06

call

client 3

end of
service

08:07

client 2

The initial state

List of events
that are currently scheduled

not occupied

One first
call of a
client has
been
scheduled

Time jumps, driven by
the next event

End of service event is already
scheduled at the beginning of service!

Each call already schedules the next call
==> there is always one scheduled call event!

initially

S95
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08:47 13 0

- 5 scheduled end of service events
- 1 scheduled call event

And so on until:

08:49 12 0

client 41

give up
event

08:55

client 41

- 5 scheduled end of service events
- 1 scheduled call event

waiting clients

08:57 9 0

client 44 client 45 client 46 client 47

- 3 scheduled give up events
- ...

first client will be
served next

client 46 gave up

Is scheduled
by a call
event when
all lines
were busy
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The Simulation Cycle

initialize

Is there one
more event?

CLOCK := time
of next event

remove the event from
the event list

Execute the
event (i.e., update
the model’s state)

final statistics

yes

no

end

statistics etc.
output of

put al least one initial
event in the event list

possibly insert new events
into the event set

Idea: - Execute the next event (i.e., the event of the
event list with the smallest time).

- This might produce new events which are
   then inserted into the event list.

S95
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Event-Driven Simulation

191711

event list
4

Clock

state of the model

- Simulation time jumps to the next event.

- Execution of anevent routine:
   - Changes the model state.
   - Possibly schedules new events (in the future).

- Parallelization by partitioning the model into
   autonomous submodels.

simulation cycle

- Goal: speedup
S95 Dis Algo 94, F. Ma. 56

Example:
Traffic Simulation of a City

Where should the new bridge be built?

- average time to traverse the city
- various traffic densities

- Onesubmodel simulator for each town district.
- Cooperation by timestamped event messages.

(remote event scheduling)

S95
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Example: Logic Simulation

- Propagation of signal changes

--> Partitioning, mapping, dynamic load balance...

   by event messages

S95

(very important to get significant speed-up values!)
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Distributed Simulation

- Clocks have different values --> necessary for speedup!

T=7
T=4

T=3

t=8

t=5

local sequential
simulator

T=9

timestamped event
messages for scheduling
of “remote events”

- Timestamp of messages≥ clock of sender.

- But: is timestamp of message < clock of receiver possible?

- When may a simulator advance its local clock?

==> distributed simulation / synchronization schemes

S95
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Distributed Simulation Schemes

temporal
guarantees time reversal

conservative
methods (from 1980)

optimistic methods
(from 1985)

(Briant/Chandy/Misra) (Jefferson)

guarantees, lookahead,
null-messages,
deadlock,...

time-warp,
rollback,
GVT,...

hybride methods (?)

- Availability of parallel computers -->
   increased research activities since 1985.

- Many variants of the basic schemes have been designed.

- Many publications on specific aspects.

- But until now no real breakthrough in general speedups.

respect causal
order a priori

guarantee causal
order a posteriori
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 Rollback:
- set receiver’s clock back to timestamp of message
- restore an earlier state (saved checkpoint)

simulation

execution time

clock value

- possibly send out anti-messages

Optimistic Simulation, Time-Warp

- Each simulator may advance its clock independently.

- If a message with a timestamp < local time of
   receiver is received:Rollback

-->Many checkpoints!

-->When are checkpoints obsolete?
- no longer needed
- memory may be freed

S95
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T=17 local clock

T=21 T=39 T=53

local event queue

local state at T=17

local state at T=15

local state at T=12

local state at T=9

List of checkpoints
of the local state

t=60

t=49

t=60
sent at
15 to B

t=49
sent at
13 to D

t=55
sent at
11 to C

List of sent event
messages with send-
time and receiver

B

D

t=15
sent at
11 from A

t=13
sent at
10 from C

t=7
sent at
4 from A

List ofprocessed
messages with send-
time and sender

to other
simulators

t=89

t=12

t=25

from other
simulators

Time-Warp
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t=60

t=49

12

12
anti-message

anti-
message

Receipt of an anti-message:
- cancels corresponding message if still in event queue
   (what if anti-message arrives first?)

- otherwise: produces a rollback, secondary anti-messages...

Problems:
- rollback cascades
- cycles of anti-messages chasing messages

S95
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Time-Warp - More Aspects

- Simulator may act on illegal local states
==> anything is possible!

- Storage space for saved events and states
==> incremental state saving?

- Overhead (--> speed-up?)

- Many variants, strategies, heuristics..., e.g.:

- broadcast “all my messages after T=x are invalid” instead of
   dedicated anti messages

- lazy cancellation

- time windows

- adaptive strategies

- cancel back
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Global Virtual Time (GVT)

- GVT(τ) increases monotonically

- older checkpoints may be removed
- unrecoverable output operations may be committed
- detect end of simulation time period

GVT(τ) = mini CLOCK i(τ)
execution time instant

I i:  CLOCKi := CLOCKi + d     (d > 0) internal action
of process i

Xij : if   CLOCKi < CLOCKj  then
remote event
scheduling actionCLOCKj := CLOCKi

- Applications:

- Modelling of the underlying distributed
   computation by two types ofatomic actions:

- tight lower bound≤ GVT(τ) necessary

Minimum of all clocks
(ignore message time-
stamps for synchronous
communications)

- GVT approximation:

- no rollbacks beyond GVT

“current” GVT value is meaningless

synchronous

(simplified: message timestamp = sender’s clock)

Function of the
global state!

S95
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An Illustration of the
GVT Approximation Problem

- Each person has a

- A person may grow
before after

- Observer has no global view

- Fooling the observer by
"behind the back" winking

“Axiom” of distri-
 buted computing

   certain height:

   spontaneously:
==>

- A person may wink
   with his eyes at
   another person -->
   the other person is
   reduced to the height
   of the winking person.

min
= ?

!
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GVT Approximation with

- Fix a threshold value t ∈ R
- Call a processt-active if its CLOCK ≤ t

CLOCK=20

CLOCK=12

CLOCK=2

2-active
3-active
...

- Detect: "no process is t-active"

all CLOCKs > t

GVT > t

Termination detection problem!

Termination Detection Algorithms

- Only a t-active
   process can
   make another
   process t-active

Was 2-passive, but will
become 2-active now

t is a lower bound appro-
ximation of GVT!

t=2

stable property:
time t is over...

(t-passive otherwise)

Spontaneously:
CLOCK=5 --> CLOCK=9.
Was 5-active, becomes 5-passive

(“t-termination”)

Idea: termination detection is binary version of GVT approximation

e.g., 0 and∞

S95
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t-Termination as a Bound for GVT

Idea:

- Many termination detection algorithms run in parallel.
- Each algorithm determines a specific lower bound.
- All algorithms are combined into a single algorithm.

Example: 3 termination detection algorithms with

(Instead of a single message: transmit a wholebundle of messages)

   t1=5, t2=10, t3=100 are executed in parallel.
   Return max ti of those which reported t-termination.

NB: Lower bound is a stable (and hence observer
independent) predicate.

==> Why not use a snapshot algorithm?

This is possible. However, it turns out that consistent cuts
are not required - inconsistent cuts will also work! Hence,
snapshot algorithms are perhaps too “heavy” for that problem!
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Speedup ?

- Mapping of simulation objects onto processors

- Message transmission overhead

- Synchronization overhead

- No global view --> unavoidable waiting conditions

- Causal dependencies among events

- minimize communication (remote event scheduling)

- balance the load (is never perfect!)

==> Limits the attainable speedup!

S95

- Partitioning the model needs time

Faithful speedup measurements:

Parallel simulator should be compared to true sequential simulator
(not to the parallel simulator running on a single processor!)
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Critical Path Speedup

Sequential simulation --> measure the duration of events:

1.5 3.5 6.5 7.5 9 11.0 13.0 15.5

“Distributed sequential” simulation:

“Optimal” distributed simulation:

critical path

tseq

tpar

speedup =
tseq

tpar

Push everything as far
to the left as possible

S95

arrows = causal dependencies
(event messages)

respects causal
dependencies

Calculated speedup is much too optimistic:
It abstracts from communication overhead,
from wait conditions, from control overhead...
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Observing Distributed Computations

Observer

- Observation is only possible viacontrol messages

control
messages

"Axiom": Several processes can "never"
be observed simultaneously

"Corollary": Statements about the
global state are difficult

   (with undetermined transmission times)

S95

9 3

12

6

Consequences for monitoring, debugging...?
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The real computation

Observation
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The (global)
observer

The object to
be observer

Idealistic view:
global perspective

S95
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Obser-
ver

observation
messages

image
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Observer 2

Obser-
ver 1

observation
messages

Conceptual
problems:
- non-simultaneous
  observations!

- consistency?
- two observations
  equivalent?

Technical problems:
- instrumentation
- intrusiveness
- ...

image

S95
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“sensor”

observer

External Observation

- Visualization
- Performance
   analysis

- Monitoring

pump pressure
gauge

small leak

“increase pressure”

pump

pressure gauge

observer

loss of

increase
activity

pressure

Wrong conclusion of the observer:
An unmotivated activity by the pump

(led to increased pressure and the occurrence of a leak, which)

A
B

A’B’

Problem: Realization ofcausally consistent observers

effect is observed before its cause!

resulted in a loss of pressure

event notifica-
tion message

time

- Debugging

pipe
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X

- Example: Distributed garbage collection

Object X must have a consistent “view” of
how many references are pointing towards it

- Protocols and algorithms

- Deadlock detection, termination detection...

- Replicated servers (broadcast / multicast protocols)

- causality preserving

- “observations” of the

“Internal” Observation
processes within the computation
must have a causally consistent view

reference
in transit

A B

process 1 process 2

disks should be

S95

equivalent (=?)
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Monitoring and Visualization

- Parallel and distributed programs arecomplex systems

--> difficult to understand
--> error prone

- no central control
- no global time and state
- inherently non-deterministic
- many threads of control
- interaction / synchronization

--> difficult to verify

Motivation

- Knowing (exactly) what is going on...

--> gain insights, understand complex phenomena
--> debugging, testing
--> performance evaluation  --> optimization

Purpose

Capture useful data
during execution
(for later use...)

Provide an adequate image
Present monitoring data

S95

Snapshot <--> animation

--> fault and security management
--> trend analysis

- Application of observation techniques
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time

eventscontrol

trace
data

trace
file

messages

Monitoring
Collecting infor-

- local actions
- interactions
- local state
- global state

mation about:

S95

- Event-driven monitoring
- only actions of interest generate information

- Time-driven monitoring
- status information is obtained periodically
- sampling rate?
- consistency? (synchronized clocks?)
- information overflow?
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What is an event?
- sending / receiving a message
- entering / leaving a procedure
- executing a statement / a machine operation

- ...

What information is associated to an event?
- its type (e.g., “enter procedure”)

- parameters and attributes (e.g., line number)
- ... the whole local state of a process / processor

Any atomic action which
significantly affects the
local state of a process

--> complete information!

- changing the value of a variable

- its time of occurrence

Events

Combined events
- grouping of primitive events or other combined events
- there exist various languages to specify combined events
- often: rather complex syntax and unclear semantics; examples:

- when does “e1 and e2” happen?
- causal or temporal order in “e1 --> e2”?
- is negation sensible?

- difficult to “detect”, because components can be located
   on different processors
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Avoid generation of unwanted information at

Processing of Monitoring Information

P1 P2 Pn

merging / combination

local filter

local traces

==> discard information

==> increase level

global filter

global trace

MIB

report,
trace file

management
information
base

monitoring control

of abstraction

feedback
loop

various levels (e.g., activate / deactivate filters)

S95
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The Intrusiveness Problem

- monitoring alters the timing of events

- Effect of tracing / monitoring / debugging on
   the behavior of the monitored system

- degrades system performance

- may change the ordering of events

- may lead to incorrect behavior / results

- may mask errors of the unmonitored system

-==> Result of monitoring is only an approximation
of the unmonitored system!
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Hardware and Software Monitors

- nonintrusive

- Hardware monitors

- physical sensors connected to system buses, processors,
   memory ports, I/O-channels...

- typically high-speed comparators for simple bit patterns

- disadvantages:

- requires additional hardware
- very low level
- not portable
- problems with caches, pipelining... on the chip

- Software monitors

- manual or automatic insertion of “probes” into the
   source code (requires recompilation)

- instrumented libraries (e.g., communication)

- insertion into object code

- instrumentation of the kernel (works for all programs,
   independent of language or compiler)

S95
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Visualization
Systems:

- Balsa II  [M. Brown: algorithm animation]

- TOPSYS, VISTOP  [Bemmerl (Munic)]

- TMON, TIPS  [Univ. of British Columbia]

- SIMPLE, TDL/POET, VISIMON...  [U. of Erlangen]

- ParaGraph [Heath, Etheridge (Oak Ridge)]
- ...

S95

- Jade [Joyce et al.]

- Voyeur [Socha et al.]

!
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ParaGraph  [Heath, Etheridge (Oak Ridge)]

- Trace based graph. display system (portable, available)
- Several different perspectives (color, animation)

Animation  ==> Sequence of global snapshots

- Status of each node (idle, active,...)
- Paradigm: “front panel lights” of the system

Consistent

-->
(sufficiently well)
synchronized
local clocks?

timestamped
events!

view?

S95
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Message queues

- Number of messages, number of bytes vs. time

--> global time?
      (or approximation of global time?)
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Kiviat profile

- Recent average fractional utilization of processors
- Each processor represented by a spoke of a wheel
- Size and shape indicate overall load balance

- Is the” snapshot” consistent?
  --> “wrong termination detection” phenomenon
       would wrongly yield “load 0” for all processors!

S95
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Spacetime diagram

- Processor activity (active/idle) on horizontal lines
- Full detail of message activity (slanted lines)
- Messages “reactivate” idle processors

S95 Dis Algo 94, F. Ma. 88

Critical path

- Longest serial thread (--> limiting performance)
- Identification of bottlenecks

S95
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Monitoring and Visualization: Problems

- Online / offline?

- Scalability?  (--> massively parallel systems)

- Volume of data -->
- Selective views, abstractions
- Hierarchies, clustering
- Filtering, zooming

- Layout of items in pictures (problem specific?)

- Pragmatics:
- Easy to manipulate, easy to understand pictures

- Multiple views

- Technical aspects:

- Intrusiveness, probe effect, perturbance, overhead

- Timestamps, clock synchronization

- Instrumentation (manual, automatic, code level)

- Drawing speed, human perception speed

- Network bandwith, storage capacity

S95

- Architecture of event collection

- Standards for graphics and trace data (tool interaction)

- Real-time monitoring <--> Post mortem analysis

- Observation problems
- Variable message delays
- Maintaining causality

Execution Replay
may help with
some of the
technical problems
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Another Application: Debugging

Problems:
- Global state is distributed
- No unique time frame
- Error latency (too late when reported...)

Execution Replay helps:
- Reproducing the computation (--> “heisenbug”)
- Halting immediately (sequential execution!)

“sensor”

central
debugger Debugger “observes” the computation.

Main focus of adistributed debugger:
- Interaction among processes
- Global properties

More seriousconceptual problems:

- What is a single step? (Next event is not unique!)

- Can we detect global breakpoints? (NB: global halt state is consistent!)

- Observation must be “causally consistent”

- Observations are not unique!

Use a sequential debugger
for purely local errors

Confusion: often not
well understood!

Relativistic effects

(observation of the original run!)

S95
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Execution Replay

- Reconstruct the original computation
- Same initial state --> same “external behavior”

- Computations are usuallynon-deterministic

--> During the original run of the program:
capture relevant information in alog-file

- non-deterministic choices
- relative order of significant events

--> Replay using the log-file to direct the scheduler
      (e.g., deliver the “right” message to the process)

- Often, certain requirements are made:
- Deterministic processes
- No real-time dependent choices
- No asynchronous interrupts
- Usually not applicable to shared memory systems

- Behavior is not changed if during replay:
- Processes areslowed down
- Processes arestopped and examined
- Graphicalvisualization works in “slow motion”
- Execution issequential (“step by step”)

--> debugging!

= ?

--> overhead!
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Applications of Execution Replay

- Reproduce an erroneous run in “slow motion”.

- add monitoring events
- add print statement
- slow motion of a single process

behavior remains
unchanged

- Global single stepping of the run.

- NB: next step is not unique!

- Halt immediately and examine the variables of
   a stopped state.

- Visualize the computation with appropriate speed.

S95
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Nondeterministic Situations

P1

P2
e1

P3

e2

- Which message arrives first at P2?

- Such “race conditions” are the
   only (!)  source for non-determinisms

- Idea:

- During theoriginal run P2 logs which message
   was received at e1 and e2.

- During replay P2 consults the log to receive
   the correct message.

- Messages are uniquely identified by the tuple
(sender, event seq. number of sender, receiver, event seq. number of receiver)

- More involved situations (many racing
   messages, indirect overtakings) possible

- Only the order of messages is traced, not their
   contents (“control driven replay”)

- for non-reproducable environments (data input, clock readings etc.)
   thecontents of messages must be logged (“data driven replay”)

- further problems: asynchronous interrupts

- Replay may start at the beginning or at a checkpoint
   (= consistent snapshot)

   (expensive solution: register and trigger the instruction counter)
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Receiver-Driven Reproduction

P7

P9

8 9 10

23 24

(P7, 10)

(P7, 10, P9, 24)

log
file

Original run

P7

P9

8 9 10

23

24

(P7, 10)

log
file

Reproduction run:

(P9, 24)?
(P7, 10)!

?

- Is it possible to reduce the log information?
- “P9, 24” is of course unnecessary if each process has its own log file
- but: are further reductions possible?

- Is it possible to omit the message tags?

receiver consults the log

S95
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P7

P9

10

23 24

(P7, 10,
log
file

Reproduction run:

P9)? (24)!

(24)
9

Sender consults the log
- the key “(P7, 10, P9)” is redundant

- “(24”) is sufficient for the msg tag

Receiver counts receive
events and accepts the
message which matches
the next receive number

- But how does the sender know the correct event
   sequence number of the receiver?

1) Receiver told the P7

P9

10

24

(P7, 10)
log
file

(24)(24)

11

sender during the
original run

2) Receiver put the information (P7, 10, P9, 24) in
its local log file during the original run. All log
files are merged, sorted according to the sender,
and distributed to the relevant processes (after

Sender-Driven Reproduction

the run).
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- messages m1, m2, m3 are “not concurrent” (--> single causal chain)

- Idea: Trace only those messages which form a race

Determining Race Conditions

P1

P2
r

P3

r’

P1

P2
r1

P3

r3

r2

- P2 should detect the race condition at r (“on the fly”)
   during the original run (m and m’ are “concurrent”)

- However, no race condition at receive events r1, r2, r3

m

m’

- race condition: “locally previous receive event does not causally
   precede the send event of the message currently being received”

- Reduction of the log files
- for example: “accept next 3 messages without consulting the log”
- or: tag racing messages, untagged messages can always be received

- Use vector timestamps during original run to determine
   whether two messages are concurrent or not

- whole vector is necessary (because of transitive relations)
- pairwise comparison of two messages suffices for race determination

- For the details see the paper by Netzer and Miller
- claim: log files are typically reduced to 0 - 20 %, run-time
   overhead between 0 and 8 %

race: no race:

m1 m2

m3

- second computation will be reproduced without further measures

S95
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- replay of a subset only (e.g., a single process)

- Reproduction of dynamic systems

Further Aspects of Execution Replay

- Partial reproduction

- replay in an open environment

?

Problem: Hidden causal
dependencies (may e2 be
reproduced before e1 ?)

e1

e2

- Pure data-driven reproduction

- all messages are received
   from a log file

- sending of messages
   is suppressed

log
file

==> during replay a message might be received before it is sent
(possibly violating causality and causing strange effects)
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- Global predicates

Concepts Relevant to Distributed Debugging

- Relativistic effects (multiple observers)

- Causality

e1

e2

e3

e

- e1 (but not e2 or e3) could
   be the cause of e

- e potentially affects e3,
   but not e1 or e2

- realizable with vector time

past
cone

future
cone

- Concurrent messages --> efficient replay

- Consistent snapshots --> checkpoints (“recovery lines”)

- Causally consistent observers

- ...

S95
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Paragraph+ by PALLAS
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Valid and Invalid Observations

Process 1

Process 2

a) Idealized observation - instantaneous notification:

e11 e12 e13 e14

e21 e22

e11 e21 e12 e22 e13 e14

Process 1

Process 2

b) Invalid observations - violation of causality:

e11 e12 e13 e14

e21 e22

e11e21 e12e22 e13e14

Effect is observed before its cause -->inconsistent view!
- Also: indirect effect / causes

(What we want but can’t get)

(What we can get but don’t want)

S95
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Process 1

Process 2

e11 e12 e13 e14

e21 e22

e11 e21

e12

e22

e13

e14

Process 1

Process 2

e11 e12

e21 e22

e13 e14

Thevirtual image
of the observer...

- Virtual image is a valid elastic deformation

no message backwards in time

Valid Observations

perception
= vertical
projection

valid
inter-
pretation

- Cause always observed before its (possibly indirect) effect

notification
delays

(What we hope to get)
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Image and Reality

image
(virtual position)

true position

water line

Does the image
preserve the
essential properties
of reality?

= ?

vertical
projection

earth

true position image

sun

S95
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Letter toGeorge Hale,
Mount Wilson
Observatory, Passadena
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“When a spectator watches a battalion exercising from a
distance he sees the men suddenly moving in concert
before he hears the word of command or bugle-call, but
from his knowledge ofcausal connections he is aware
that the movements are theresult of the command, hence
thatobjectively the latter must have preceded the former.”
Christoph von Sigwart(1830-1904)Logic (1889)

Causally Consistent Observations

battalion

commander

spectator

command
move

effect cause

??

The observation problem if not new...

hear

see

time

S95
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e11 e12

e21 e22

e11e21 e12e22

e11 e12

e21 e22

Images of Invalid Observations

- Message goes backwards in time!

- The global state after e21 shows that a
  message is received which has not yet been sent!

--> Inconsistent cut / global state

effect cause

- How can weguarantee causal consistency?
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Detecting Global Predicates

Process 1

Process 2

x := 1

y := 2

x := 0

y := 1

Example:
Does (x=y) hold for the following computation?

“properties”

S95
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?
x = 1

x = y = 1
x = 0

y = 2y = 1
x = 0“YES, it does!”

Obs 1
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x = 0? x = 1x = 0
y = 1 y = 2 y = 2y = 1“NO, it does not!”

Obs 2

S95
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P 1

P 2

x := 1

y := 2

x := 0

y := 1

P 1

P 2

P 1

P 2

Reconstructing the Views

- Both views are correct (i.e., consistent and equivalent)
- Both time diagrams represent thesame computation

x := 0

y := 1

x := 1

y := 2

x := 0

y := 1

x := 1

y := 2

--> rubber band transformations

Obs 1

Obs 2

- Constant transmission speeds (slope)

So what?
Do we have x=y or x=/=y for the computation?
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A distributed program

A single distributed computation

nondeterminism

relativistic

- Different observers may seedifferent realities.

--> Question, whether a specific predicate holds,
       might bemeaningless!

Consequences:

It is naiv (i.e., wrong), to try to construct a distributed
debugger which can answer such a question. (Which
is a "good" question in the traditional sequential case!)

Reason:
Computation and observation is the same thing in the
sequential case. But not for distributed systems!

effects

several
computations

several
observers

Set of observers, for which
a specific predicate is true

Possible Worlds

No privileged observer

This isnot due to
nondeterminism!

e.g., “stop when x = y”

S95
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A

B

a b

ab

A B

a b

a b

Obs1

Obs2

Obs1

Obs2

Relativity of Simultaneity

Two “causally independent” events can be
observed in either order!

Lightcone paradigm of relativistic physics:

impos-

Observer independent
==> objective fact

space

timesible

A and B are concurrent

B lies in the cone of A  -->
B causally depends on A  -->
All observerssee B after A
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Observation 2

Observation 1

Observation 3

The “true” computation

- Observation should preserve "essential properties"

- Some properties are lost, however

- Can we reconstruct the “real thing” from
  (all) observations?

in our case: causality

Observations, Images and Reality

- Each observation is necessarily incomplete!

S95

(“multi dimensional”)

(single
dimension)
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“inconsistent”

Incoherent Observations

object?

The observed object might be “in reality”
much stranger than we would expect!

S95 Dis Algo 94, F. Ma. 118S95

An Inconsistent Image
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M.C. Escher: Belvedere (1958)

S95 Dis Algo 94, F. Ma. 122

The Evidence!

S95
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The Global State Lattice

Process 1

Process 2

e11 e12 e13 e14

e21 e22

e11 e21

e12

e22

e13

e14

Process 1

Process 2

e11 e12 e13 e14

e21

e22
inconsistent global state

consistent global state space

Observation = path in the state lattice

Observation willnot
detect a predicate that
is only valid here

= linear extension of partial order

(Which remains
in the gray area
of valid states)

(i.e., observation must res-
pect the causality relation!)

- All observers seeall events butdifferent global states!

- Snapshot algorithm will yieldsome valid global state

- Sequence of snapshots ==>some observation

observed global state

observed global state
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P1

P2

P2

P1

time

The Eroded State-Hypercube

- Here: 2 processes --> 2 dimensional cube

- Inconsistent global states are “eroded away”
- no message is received before it is sent
- messages synchronize the processes
- a process is blocked in a receive event until the message is
   available (and the corresponding sent has thus been executed)

eroded
area

eroded
area

S95

b
a c

d

b

c d
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- Consistent states form a (mathematical)lattice
- earlier, later global state; closed w.r.t. “sup” and “inf”
- visualized as a compact set (no holes)
- sublattice of the lattice ofall global states

The Lattice of Consistent States

S95

- To eachprefix corresponds a consistentcut.

- To eachcut corresponds a global (consistent)state.

final state

initial state

A B C 2
5

3
44

3

- three “mutually
concurrent” global
states A, B, C

- question whether the
computation passed
through A, B, or C
makes no sense!

- equivalence class
[A, B, C] (all states
with 7 events)

- we only know that the
computation went
through thisclass

first dimension

second dimension

---> “vector time”

- The “true” sequence of global states is one path through the
   lattice (but it is unknown if exact global time is unavailable)
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[Claude Jard et al., Rennes, France]

- compact set
- synchronization --> edge / crinkle on the surface
- “bottlenecks” become visible

S95

The 3-Dimensional Lattice
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The Dualism of the Diagrams

global state

global state

event

Points --> global states
Slices --> events

event

Points --> events
Slices --> global states

Both diagrams
represent the
computation

Eroded
hypercube

Time
diagram

Path --> chain of  states

Path --> chain of events
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Serious Consequences...

Debugging: “Next step” is not well-defined

Debugging: “stop when<condition>” meaningless!
(Although immediate halting is possible using execution replay!)

Predicates are satisfied relative to observers only

- Number of states is of polynomial size

- Number of observers is of exponential size

S95

-->

- Single observer may miss the state where a
   certain predicate holds

hopeless
in general!
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- PossiblyΦ :“At least one observer seesΦ.”

- DefinitelyΦ :“All observers seeΦ.”

Example: No observer must observe a state where more than one
                traffic light shows green: -->PossiblyΦ should be false.

- PredicatesΦ, for whichPossiblyΦ ⇔ DefinitelyΦ:

“good”
predicates

S95

Modal Operators and

φ holds
here

possiblyφ holds definitelyφ holds

- If one observer seesφ, then all observers seeφ.
- Independent of the specific observer.
- Efficient detection by a single observer is possible.

- Such predicates can be attributed to thecomputation!
- Examples:stable properties (termination, deadlock);local predicates

Observer Independent Predicates

- Complexity in general O(|e|n)

number of events
number of processes

More efficient determination of pos / def only for some predicate classes

α α

ω ω

gray areas
cannot be
avoided by
going from
α to ω
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Local Predicates

Process 2

Process 1

x = 1

Process 2

Process 1

y = 3

x = 2 x = 1 x = 0

y = 1

x = 1 x = 0

Whatever events the other processes execute,

Example:Φ = (x = 1)

this does not change the value ofΦ.

--> Hyperplanes in the n-dimensional lattice

Every path from the initial to the final state
necessarily meets all hyperplanes -->inevitable

--> PossiblyΦ = DefinitelyΦ

Disjunctions of inevitable (i.e., observer independent)
predicates are also inevitable...

Local predicates are not very interesting, however...

S95

y=3

receive

y=1

send

x=2 x=1 send x=0 rec. x=1 x=0
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Conjunction of Local Predicats

Process 2

Process 1

local predicatΦ1 of
process 1 is valid here

local predicatΦ2 of
process 2 is valid here

- How determine whether “possiblyΦ1 ∧ Φ2” holds?
- Why is that of interest?

Idea: try to find a rubber band transformation such that
there is a vertical line which cuts all processes in a state
where the local predicat holds.

S95

NB: Each consistent cut line can be made vertical

- Example of traffic lights:possibly “traffic light 1 = green” and
“ traffic light  2 = green” should be false!

Idea for that: All processes execute in parallel, but a process stops as
soon as its local predicate holds. Question: Does this idea work?
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“Semantic filter”:
Only relevant events (change
of the local predicat) pass.

Filter for causal consistency:
An event can only pass, if
all causal predecessors of it
have already been observed.

Dimension reduction filter:
keeps back all events of a
process as soon as the local

- Idea:Step by step the search space (n dimensional
  “cube”) is reduced by one dimension

F1

F2

F3

Stop! (F2)

Stop! (F3)

- However: F3 must let pass events if otherwise the

Determining “possibly Φ1 ∧ Φ2 ∧...”

predicat of that process holds.

   observation would block:

P1

P2

P1

P2

- Why is that scheme correct? How efficient is it?
S95
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Applications of the Detection

- Termination for synchronous communications:

- If some (consistent!) observer sees that all processes are
(simultaneously!) passive, the computation has terminated.

- Detection scheme yieldstermination detection algorithm.

S95

Local predicateΦi: process Pi is passive.

- Detect possibly (∀ Pi : Pi is passive).

- Debugging: STOP WHEN  X1 = 3∧ X2 > 0
(where Xi is a local variable of Pi)

- Useful inreplay mode (where immediate halting is possible).

- Algorithm yields the “first” state  where  the conjunction is true.

P1

P2

Φ1 Φ1

Φ2
s1 s2

If P1 does not advance after
its predicateΦ1 becomes true,
the computation would
block in global state s1.

Algorithm for “possibly Φ1 ∧ Φ2 ∧...”

- Question: What would be the appropriate semantics of
   STOP WHEN X1 = 3or X2 > 0 ?
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Earliest State “Φ1 ∧ Φ2 ∧...”

- For two or more global states with “Φ1 ∧ Φ2 ∧...”

Φ2

Φ2’

Φ1 Φ1’

2

1

4

3

P1

P2

P1

P2

Φ1 Φ1’

Φ2 Φ2’

1 3
2 4

   there is always a common earliest such state.
- Take the “process wise” min...

- State s isearlier than state s’ if there exists an
   observation  “... s ... s’ ...”.

- For states 2 and 3 in the example, this earliest state is state 1

- The consistent states form a lattice (-->∃ “earliest”)

S95
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Stable Predicates
For some global predicates

- definition is meaningful (i.e., observer-independent)
- efficient detection is possible

Example:stable predicateφ on global states

- monotonic: "once true, ever true"
- if  c1 < c2  thenφ(c1) ==>φ(c2)

final state

initial state

process 1

process 2 observation φ holds here

φ

- All observers will inevitably detect the stable predicate
(some observers will detect it earlier than others)

“sub-hypercube”

- Occasional testing forΦ on some consistent states

lattice of consistent states

   is sufficient  -->snapshot algorithm makes sense!

- If the snapshot algorithm establishes the truth ofφ,
   φ is still true “now”!

- There exist some important stable predicates
(e.g., “object is garbage”, computation has terminated,...)
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Other Observer-Independent Predicates?

1)  Some rather artificial predicates

- e.g., “5 events have  been executed”

2)  “Inevitable” global states

predicate is true only
at these points

- typically: synchronization points

- e.g.,barrier synchronization:
each process waits until all other
processes have also reached
the barrier (“bottleneck”)

- a predicate which holds in such
a state is“definitely” true

- all observations must go through it

The problem is not so much to verify whether the predicate holds
in this particular state, but to make sure that such a state is
eventually reached (before some action is executed)!

Typical realization:
A process reaching
the barrier informs a
coordinator and blocks
until it receives an ack.

ack ack

“At” the synchronization point all processes know that all other
processes have also reached it (simultaneously?).

S95
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What if Global Time Exists?

e.g., perfectly synchronized local clocks
(but how good is “perfect”?)

==> 1) Obtain “vertical” snapshots
        2) Virtual image = real computation

Dual problem:races!

a

b

1)

b

2) a

Different execution of the
samedeterministic program

This global state (“after b but
before a”) is not observable in 1)

First process is “slower”
this time...

S95

exact instantaneous snapshot

Hence the observed global state is not “absolute” or “definite”!
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Do We Need Consistent

Distributed traffic light control:
Do all observers see at
most one green light?

Detection of Global Predicates?

Sometimesinconsistent observations areacceptable

Examples:
1) Performance debugging
2) load(P1) + h > load(P2) “inherently

global”

==> “weakly stable”
==> (slightly) inconsistent views do not harm

But: For deadlock detection, distributed recovery
        point,... inconsistent views arenot acceptable!

S95
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Observations...

- Consistent observation important:

- Termination detection, deadlock detection,...

- Only “few” predicates are observer independent, e.g.
- stable  (e.g., termination, garbage, deadlock, GVT-approximation)
- local  (rather trivial!)

- Efficient detection schemes exist for those predicates,
  all other predicates are difficult / impossible to detect

- Huge number of different observers

- Predicates are meaningful only relative to an observer

Observing parallel and distributed programs is much
more difficult than observing sequential programs!

==> Global property may escape to a debugger!

- Debugging, monitoring...

e.g., snapshot algorithm
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R. G. Herrtwich, G. Hommel

Time in Distributed Systems

S95
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Time ?

Quid est ergo tempus?
Si nemo ex me quaerat,
scio,
si quaerenti explicare velim,
nescio.

Augustine (354-430)

Time is money.
Benjamin Franklin (1706-1790)

Time is how long we wait.

Richard Feynman (*1918, Nobel prize in physics 1965)

The indefinite continued progress of existence,
events, etc., in past, present,
and future regarded as a whole.

Concise Oxford Dictionary, 8th Ed.

What then is time?
If no one asks me (what it is),
I know (what it is),
but if I want to explain it to someone,
(I find that) I do not know.
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The Arrow of Time:

This is the melancholic
dimension of time...

Tempus fugit

Time goes, you say?
Ah no! Alas, time stays, we go.

Austin Dobson, The Paradox of Time

Present

linear past

possible "branching" future

- Looking back, time always seems to be linear...

Two roads diverged in a yellow wood,
And sorry I could not travel both.
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;
...
Then took the other, as just as fair,
...
I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I -
I took the one less traveled by,
And that has made all the difference.

Robert Frost (1874-1963)
The Road Not Taken (1916)

(Time flees / flies)

Past, Present, and Future

S95
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- Clock: Device to measure the physical phenomenon “time”.

- Precision of a clock depends on the stability
   of its oscillator (with ideal frequencyω0).

- Many influencing factors

ω0

Divergence from ideal frequency

+γ
-γ

- Deviations may accumulate!

 --> Resynchronization is necessary from time to time

a) set clock back / forward (--> C(t) jumps and is non-monotonic)

   (age, temperature,...)
t

   on the stability


C(t) = k  ω(τ) dτ + C(t0)
t0

t
Value of clock C at t

- Ideal clock: C’(t) = 1,
   i.e. ω(t) = constant.

Clocks and Real Time

S95

C

ω

b) increase / decrease oscillator frequency
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Time is Powerful

1. Population cencus (consistency by simultaneity)

2. Determiningpotential causality (“alibi principle”)

t

x

- events arenot causally related

3. Mutual exclusion(fairness by linear time order)

300000
km/s

“speed limit of
causality”
(P. Langevin)

- agree upon a future date
- everyone gets counted at the same moment

alibi event

crime
max speed
line

out of
causality

- the earliest gets access...

We don’t have (real) time in distributed systems
--> look for an adequate substitute (-->logical time)

- has most important properties
- is (easily) realizable

S95
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Time: Properties and Models

- Points “in time” together with a relation “later”

- Or: timeintervals together with “later”, “overlaps”...

What is the
correct /
appropriate
model?

- Are the two models / views “compatible”? (e.g., startpoint and endpoint)

- Structure and properties of time points:

- transitive
- irreflexive
- linear
- unbounded ("time is eternal”: no beginning and no end)
- dense (there is always a point between two other points)
- continuous
- metric
- homogeneous
- archimedian / inductive (each point will eventually be reached)

--> lin. order

- Models: real numbers, rational numbers (?)

- e.g., discrete (instead of continuous) --> integers suffice!
- Are all these properties needed? (when? for what?)

atomic events
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Time and Clocks in Computer Science

- Clock overflow (e.g., long simulation runs)
   --> time is not eternal butbounded

--> Clocks need not run continuously
--> Change clock value only when an event happens

- "World view": Time = Happening of events

- Example of this world view: Event driven simulation

- Event oriented view: nothing happens between two events

- Hardware counters as clocks
--> time becomesdiscrete

Clock
value

“real” time

Hence: We call concepts / devices “time” / “clocks” even
though they do not have all the ideal properties!

S95

but what are theessential properties?
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Logical Timestamps

Clock condition:  e < e’  ==>  C(e) < C(e’)

- Purpose: compare events by their timestamps.

- Goal: mapping C: E --> T

Clock

“Time domain”: ‘<‘
partially ordered set
--> "earlier", "later"

- For e∈ E we call C(e)  the timestampof e.

- C(e’) later than C(e) if C(e) < C(e’).

- How should T look like? N (linear order)
R (REAL datatype)
power set of E (i.e., 2E)

- Reasonable requirements: order homomorphism

If an event e may influence another event e’,
then e must get a lower timestamp than e’.

Set of events with
partially ordered
causality relation

Interpretation:

- We would also like to have the converse relation!

Nn (product lattice)?

or: e’ or: e

“time respects causality”

causally precedes
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Lamport’s Logical Clocks

C: (E,<) --> (N,<) Assigns timestamp

e < e’  ==>  C(e) < C(e’) Clock condition

1 2

1

1

3

4

3

causality relation (“potential” causality)

- local clock ticks foreach event
- send event: timestamp is piggybacked
- receive event: max(local clock, timestamp)

- Protocol for clock implementation:

2

1

3
4

- Proof: Causality paths are monotonic.

- Proposition: Protocol guarantees clock condition.

Communications of the ACM 1978:
Time, Clocks, and the Ordering of Events in a Distributed System

5

before the clock ticks

- “Paths of causality” from left to  right

S95
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Properties of Lamport-Timestamps
- What remains from the properties of real time?

+ lin. order, unbounded
+ respects causality (clock condition)
- discrete
- does not “flow automatically”

- Clock condition ==>

- locally increasing timestamps
- send event has smaller timestamp than receive event
- C(a) < C(b)  ==>  not (b < a)

- We have:  C(a) = C(b)  ==>  a||b

- Do we have the converse of the clock condition?
  - No, C(e) < C(e’)  ==> e < e’ doesnot hold!

  - We only have: C(e) < C(e’)  ==> e < e’or e||e’

- Hence:

From the timestamps we cannot (always) conclude
whether two events are causally dependent or not!

see example

Future cannot in-
fluence the past!

- Timestamp = Length of longest preceding chain

"critical path" -->
concurrency measure,

causally independent

- But wouldn’t that be the major goal of timestamps (since causality is
   the only structure we have in our abstract distributed computations)?

as does real time!

Proof.:  b < a  ==> C(b)  < C(a)
==> ¬(C(a)  < C(b))

  - Proof left as an exercise... i.e., ¬(a < b)∧ ¬(a > b)

- Yet, Lamport timestamps are useful for some purposes
   (e.g., mutual exclusion)

time complexity
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Lamport-Timestamps: “Non-Properties”

<
||
>

<
=
>

E N

- Negation is lost

- Orderhomomorphism, butno isomorphism

- E ist apartial order, N ist alinear order
(Causally independent events may become comparable!)

2) Loss of structural information:

1) Mapping is not injective:

- Important, e.g., for: "The

- Solution: Lexikographical order (C(e),i), where i
denotes the process number, on which e happens
==> Now

- Linear order (a,b) < (a’,b’)⇔  a<a’∨  a=a’∧ b<b’

- Mapping (still) respects causality: (E,<) --> (N×N, <)

Important defect
since one purpose
of timestamps is to
draw conclusions on
the structural rela-
tion among events!

   one who came earliest wins" E N

j

k

Is there a
“better”
timestamp-
ing scheme?

- there is uniquesmallest event for each set of events
- all events havedifferent timestamps (i is a “tie breaker”)

Also note that “=” is transitive, but “||” is not!

(only causally independent events are ordered by their second component)

S95
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Realizing Causally Consistent

- Basic idea: Time respects causality

Observers with Real-Time

Process 1

Process 2

e11(1) e12(14)

e21(5) e22(11)

e11(1)e21(5) e22(11) e12(14)

5 10 15 20

e11(1) e21(5) e22(11) e12(14)

5 10 15 20

sorting

==> Sorting by global time = “sorting by causality”

- Observer recreates the “true” computation.

!

(--> topological sorting)

- Problem: requires (global) real-time for timestamps!
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Realizing Causally Consistent

- Basic idea: Lamport time respects causality==>

Observers with Lamport Time

Process 1

Process 2

e11(1) e13(4)

e21(2) e22(3)

e11(1)e21(2) e22(3) e12(2)

e11(1) e12(2) e22(3) e13(4)

sorting

Sorting yields alinear extension of the causality relation.

- Problem: Not well suited foronline monitoring.

!

e13(4)

e12(2)

e21(2)

- Before delivering  (“committing”) an event, one must be sure that
   no event with a smaller timestamp will arrive later (see e13 and e12)!

- FIFO channels to the observer help, but may still causelong delays.

==> Find a more suitable model of logical time!

- Problem also, if only asubset of all events is observed.

S95
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Vector Time(stamps)

==> Define the n-dimensional vectorτ(e) as follows:

τ(e)[i] := |{e’ ∈Ei| e’ ≤ e}|

1
2
4
3
1

e

Set of events on process Pi

Quot tempora tot astra.
G. Bruno (1548-1600)

Time vectorτ(e)
of e with associated
formal light cone

- Time := set of past events  ==>

- Timestamp(e) := {e’| e’≤ e}
Formal light cone: set
of (causally) past events
which can affect e

- Light cone can be represented bylocally latest events (left closed sets)

- There exist n such events (n= number of processes)

P1

P2

P3

P4

P5

--> Timestamp is an n-dimensional vector

--> Time is the set of all  n-dimensional vectors
--> Clock is an array C[1:n]

reasonable definition in our model

(“device” to keep current time)

Formal light cones are consistent cuts
(--> cut line in the shape of a cone)

!
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1 2 3 4 5

1 2 3

2
5
3

Vector Timestamps

- Therefore, because events of a process are totally
   ordered, it implicitly also “points” to all earlier events.

==> Vector representswhole causal past.

==> Encodesknowledge abouteach past event.

of Events

- Component i points to the most recent causally
   past event on process i.

- Each event has a “vector time stamp”

causality
relation

P1

P2

P3

“Vector time”: isomorphic representation of the
causality relation (partial order --> lattice structure)

- causal chains

- Sometimes some optimizations are possible (omit 0-components,
   sparse arrays, send only delta-values, use topological knowledge...)

S95
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1
3
4
3
2

1
7
4
6
2

1
3
4
3
7

5
3
8
3
2

||≤

1
4
2
3
7

8
3
4
3
2

8
4
4
3
7

=( )sup

comparable concurrent

Timestamp “Arithmetic”

sup = componentwise maximum

Interpretation ofτ(e)< τ(e):

‘<‘ is defined as “≤ but≠”

e
e’- e lies in the causal past of e’

- cone of e is included in the cone of e’

, 4
1 0

3

4
3

S95 Dis Algo 94, F. Ma. 156

Vector Time and Ideal Observers

e

1
2
4
3
1

1
3
4
3
2

- Locally number all events: 1,2,3,...

- Ideal observer sees an event immediately

τ(e) = id(e) =

- Adequate data structure for representing this ideal

0
0
0
0
0

2
4
5
4
3

...

Observations of
the ideal observer

- Forevery causally consistent observer:τ(e) ≤ id(e) (∀e)

- τ(e) = Infimum of all possible ideal views id(e)
- Note: id(e) depends on the specific time diagram!
- But: τ(e) is invariant w.r.t. rubber band transformations!

   knowledge: vector / array

- a causally consistent observer knows the whole causal past of an event
- ideal observer typically also knows some other events

componentwise

S95

NB: The causel past of an
event forms a consistent cut!
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1
1
0
0

2
1
0
0

0
1
0
0

0
2
0
0

2
3
3
1

0
0
1
1

2
1
2
1

2
1
3
1

0
0
0
1

0
0
0
2

Propagation of Time Knowledge

- local event:
increment the own component

- send event:
increment the own component
and piggyback the new vector

- receive event:
increment the own component
and build componentwise
supremum of the two vectors

union of the
two cones

- Claim:  e < e’⇔ τ(e) <τ(e’)
componentwise

- Interpretation:

- τ(e) ≤ τ(e’) ⇔ there exists a causal chain from e to e’

monotonic w.r.t.
time vectors!

- Corollary:  e || e’ ⇔  τ(e) ||τ(e’)
Interpretation: Two events

- Each process has avector clock

do not influence each other
iff they are concurrent

P1

P2

P3

P4

(w.r.t. the time domain)not related

(--> Implementation of vector time)

(--> keeps knowledge about past events)

Isomorphic representation
of the causality relation!
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.

.

.

.
.
.
.
. .

.

.

.

.

.

.

.

 ⇔

∩ ∪ ⊆

sup, inf,≤
causality

time

Events
Time vectors

Set theoretic Algebraic operations
operations (--> “compute”)

 ⇔

Lattice structure
on 2E (ideals) Product lattice onNn ⇔

Order theoretic
properties Algebraic properties ⇔

Computing with Sets of Events

S95
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Clocks were standing or hanging wherever Momo
looked - not only conventional clocks butspherical
timepieces showing what time it was anywhere in
the world...
“Perhaps one needs a watch like yours to recognize
these critical moments,” said Momo. Professor Hora
smiled and shook his head. “No, my child, the watch
by itself would be no use to anyone.You have to

Michael Ende, Momo

Applications of Vector Time

- Debugging
- Localising errors (“... can / cannot be the cause...)
- Race conditions (causal independence)
- Efficient replay

- Performance analysis, concurrency measures
- “bottleneck” in the lattice; degree of synchronization

- Implementation of causally consistent observers
- Causal broadcast
- Causal order

- Implementation of consistent snapshots

- ... ?

know how to read it as well.”

- Local snapshots at pairwise concurrent events

<Momo meets Professor Hora>:

- causally independent events can be executed in parallel
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The Cut Matrix

- Cut matrix $ of a cut C (with cut events ci):

$ := (τ(c1), τ(c2),...,τ(cn))

(i.e., take time vectors of cut events ci as the columns)

3  1  1  0  0
0 4  3  0  0
0  0 5  0  0
0  1  3 4  0
0  0  1  13

c1

c2

cn

C

C consistent⇔  dia($)= sup($)

diagonal vector for each line:
maximal value

(i.e., the maximum of a row is the diagonal element)

dia sup

3
4
5
4
3
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The “sup = dia” Consistency Criterion

x
x
4
x

x
x
6
x

x
x
6
x

x
x
6
x

c1

c1[3] = 6 > dia[3] =4

P1

P2

P3

P4

c3[3] = 4

x  x  x  x
x  x  x  x
6  x 4  x
x  x  x  x

c1

c3

c3

sup[3] > dia[3]

A process (P1) other than P3 knows (at cut event c1)
something about local events on P3, on which P3 itself
does not yet know anything (i.e., which happenafter c3).

<==>

There exists a path from a P3-eventafter c3 to an
eventbefore c1.

<==>
[generalization over all indices i≠j]

The cut is inconsistent.

inconsistent
= dia[3]
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0
0
0
1

P1

P2

P3

P4

2  0  0  0
0 1  0  0
1  0 2  0
0  0  0 0

0
0
3
1

2
2
0
0

- Goal: Keep always consistent, i.e., dia($)= sup($) !

x4

x3

x2 Identify cut event with
locally preceding event.

- Which column may be replaced?
   (x2, x4, but not x3)

- Observer keeps dia($). Timestamp
   of next observed event must be≤

dia($), except diagonal component

Observer

Implementing Consistent Observers

- NB: Observer needs only avector (dia), not amatrix

- See only consistent snapshots in their reconstructed view
- Sequence of observed eventsrespect the causality order

?

Which event x2, x3, x4
can be observed next

(without violating
causality)?

currently
observed
global state

currently observed global state

- All observation messages do also have a vector.

- Idea:“This event depends on another event that I should have observed

- NB: Does also work if only asubset of all events is observed!

earlier. Hence I better wait until I get notice from the other event...”

   (i.e., observation is alinear extension of the causality relation)

S95
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Realizing Causally Consistent
Observers with Vector Time

0
0
0
1

P1

P2

P3

P4

0
0
3
1

2
2
0
0

x4

x3

x2

Observer
? 2

1
2
0Events which have already been observed

- Compare vector time of event with observer’s vector.

- Event x3 should not be observed, because it “knows” of
   one event on P4 which the observer has not yet seen.

- Idea:“This event depends on another event that I should have observed
earlier. Hence I better wait until I get notice from the other event...”

- Which event x2, x3, x4 can be observed next
   (without violating causality)?

- Realization: Delivery filter which uses message queues.

Vectors are rather clumsy. Do we really need them to guarantee
consistency and to make correct statements about the system?
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The Communication Hierarchy

Typical questions:

general
asynchronous

FIFO

causally
ordered

synchronous

al
lo

w
s 

m
or

e 
co

m
pu

ta
tio

ns

m
or

e 
re

st
ric

tiv
e

not FIFO (but
asynchronous)

not causally

(but FIFO)
ordered

not synchronous
(but causally ordered)

informally:
computation respects the causality
relation (“global FIFO”)

⊇
⊇

⊇

1) Given a computation with asynchronous communications
--> can it be realized with FIFO channels?

(i.e., does it respect the FIFO property?)

--> does it respect the causality relation?

--> is it realizable with synchronous communications
(e.g., does it run on a transputer with occam? Or does it block?)

2) Is a given algorithm, which is correct for synchronous
communications, still correct for a more general model?
--> e.g., can the algorithm tolerate receiving messages out of order?

S95
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What are synchronous communications?

- Naive: telephone <--> letter

(relative toasynchronous communications)

- Literally: syn - chronous

same time

- Does this mean that send and
   receive happensimultaneously?

- But instantaneous message
transmission is unrealistic!

- NB: There exist distributed programming languages
- which use synchronous message passing (e.g., CSP or Occam)
- which use asynchronous message passing
- which use both (e.g., MPI)

- Restate the headline-question in a more formal way:

- How do wemodel synchronous communication?

- How do wedefine distributed computations
   with  synchronous message passing?

- Proposition:
Synchronous = virtually simultaneous

= as if msg transmission were instantaneous
suitable rubber
band trans-
formation ?

≡
S95 Dis Algo 94, F. Ma. 166

“As if” Messages were Instantaneous

If for a distributed computation a phenomenon can be

==> message passing should then not be called “synchronous”

observed which is impossible with instantaneous
messages, the computation must not be realizable
with synchronous message passing  semantics.

A B

Obs

A

B

Obs

1 msg sent

0 msg received

Observer learns that a message from A to B isin

how many
received?

how many
sent?

a
b c d

a b

c

d

transit for a certainduration  ==> not synchronous!

The observer first asks A about the
number of messages it sent to B.

Then it asks B about the number
 of messages it received from B.

Example:
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A

B

Obs

- The message from A to B isovertaken in an indirect
way by achain of other messages.

- The direct message canthereforenot be made
vertical by a rubber band transformation.

- Another computation which is not possible with
   synchronous communications (==> deadlock):

Although eachsingle arrow can be made vertical, it is not possible
to draw the diagram in such a way thatboth arrows are vertical!

Vertical Message Arrows

(A message of the chain would then go backwards in time)
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(Without clocks, it is not possible to prove that a message

Various Characterizations of
Synchronous Communications

- Question: are they all equivalent?

1) Best possible approximation ofinstantaneous
     communications.

was not transmitted instantaneously)

2) Space-time diagrams can be drawn such that
all message arrows are vertical.

3) Communication channels always appear to beempty.
(i.e., messages are never seen to be in transit)

4) Correspondingsend-receive events form onesingle
atomic action.

- Problem: some characterizations are informal or less formal than others

wave

- But what exactly does
 “atomic” mean?

- Does the combined event
happen before or after
the wave? Should this be
possible with synchronous
communication?

S95
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5) Send actionblocks until an acknowledgement from
     the receiver is received.

ack

- But can’t  synchronous
communication be
implemented (on a system
with asynchronous
communications)
without blocking?

6) ∃ linear extension of (E, <) such that∀ corresponding
communic. events s,r:r is an immedate predecessor of s.

s1

r1s2

r2

s1,s2,r2,r1

s2,s1,r2,r1

s2,s1,r1,r2

s1,s2,r1,r2

blocked

- Motivation: As if the message is sent at the moment it is actually received.

- The example has 4 different linearizations. In all of them a pair of
   corresponding send-receive events is separated by other events.
   Hence this computationcannot be realized synchronously.

7) Define a (transitive)scheduling relation ‘<‘ on messages:

m ‘<‘ n  iff  send(m) < receive(n)
The graph of ‘<‘ must becycle-free.

- Motivation: corresponding events form a single atomic action

- Then whole messages (i.e., corresponding send-receive events s, r)
   can be scheduled at once (s before r), otherwise this is not possible.
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7) No cycle is possible by moving alongmessagearrows
in either direction, but always from left to right

     on process lines.

- Interpretation: Ignoring the direction of message arrows  ==>

- send / receive is "symmetric"

- "identify" send / receive

- If such a cycle exists ==> no "first" message to schedule

- If no such cycle does exists ==> message schedule exists

S95
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8) Synchronous causality relation << is apartial order.

Definition of << :

for all corresp.
s, r  and for all
events x

Interpretation: corresponding s,  r are not related, but with respect to
the synchronous causality relation they are "identified"

s1

r1s2

r2

Example:

a) s1 << r2  (1)

b) r1 << r2  (a, 3)

c) s2 << r1  (1)

d) r2 << r1  (b, 3)
r1 ≠ r2 !

Compare this characterization to the earlier one
"no cycle in the message scheduling relation”.

1. If a before b on the same process, then a << b
2. x << s  iff  x << r  (“common past”)
3. s << x  iff  r << x (“common future”)
4. Transitive closure

cycle, but

they have the same
past and future
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Causally Ordered Computations

(Similarly as FIFO respects causality on a single channel,

Informally: “Globalizing” the FIFO-property

causal order respects causality in general)

Formal requirement:∀ (s,r), (s’,r’):  s < s’ ==>¬(r’ < r).

Equivalent characterizations:

1) “Triangle inequality”: No message is bypassed by
     a chain of other messages.

- NB: This implies FIFO.

2) “Empty interval”:∀ (s,r):¬∃ x: s < x < r.

- Cf. similar property onlinear extensions for synchronous communications.

3) “Weakly instantaneous”:∀ messages m∃ space-time
     diagram where m is a vertical arrow.

- Cf. “all vertical arrows” property ofsynchronous communications.

- Interpretation: For each (single) message it is possible to claim that
   this message was transmitted instantaneously.

Problem: What are appropriate generalizations for multicast / broadcast?
S95
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Causal Order Message Delivery Problem
- Message delivery preserves the causality relation.

m2m1

s1

s2

P (Obs)

- A message is only delivered to process P if all
causally preceding messages (w.r.t. send events)
sent to the same process have already been delivered.

Not causally ordered:
s1 depends on s2

- Canonical realization:vector of vectors (“matrix clock”)
- Each process is a causally consistent observer w.r.t. send events
   of messages addressed to it.

- Use scheme for causal observer with n vector timestamps of length n.

i
j

i
j

q

p

number of known
messages sent
from process i
to process j

- No overtaking of a single message by a chain of
   messages  ==> “Global FIFO property”.

Matrix on channel pq:

S95

- Problem is related to realization of causally consistent observers.

r1 r2
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Causality Preserving Message
Delivery without Vector Time

- Each process P has a FIFO-buffer Poutand Pin.

Q
Qin

P
Pout

send

receive

message
to other
process

An output buffer waits
for an acknowledgment
(from the input buffer)
before transmitting the
next message.

Rule:

- When executing “receive”, the input buffer Pin
- returns the oldest message if the buffer is not empty,
- otherwise it blocks P until a message it available.

- With “send”, the message is handed over to the output buffer Pout .

ack

Pout is then responsible for transmitting the message to the receiver.

- Sender and receiver a decoupled.

- Because buffers are FIFO and communicate by a hand-
   shake protocol, no indirect msg overtaking is possible.

   ==> Correct and efficient implementation of causal
order message delivery.
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Date: Fri, 3 Nov 89 16:46:55 +0100
From: Bernadette Charron <charron@...fr>
To: mattern

DATE : (101,5,5)
Bonjour a tous,
Me revoila...

Au fait, avec vos estampilles
vectorielles, les processus ‘‘lents’’
sont tout de suite detectes...On ne
peut plus dormir en silence, sans etre
repere, a moins d’accuser le reseau.

Comme j’ai BEAUCOUP reflechi, je
rajoute 100 actions internes pour ma
composante.

Causal Broadcast

Utrecht

Paris Saar-
brücken

U

P

S
??

- Confusion because indi-
   rect communication was
   sometimes faster than
   direct communication.

- Solution: Each participant
   is a consistent observer
   of all relevant events.

!
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Implementing Snapshots with
Vector Time

Idea: Population cencus paradigm:

- Agree on a common time instant T (well in the future)

- Each process takes its local snapshot at T

==> Does this work withlogical time?

c1
P1

P2

P3

c2

P4

c3

c4

- Consider the locally first events     with a timestamp≥ T.

- Take a local snapshot      just before these events.

- A message x --> y from the “future” to the “past” of the
   cut line does not exist:τ(y) > τ(x) ≥ T contradicts the

x

y

assumption that no event before c1 has a timestamp ≥ T.

- Hence the cut isconsistent!

first event
≥ T on P1
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Choosing the Snapshot Time

- Initiator fixes T and distributes it (wave algorithm,

Strategy:

   broadcast,...) to all processes.

- Each process takes a local snapshotjust before
   its clock jumps to a value≥ T.

Problems:

(1) Eventually, each local clock must reach or bypass T.

(2) Processes must learn about T “in time”.

Solutions:

(1) Initiator increments its clock to vector time T and
sends messages (wave...) to all processes. The
timestamping scheme automatically pushes all
“late” clocks to a value≥ T.

(2) Using vector clocks:
- Initiator sets T := timestamp of itsnext event.

(Or it sets its own component in T to ∞, which will “never” be reached)

- Initiator announces T to all processes.
- Initiator does not set its clock to T (according to

(1)) until it learns (by acknowledgments, wave...)
   that all processes know T.

liveness

safety
(i.e.,before T happens!)

cf. time leaps when DST starts!
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P1

P2

P3

Init.
...
...
...

t’-1

...

...

...
t’

T=

announcement of T push clocks to a value≥T

that all pro-
cesses know T

“ack”

Initiator knows NB: Set t’ =∞ inΤ if initia-
tor should not freeze its
local clock component

application
message

snapshot event

- When a process learns about T, its clock is not yet≥ T.
- Why doesn’t it work with Lamport clocks (without freezing)?
- What about real-time clocks? (Bounds on message delay times?)

- Scheme can be simplified and optimized!
- Only last component of vector clocks is relevant.
- Binary time (black / red) is sufficient.
- Single wave suffices (if all processes initially know T)

==> Yields the snapshot algorithm presented earlier!

Using vector time and a well known protocol from our
“distributed real world” yields a consistent snapshot scheme!

The Snapshot Scheme

(Vector time is a good substitute for real time)
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Vector Time and

post-cone

pre-cone

P

Q
R

t

x

“present” of P (not transitive!)

R > P,
but P || Q

space-time

Partial order

2-dimensional cones build
a lattice (w.r.t. intersection)

Lorentz-transformation leaves
light cone invariant

Space time coordnates enable to test
for (potential) causal relationship:
with u= (x1, t1), v= (x2, t2) check

c2(t2-t1)2 - (x2-x1)2 >= 0

vector time

Partial order

Time vectors build a lattice (sup)
(cuts also w.r.t. inclusion)

Rubber band transformation leaves
causality relation invariant

Time vectors enable a simple test,
whether two events are (potentially)
causally dependent (check, whether
in all components smaller)

Minkowski’s Space-Time

Space-time / vector time yield a more accurate view
of our distributed world than “standard time”!
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Lightcone Order and Vector Time Order

P

R

Q

R
P

Q

x2

x1

45o

X=(x1,x2), Y=(y1,y2)

- Light cone of Y fully contained in the light cone of X
   (left picture) ⇔ x1< y1 ∧ x2< y2 (right picture)

⇔ (x1,x2) < (y1,y2) ⇔ X < Y.

==> At least for 2 dimensions, space-time and vector
time have essentially the same structure!

vectors = coordinates of the points

==> 2 dimensional cones≈ 2 dimensional cubes

90o light cones (normalize the maxi-
mum speed to “1 space unit per
time unit”, e.g., “light year / year”)

- potential causality
- “later”

- lattice structure
S95
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The End
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