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Distributed System

- Machines, persons, processes, “agents”...
are located aifferent places.

S95

message
o
process

- The processesboperateto solve a single problem

by exchanging méssag es

L

- loosely coupled
- often asynchronous

1]

[2)

- arbitrary delay.
- no global clock
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About the Lectures...

The lectures concentrate oanceptgand algorithms)

- they are not about (practical) details
- they are not about (theoretical) formalisms

Goal:
Gain insightinto the underlying problems, aspects...

==> apply this to practical problems )
) _ “homework exercise”
==> formalize the concepts to get nice models
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A Typical Control Problem:
Observing Distributed Computations

Observer

control

7N

- Observation is only possible wantrol messages
(with undetermined transmission times)

"Axiom":

"Corollary": | Statements about the

Several processes can "nev
be observed simultaneously

global state are difficult

sss  Consequences for monitoring, debugging...?

er"

(
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Deadlock...
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An Example: Phantom Deadlocks

Four single (partial!) observations of the cars N, S, E, W

1) N waits for W
2) Swaits for g O—=0O
3) E waits for N ¥ S
4) W waits for S
atdifferentinstants in time

yields wrong impression  [iglmga

as if there were a cyclic E unique
wait condition for asingle 4 resource
instant in time (--> Deadlock). N

- Required: causal consistency =as ifsimultaneous.

595 Dis Algo 94, F. Ma.

B O

Phantom Deadlocks

/‘C

N
wait-for
\elatlon

A

(C holds exclusive

resource)

observe B:
==> B waits for C

observe A:
==> A waits for B

observe C:
==> C waits for A

~

S95

e

conclusion! Deadlock!

B () ©
t=3 @
wrong
O—»0O
B\\ / C

Dis Algo 94, F. Ma. 8



An Example: Communicating Banks

- no global view
- no notion of common time

account

(ON@Nve i

- How much money exists in total?
(if constant; lower bound if monotonically increasing)

S95

- Can this problem be solvedand if so, how efficiently?)
(Perhaps at least if message transmission is instantaneous?)

- Is it an important problem?(--> consistent snapshots)
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Example: Even More Problems
With Many Observers!

‘ Distributed traffic
light control

--> safety conditions

(mutual exclusion)

—(00 T
—

- Each traffic light may switch to red autonomously

- A traffic light may only switch to green if it has
learned that the other one is red (“now”)
(Token “right to become green” is transmitted by syn. messages)

- State switching is aavent@®
(Atomic takes no time, action cannot be interrupted)

-~ » time

Obs. 1

Synchron
message

red

AN

green

Obs. 2 P

- Which observer is right?

- do we need a notion of global time?
- how can we determine the truth of global predicates?
cos - in which senses observer 2 wrong?
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Copies of an Electronic Newspaper Counting Instances?

- Idea: Observer is informed about
deletedon

- uniquecreateevent
==| _ March 7th
A \hiarch - deletedon create copy delete delete location 1
generatedn

- eachcopyaction
co delete
March 7th, 2012 J/ copiedon N

- eachdeleteaction
—
March 9th / delete
i/ ~April 9th °

‘ =1 +1+1 |-10+1,-11 -1 1
Mm &/m

- New instances (“copies”) might be created Observer: 1 2 3 2 3 2 1
from a local instance and then be distributed.

- Instances might be deleted.

N/

location 2

» |ocation 3

- But: observation is not necessarily causally consistent!

Total numbe Create  copy - Note: delete event is a
of instances delete causal consequence of the
copy event (“no delete
1 | —1 N +1 without preceding copy").
March, 7 time ---> | constantly O from there on 1 On - However: Observer sees
? conseqguence before its cause!
- Interesting question (after March 7, 2012):

Is the total number of instances = 0 Termination - Something (namely “causality”) @ut of ordet
==> newspaper “died out” detection

oroblem ==> Observer may draw wrong conclusions (e.g., “no more instances exist”)

Dis Algo 94, F. Ma. 11 S95
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Copying by (Remote) Reference Example: Prehistoric Society

- With high speed networks "copy by reference” : : :
Is more sensible than "copy by value". - Organized in local tribes
: - Limited technological knowledge
- Hence: Newspaper instances are read-only, and onlya Can't make fire
referenceto the unique storage location is copied > Keep the fire burning!
- Similar to hyperlinks in WWW, e.g. nptp://nyt.ny.us/2012-03-07
- Local fire extinguishes

--> fetch fire from a remote fireplace with a torch
- Only local view (is there a burning fire somewhere ?)

- If all fireplaces are extinguished and no messenger with
a burning torch is in transit --> wait for next thunderstorm

(lightning strikes and a tree catches fire...)

storage
location

- Copy -->transmit a reference (=address, access path)
- Delete --> remove theeference

- Newspaper “died out” ifio more references exist
- Reference counter =0 ==> can no longer be accessed

- Garbage collectiorproblem in distributed systems!

- Seems to be “related” to tiermination detectioproblem!
(In fact, the two problems are equivalent!)

- Reference countingiust be done in a causally - Termination detection is important
consistent way\--> Distributed reference counting) (no warm meals till next thunderstorm...)
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Wrong Observations

—» time Space-time diagram

Observation \ Messenger

point keeping fire
Two initially
burning fire Messenger
places going back

For all fire places visited (at some instant in time):

- no fire is burning
- N0 messenger is in transit

But: There is n®ingle instanin time
for which no fire is burning.

==> QObservation isvrondg
What can we do to get only correct observations?
(Impossible to observe all processes simultaneously!)

--> General answer later! Now: specific solution.

Dis Algo 94, F. Ma. 18



Distributed Termination Detection Behind the Back Activation Problem

The model:

_active
_~ process

—— message

Message driven distributed (“reactive”) computation:

=

(1) passive --> active only on receipt
of a message

(2) active --> passive spontaneously
(3) only active processes may send messages

(no spontaneous reactivations!)

/

Terminatedat t) iff
(1) no messages in transit

(2) all processes passive

- Problem:Determine wheter a computation has terminated

s95 Dis Algo 94, F. Ma. 19 s95

reactivation
message

/

T O
«— 7
O observer's

control message

becomes
passive soon

Problem Implement faithful observer

- usingcontrol message®.g., on a ring) which
visit the processes ameport their states

- superimposition of a control algorithm upon the
underlyingbasic computation

Dis Algo 94, F. Ma. 20
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The Atomic Model
message
| _— P1

big bang/ : ~a P2
(only once)

\‘ \- P3
.—>
time not terminated not terminated terminated

(process is active) (message in transit)

Idea: Let the duration of activity phases tend to O.

Model: Process sends (virtual) message
to itself when it is activated.

Message is in transit while process is active.

e

P1

/

P2

e

—

P3

atomic action

No message is in transit.

Terminated (atomic model) <===>

v

==> Check whether there are messages in transit

\ Termination detection problem

Dis Algo 94, F. Ma. 21 s95
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Global Views of Atomic Computations

process

message

Messages quietly move
towards their targets...

...but suddenly a process

idealized observer
"explodes” when it is
hit by a message.

Terminated if noe exists in the global view

s95 Dis Algo 94, F. Ma. 23

Counting Messages?

- Determine whether 0 or >0 messages are in transit.
- Is it correct to count sent and received messages?
- Simple counting is not sufficient! Counter-example:

P1 T
P2 %/F
P3 P

non-verticalcut line

In total:

1 message sent,
1 message received.

One does not ob; But not
serve all processes :
simultaneously terminated!

Reason:

- Message from the "future”
- Inconsistent cut

NB: counting would be
correct for a vertical cut!

- Possible strategies to “repair” this defect:

(1) Detect inconsistent cuts
(2) Avoid inconsistent cuts

s95 Dis Algo 94, F. Ma. 24



The Four Counter Method

S, R

P1 / /

/
/

t / second wavafter
W1 W2 the end of the first

claim: S=R=S'=R’ ==> terminated

Proof (sketch):

S=S’ ==> no message sent between W1 and W2.
R=R’ ==> received
==> values S and R at t = values of W1.

Hence: S=R ==> at global time instant t:
# of messages received = # of messages sent
==> N0 message in transit at t
==> terminated at t
==> terminated after W1_

There exists a more formal proof...
But how does one find such an algorithm?

s95 Dis Algo 94, F. Ma. 25
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A Formal Proof

. (O g
S/
S, /'
A

t1 t2 t3 t4 (t3>12)
Notation:

- local send counter of processaPtime t: gt)
- local receive counter of processaPtime t: f(t)

-S(1) =3 s R(Y) =3 r;(H)
Lemmata:

(1) tst' ==>s(t) < s(t), r,(t) <r(t) [Def]

(2) tst' ==> S(t)< S(t"), R(t)< R(t") [Def., (1)]
) R*<R(t2) [(D), ||ris collected before t2]
(4) S™* = S(t3) [(1), sis collected before t3]

(5) For all t: R(t)< S(t) [induction on the number of actions]

Proof:
R* = S™* ==> R(t2) = S(t3) [(3), (4)]
Pl ==> R(t2® S(t2) [(2)]

T ==
Two > R(t2F S(t2) [(5)]
suffice! ==> terminated at t2

Dis Algo 94, F. Ma. 26



Termination Detection for The Global Snapshot Problem
Synchronous Communications

T—{ = ? ("same-time": is that possiblé?)

- Synchronous communicatige.g., CSP or Occam):

- Message arrows can be drawn verticadly:Messages

his is indeed iustified but it i buious! are neve
(this is indeed justified but it isot obvious!) in transit @ Coordination
of partial
P views -->
P2 consistent
Image?
P3 l
P4 I

- Abstract underlying computation modeled with
two atomic actions:

i i Dynamic scene too vast to be ’ I
state, takes valueactive orpassive y .
captured by a single photographer

Xpig {state, = active}
statg, := active {"instantaneous” activation}
‘\ f In reality:
. messages are o . . . .
l,: statg = passive o concern here - Population census: fixed time instant
(does not work here).
. : .| “dual” to the _ . .
- Terminated iff all processes are passiveatomic mode! Inventory: freeze (not practical).

S95 Dis Algo 94, F. Ma. 27 S95 Dis Algo 94, F. Ma. 28



Consistent Snapshots of Global States Consistent Snapshots

Webster: cf. communicating banks example!
State= a set of circumstances or attributes instant otf local — time —»
characterizing a person or thing ° Ser"a%
at a given time. P1— 8 f
> 3
P2 o
But do we have “global 5 2 2 3
time” in a distributed system? 1
P35 L|J 4 )J
) } .. ideal consistent inconsistent
Global state (at a given instant in time) (vertical) cut1 cut 1o (a
All local process states + / s —> 15 ~>19(+47?)
all messages in transit. cannot be made

not attainable

\1%4

vertical (msg
from the future)

Problem:The states of the processes cannot be equivalent to a vertical
observed simultaneously! cut (can be made vertical)
As ifeverything / \
. were observed
How can we guarantee consistengy?- simultaneousl
Y connect local ob

“rubber band | --> changes metric
servation points transformation'} --> keeps topology
by a (zigzag) liné

Applications

- Recovery points for distributed data bases
- Debugging of distributed systems

\v

- How can we guarantee that the local observations
Consistent observer: sequence of consistent snapshots form a consistent cut?

- How can we observe the messages in transit?

S95 Dis Algo 94, F. Ma. 29 S95 Dis Algo 94, F. Ma. 30



The Snapshot Problem

Goal "Instantaneous" snapshot of the global state

without "freezing" the distributed system.

In reality:

- Population census: fixed time instant
(does not work here).
- Inventory: freeze (not practical).

Applications

- Recovery points for distributed data bases
- Debugging of distributed systems

Dis Algo 94, F. Ma. 31
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Space-Time Diagrams

vertical
cut line receive event

o L W

Process 2}

Process 3 o

e ‘ “ g

" internal event  S€nd event
global time message

A different picture of thesamecomputation:

I Y
— NN
stretch / | o o
compress . — €
' . @o—>
I el

Why is it thesamecomputation?

Abstract fromreal time-->
Elastic deformations (“rubber band transformation”)

Preserves theausality relation: Message arrows must fie-

e < e’ if there is a left-to-right ver go backlwards in_lgilme!
path from e to e’ (--> no cycles possible

e || e’ (“concurrent”, “causally independent”)
if not ‘<* and not ‘>’

Example: @ < e;, butnote; < & < partial order]

Dis Algo 94, F. Ma. 32
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The Causality Relation

- Define the relation ‘<‘ on the set E of all events:

1%

(causally) precedes

“Smallest” relation on E such thmtiy If:

1) x andy happen at theame process and

x comes beforg, or

2) x is asend event anglis the
correspondingeceive event, or

3)dzsuchthatx<z O z<y.

- Why is it a partiabrder?

(i.e., why is it cycle-free?)

- Terms “happened before” or “causal order” should

S95

be avoided (--> confusion)

Dis Algo 94, F. Ma. 34



Consistent and Vertical Cut Lines

| such cut lines are callebnsistent

- If no message goes from the “future” to the “past” of a cut

line, then this cut line can be drawn vertically in such
a way that no messages go from right to left!

- obviously useful for termination detection and similar applications

The Snapshot Algorithm

Yields a consistent view without freezing the system

messenger of the or several

observewisitsall messengers do
processes in sequertte| this inparallel

“
- as if a corresponding wave had visited all processes simultaneously P71 M
P2

P1
P2 ———pas
P3
P4

inrfgrmggl rubber band-
grogﬂ $ transformation

P1
P2

\

- Move all cut events to the vertical position of the righmost cut event.
- Events to the left of the cut line keep their position.

- Events between the old and the new cut line are moved just over
the new cut line.

- Corresponding receive events of send events which are moved can
also be moved ==> no message arrows go backwards in time!

- Another informal, but “constructive” proof: Cut along the line with a
pair of sicors, move right part far to the right; repair cut arrows...

- Formal proof without graphical means: Formally define “cut”...

s95 Dis Algo 94, F. Ma. 35 s95

‘ Svent P3 -
future even

Processes and messadaackor red.
Snapshot instant: black --> red
then: report local state to the observer,

Process becomes red if a) it is visited
b) receives a red mess

age.

Proposition: Snapshot is consistent.
Proof.: No "message from the future"

Dis Algo 94, F. Ma.
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The Snapshot Algorithm - Messages

- Messages in transit?
- Black messages received by a red process.

A - Send aopyof it to the initiator.
- Problem: When does the initiator receive the last copy?

< red

“Do not read tomorrow’s newspaper today”

Initiator

\ \ CQ\

a
receipt of the
last (black) copy

termination des v
tection problen (snapshot complete)

Can we simplycountthe number of
sent and received black messages?

But, then: Do we get x =y orky for our computation?
(i.e., which “possible” state do we get with the algorithm?)

e o How many consistent
global states does this
=1 y =2 computation have?
Dis Algo 94, F. Ma. 38
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Distributed Computations

Detecting Predicates with Snapshots
- n-fold distributed computatiofwith asynchronous

- Of what value is a (repeated) snapshot algorithm
message transmissions) 5 ,(EE ,I',<) such that:

that first yields s1 and then s2?
1) [Event$ All E, are pairwise disjoint.

2) [MessagesLetE=E0..0E.
Forlr 0 SxR with S,RUE and $ R =[] one has:

- for all sJ S there ist mostone rld R s.t. (s,r T
- for all rJ R there iexactlyone 91 S s.t. (s,r 1T

3) <is alinear order on each E
4) (s, ==>s<r
5) <is an irreflexive partial order on E

6) < is the smallest relation which fulfills 3) - 5)
(i.e., there are no other events related by ‘<)

[Causality relatiof

- Makes sense if the predicate is stable, but otherwise?

- Counterexamples: N
@

NB: The snapshot algorithm is also useful for other \ not possible because of (5)
purposes, such as determining recovery points, \H o
allowing consistent monitoring etc. _ S S 42

not possible because of (2)
not possible because of (2)

Dis Algo 94, F. Ma. 40
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Remarks

- s S are calledend events [ R receive events
- other events are call@gternal events
/Lamport, 197$

- The causality relation <’ is often calletldppened befote

e<e’s -thereis acausal chain from e to e’
- e may influence e’
- e’ (potentially) causally depends on
- €' "knows" e

interpretations

- Representationf a computation defined in that way
Is possible with space-time diagrams

- Definition enables (because of "at most" in item 2) to
modelin-transit messages:

@ @ @—

/mz\ml>

end

- Distributed computations witeynchronousnessage

transmissions are modeled in a sligthly different way:

= - not possible for synchronous message
transmissions (--> deadlock)
P, - I induces a different partial order ‘<*

595 Dis Algo 94, F. Ma. 41

Prefixes of Computations

distributed
computation A

distributed computation B
as a prefix of A

distributed computation D
as a prefix of B

E, prefix of D

ef

distributed computation C
as a prefix of A

® /o ® o
?
.e" no computation

(receive event without corresponding
send event - message was never sent!)

a b c
O o>
J
e f

F, prefix of B and D

Dis Algo 94, F. Ma. 42



Prefixes and Consistent Cuts

- Prefixes are essentiallgft-closed subsets’ of E
with respect to ‘<

OxOFB,yOE: y<x ==> yiIF

- Such subsets are callednsistent cuts

consisten
Ccut E’

==> a local predecessor of an
event is also in the cut

)

/ ==> also the send event corres-

ponding to a receive event

o e
As_slociated cut line
(with cut event{] )

- But: not all lines cutting a time diagram in two
parts define a consistent cut!

(o o

A

The set of events to the
left of the cut line is not
left-closed -->
inconsistent cut

N

|

- General cuts (consistent and inconsistent) are subsets

of E which arelocally left closed (‘<’ restricted on E).

- Cuts can be represented by thawally rightmostevents.
- add an initiadummy everiil for each process
- Example: (r, yH) =—— > time vectorsi

s95 Dis Algo 94, F. Ma. 43

The Prefix Relation

- Graph is directed and
contains no cycle.

- Prefix relation idransitive

==> Prefix relation is
apartial order

- Each consistent cut corresponds to a prefix computation.
- Such a (finite) computation has a final global state.

- Hence one caassociate a global state to a consistent cut.

- Consider computation A.

- Was the final state of B or the final state of C an
intermediate state of computation A?

- Equivalently: Didd happen beforg or vice-versa?
- Note: Both cases are mutually exclusive (no simultaneous events)

==> (Executions of) distributed computations ao¢

sequences of global stai@s of events)+-> nototal order
- But what then? Is there an adequatbstitut@

Dis Algo 94, F. Ma. 44



The Prefix Lattice Parallel and Distributed Simulation
- Pictorial and mathematicklttice of “happened” events.

(i.e., apartial order with some additional properties) - Simulation = Experiment with modelof the reality.
dm1l dim2
"maximal” -
\/ computation Input
Here we would inout
(More “dimensions” have an “imposs- P
for more than two ible” space-
processes) time diagram
/ abstraction
parameter - model | parameter
— -
~—p
@ correspondence i
\ Lattice property: / \ _‘ _
For two (or more) consistent Interpretation  output
cuts (i.e.= global states), output
@ there is always a common
later and a common
/ earlier consistent cut.
(--> Substitute for “sequence”, . . _
_’> new notion of time) - Computer based simulation =
\ “minimal” computation Executing gorogrammed dynamimodel.

@)

(no event has yet been executed)

- Used when experiments with reality are

- not possible
- An intermediate state usually hesveraldirect - too costly
predecessor and successor states! - too dangerous

- Execution moves upwards in a vague and indefinite way!
==>Uncertainty about the “true” global state!

595 Dis Algo 94, F. Ma. 45 S95 Dis Algo 94, F. Ma. 46



Parallel Simulation?

- Simulations are often very time consuming

- large, complex models
- many parameters
- long runs to reduce the variance in stochastic experiments

- Speeding up simulations is very important!

- many applications in science, engineering ...

- How can one use parallel computers for that?

shared memory

distributed memory

| distributed simulatign

595 Dis Algo 94, F. Ma. 47

Simulation Principles

- Usually: analyze development of a system in time

--> State of the model is advanced “step by step” in simulation time

- Classification of simulation schemes

simulation
continuous discrete
time driven asynchronous
(synchroV// \
qguasi- / event activity process  transaction
continuous driven oriented oriented oriented

- Simulation paradigm

- methods, strategies, modeling styles
- typical simulation languages

- typical application classes

- "world view"

s95 Dis Algo 94, F. Ma. 48



Example of an Event-Driven Simulation

“Booking planes by telephone in a travel agency”

System specification:

O 01l b WDN PP

o ~

S95

. 5 clerks wait on the phones.

. 18 phone lines (i.e., at most 13 clients are waiting).
. “Please wait” when all clerks are busy.
. Clerk becomes ready --> longest waiting client is served. .
. Clients wait 4 minutes on the average (norm. distrib.).
. Clients give up if no line is free or if they have been

waiting too long.

. Arrivals are exponentially distributed (mean 20 sec.).
. Service times are exponentially distributed (mean

1 min for one way, 2 minutes for round trip ticket).

relative
number

I I I I
2 3 4 5

normal distribution

| —

6 min.

. Probability for round trip ticket = 0.75.

—o—o

S

| L]
Typical arrival and
service rates

Dis Algo 94, F. Ma. 49

Simulation Experiments

Analysing the system:

- average waiting time of a client (--> 70 seconds)

- idle times of the clerks (--> 9%)

- utilization of the phone lines (--> 45%)

- percentage of immediately served calls (--> 88%)

- number of clients who gave up (--> 2160 of 18000)

Possible experiments:

1) More clerks--> effects?

2) Less clerks --> consequences?

3) Consequences of reducing the service time to 55 sec.?
4) ...

s95 Dis Algo 94, F. Ma. 50



Event Driven Simulation The Experiment

: call of a
Model state remains constant between two events ' . EE call gg%?]t has
. scheduled
P 08:00 client 1 initially
- time “jumps” from event to event
- only events change the state of the model | not occupled

Time jumps, driven by
the next event

\N08:03
. 08:09
Typical events . & 08:05 ca end of
: service
- call of a client 08:03 call | lient N Sent 1
- enqueue at a waiting line
- starting an action End of service event is already

- .. scheduled at the beginning of servi

Event: 08:06
call
- has an associated time (when it will happen) N ) : 08:09
- if it happens, it “instantaneously” (in simu- ' & N8OS client 3 gg?vicc):fe
lation time!) changes the state of the model . W @( :
08:05 16 3 client 1
//6ient 2\\ 08:07
end of
service
- Events propel the simulation List of events client 2

that are currently schedulec

- Events drive SImUIatIOn tln(e'?" the Each call already schedules the next call
advancement of the simulation CIOCk) ==> there is always one scheduled call event!

Dis Algo 94, F. Ma. 51 S95 Dis Algo 94, F. Ma. D2



And so on until:

O @

08:47

- 5 scheduled end of service events

- 1 scheduled call event

O @ 4

08:49 12
)
iGN
N|

client 41

waiting clients

- 5 scheduled end of service events
- 1 scheduled call event

08:55 Heduled
: Is schedule
ive u
g event when

client 41 all lines
were busy

O @ 4

- 3 scheduled give up events

08:57
) ) 4
% | %
.] o— .] ‘] o
client 44 client 45 client 46 client 47

first client will be
served next

S95

client 46 gave up

Dis Algo 94, F. Ma. 53

The Simulation Cycle

‘ put al least one initial
initialize

«— eventin the event list

Is there one
more event?

T R—— final statistics

CLOCK :=time
of next event

remove the event from
the event list

Execute the
event (i.e., update
the model’s state)

| ™

output of
statistics etc.

possibly insert new events
into the event set

Idea: - Execute the next event (i.e., the event of the

event list with the smallest time).

- This might produce new events which are
then inserted into the event list.

Dis Algo 94, F. Ma. D4



Event-Driven Simulation

11

-

17

event list

state of the model

o

- Simulation time jump® the next event.

- Execution of arevent routine:

- Changes the model state.
- Possibly schedules new events (in the future).

simulation cycle

- Parallelizationby partitioning the model into

autonomous submodels.

- Goal: speedup

S95
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Example:
Traffic Simulation of a City

Where should the new bridge be built?

- average time to traverse the city
- various traffic densities

®) O

—r
i

- Onesubmodel simulatdior each town district.

- Cooperationby timestamped event messages.
(remote event scheduling)

Dis Algo 94, F. Ma. D6



Example: Logic Simulation Distributed Simulation

timestamped event
messages for scheduli
local sequential  of “remote events

simulator

- Clocks have different values --> necessary for speedup!

L
]
\

- Timestamp of messagesclock of sender.
- Propagation of signal changes

by event messages - But: is timestamp of message < clock of receiver possible?

--> Partitioning, mapping, dynamic load balance...
(very important to get significant speed-up values!) - When may a simulator advance its local clock?

==> distributed simulation / synchronization schemes

Dis Algo 94, F. Ma. 57 S95 Dis Algo 94, F. Ma. 58



Distributed Simulation Schemes  Qptimistic Simulation, Time-Warp

/ \ - Each simulator may advance its clock independently.

temporal - . . .
gua?antees time reversa - If a message with a timestamp < local time of
l l receiver is receivedRollback
conservative optimistic methods simulation
methods (from 1980) (from 1985) clock value J—U—'_l_lf
(Briant/Chandy/Misra) (Jefferson) /
_f__rjl—— execution time

respect causal guarantee causal i -

. - ..
order a priori order a posteriori
guarantees, lookahead, time-warp, e ~
null-messages, rollback, Rollback
deadlock,... GVT,...

- set receiver’s clock back to timestamp of message

\ / - restore an earlier state (saved checkpoint)

. - possibly send out anti-messages
hybride methods (?) \_ J

-->Many checkpoints!
- Availability of parallel computers -->

Increased research activities since 1985. >When are checkpoints obsolete?

_ _ - no longer needed
- Many variants of the basic schemes have been designed. - memory may be freed

- Many publications on specific aspects.
- But until now no real breakthrough in general speedups.
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Time-Warp

fr_om other
simulators

e
T=

17| local clock

T=21» T=39»

T=53

local event queue

local state at T=17

-

J

sent at
t=15 11 from A

sent at
t=13 10 from C

sent at
t=7 4 from A

List ofprocessed

/

to other
simulators
B

\C

t=60

D
t=49

local state at T=15

'

local state at T=12

'

local state at T=9

List of checkpoints

messages with send- of the local state

time and sender

S95

1)/

sent at
15to B

sent at
13toD

,_..
1
o
o

4

sent at
11to C

&

List of sent event
messages with send-
time and receiver
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><12

anti-

message

>

t=

J
><12 *

><

Receipt of an anti-message:

- cancels corresponding message if still in event queue
(what if anti-message arrives first?)

60

t:49\\?
anti-message

><
>

- otherwise: produces a rollback, secondary anti-messages...

Problems:

- rollback cascades

- cycles of anti-messages chasing messages
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- Simulator may act on illegal local states

Time-Warp - More Aspects

==> anything is possible!

- Storage space for saved events and states

- Overhead (--> speed-up?)

==> incremental state saving?

- Many variants, strategies, heuristics..., e.g.:

S95

- broadcast “all my messages after T=x are invalid” instead of

dedicated anti messages
- lazy cancellation
- time windows
- adaptive strategies

- cancel back

Dis Algo 94, F. Ma. 63

Global Virtual Time (GVT)

Minimum of all clocks

GVT(T) = rnini CLOCK i(T) (ignore message time-

execution time instant

stamps for synchronous
communications)

\ Function of the¢

- Applications: global state!

3%

- no rollbacks beyond GVT
- older checkpoints may be removed

- unrecoverable output operations may be committed

- detect end of simulation time period

- GVT approximation:

- GVT(1) increases monotonically
- tightlower bounds GVT(1) necessary

L “current” GVT value is meaningless

- Modelling of the underlying distributed
computation by two types atomic actions:

l;; CLOCK; := CLOCK + d (d>0) internal action

of process i

Xj: if CLOCK < CLOCK then
CLOCK; := CLOCK,

.. (simplified: message timestamp = sender’s clock)

synchronous
remote event
scheduling action
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An lllustration of the GVT Approximation with
GVT Approximation Problem Termination Detection Algorithms

® Idea: termination detection is binary version of GVT approximation

e.g., 0 ando
- Each person has a@ % @

certain height:

o - Fix athreshold value [0 R

. - Call a processactiveif its CLOCK <t (t-passiveotherwise)
- A person may grow T@ —=> @
spontaneously: before] [l | after Was 2-passive, butwjl___CLOCK=12
become 2-active now CLOCK=20
- A person may wink v @ | :
with his eyes at i . - Only a t-active
another person --> - process can
the other person is make another
reduced to the height @ process t-active
of the winking person. 2-active|  [Spontaneously:

3-active|  |c| OcK=5 --> CLOCK=9.
Was 5-active, becomes 5-passive

stable property:

: — - Detect: "no process is t-active"
= o “Axiom” of distri- {
@ buted computing ‘ 2l CLOCKS > t\
3

V / e tlrtnte tis ovter..,.,
= : > (“t-termination”)
- Observer has no global vie '
@ - Fooling the observer by tis a lower bound appro-
@ "behind the back" winking | ximation of GVT!
Termination detection probldm

Dis Algo 94, F. Ma. 65 Dis Algo 94, F. Ma. 66



t-Termination as a Bound for GVT

ldea:

- Many termination detection algorithms run in parallel.

- Each algorithm determines a specific lower bound.

- All algorithms are combined into a single algorithm.
(Instead of a single message: transmit a whalalleof messages)

Example 3 termination detection algorithms with
t,=5, =10, =100 are executed in parallel.

Return max;tof those which reported t-termination.

NB: Lower bound is a stable (and hence observer
independent) predicate.

==> Why not use a snapshot algorithm?

This is possible. However, it turns out that consistent cuts
are not required - inconsistent cuts will also work! Hence,
shapshot algorithms are perhaps too “heavy” for that problem!

s95 Dis Algo 94, F. Ma. 67

Speedup ?

- Mapping of simulation objects onto processors

- minimize communication (remote event scheduling)
- balance the load (is never perfect!)

- Message transmission overhead

- Synchronization overhead

- No global view --> unavoidable waiting conditions
- Causal dependencies among events

- Partitioning the model needs time

==> Limits the attainable speedup!

Faithful speedup measurements:

Parallel simulator should be compared to true sequential simulator
(not to the parallel simulator running on a single processor!)
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Critical Path Speedup Observing Distributed Computations

Sequential simulation --> measure the duration of events:

control
5 3.5 6.5 7.5 9 11.0 13.0 15.5 messages
a3 60— —b0—o0— -
- > lseq
I~ e T . Observer
Distributed sequential” simulation:
4 ‘ A
)
—¢ )
arrows = causal dependenties
(event messages) v
‘_

- Observation is only possible wantrol messages
(with undetermined transmission times)

“Optimal” distributed simulation: Push everything as far
to the left as possible

respects causal

o —oe dependencies "Axiom": | Several processes can "never"
/ be observed simultaneously
critical path
 , L &
- > Tpar "Corollary": | Statements about the

global state are difficult

Calculated speedup is much too optimistic:

" It abstracts from communication overhead, Consequences for monitoring, debugging...?
par from wait conditions, from control overhead... -
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S95

Observation

|
The real computation

Dis Algo 94, F. Ma. 1

S95

Idealistic view:
global perspective

s)

The (global)
observer

A

The object to
be observer

Dis Algo 94, F. Ma. 12



observatio
messages

S95

Observer 2

Conceptual
problems

- non-simu_ltaneous
observations!

- consistency?

- two _observations
equivalent?

observatio
messages

Technical problems:

- Instrumentation
- intrusiveness

Dis Algo 94, F. Ma. 13 S95 Dis Algo 94, F. Ma. 74



External Observation “Internal” Observation

\ processes within the computation
. must have a causally consistent view
- Debugging y

- Monitoring
- Visualization

event notifica- - Performance . L .
observe,  flon message analysis - Deadlock detection, termination detection...

- Replicated servers (broadcast / multicast protocols)
“increase pressure”

pressure . / \
plpe \ /

/1IN process1 process 2
small leak

loss of time —»
pressure
pressure gauge

A‘N
pump | > - Example Distributed garbage collection
g]é:t{\%?y%\‘ \ P J J

observer}| ._>

Object X must have a consistent “view” of
how many references are pointing towards it

- Protocols and algorithms

- causality preserving

- “observations” of the
disks should be
equivalent (=7?)

Y

effect is observed before its causel!

referenc
in transit

Wrong conclusion of the observer:

An unmotivated activity by the pump
(led to increased pressure and the occurrence of a leak, which)
resulted in a loss of pressure

Problem:Realization otausally consisterdbservers

595 Dis Algo 94, F. Ma. D S95 Dis Algo 94, F. Ma. 7 ©



Monitoring and Visualization

/

Capture useful data
during execution
(for later use...)

/

Present monitoring data

Provide an adequate image
Snapshot <--> animation

- Application of observation techniques

-

- Parallel and distributed programs ammplexsystems

Motivation

--> difficult to understand [ - no central control

--> error prone
--> difficult to verify

~

\* 2}

- no global time and state
- inherently non-deterministic
- many threads of control
- interaction / synchronization

-

- Knowing (exactly) what is going on...

Purpose

--> gain insights, understand complex phenomena

--> debugging, testing
--> performance evaluation --> optimization
--> fault and security management

--> trend analysis

/

S95

Dis Algo 94, F.Ma. [

Monitoring

Collecting infor-
mation about:

- local actions
- interactions
— - local state

- global state

trace
file

message : :
time

trace
data

Wi
Wi

- Event-drivermonitoring

- only actions of interest generate information

- Time-drivenmonitoring
- status information is obtained periodically
- sampling rate?
- consistency? (synchronized clocks?)
- information overflow?

s95 Dis Algo 94, F. Ma. 78



Events Processing of Monitoring Information

Any atomicaction which
. significantly affects the — e
What IS an eventL Io?:al stateciqc a process i i i
- sending / receiving a message local traces
- entering / leaving a procedure Y Y Y
- executing a statement / a machine operation - local filter —=> discard information
- changing the value of a variable % % %
. ) ) . ™ merging / combination ==> increase level
What information is associated to an event? i of abstraction
- its type (e.g., “enter procedure”) > global filter
- its time of occurrence '
- parameters and attributes (e.g., line number) global trace
- ... the whole local state of a process / processor
feedback
\ --> complete information! / \\~ loop

W (o) |}

~

Combined events

report, managementmonitoring control
- grouping of primitive events or other combined events trace file information
- there exist various languages to specify combined events base
- often: rather complex syntax and unclear semantics; examples:
- when does “e1 and e2” happen? —— Avoid generation of unwanted information at

- causal or temporal order in “el --> e2"?
- is negation sensible?

- difficult to “detect”, because components can be located
on different processors

various levels (e.g., activate / deactivate filters)

Dis Algo 94, F. Ma. 9 s95 Dis Algo 94, F. Ma. 80



S95

The Intrusiveness Problem

- Effect of tracing / monitoring / debugging on
the behavior of the monitored system

- monitoring alters the timing of events

- degrades system performance

- may change the ordering of events

- may lead to incorrect behavior / results

- may mask errors of the unmonitored system

> Result of monitoring is only an approximation
of the unmonitored system!

Dis Algo 94, F. Ma. 81
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Hardware and Software Monitors

- Hardware monitors

- nonintrusive

- physical sensors connected to system buses, processors,
memory ports, I/O-channels...

- typically high-speed comparators for simple bit patterns
- disadvantages:

- requires additional hardware

- very low level

- not portable

- problems with caches, pipelining... on the chip

- Software monitors

- manual or automatic insertion of “probes” into the
source code (requires recompilation)

- instrumented libraries (e.g., communication)
- insertion into object code

- instrumentation of the kernel (works for all programs,
independent of language or compiler)
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Visualization ParaG raph [Heath, Etheridge (Oak Ridge)]

Systems: - Trace based graph. display system (portable, available)

_ o - Several different perspectives (color, animation)
- Balsa Il [M. Brown: algorithm animation]

- TOPSYS, VISTOP [Bemmerl (Munic)] Animation ==> Sequence of global snapshots
- TMON, TIPS [Univ. of British Columbia] - Status of each node (idle, active,...)
- SIMPLE, TDL/POET, VISIMON... [U. of Erlangen] - Paradigm: "front panel lights” of the system

- Jade [Joyce et al.]

- Voyeur [Socha et al.]
- ParaG‘gph [Heath, Etheridge (Oak Ridge)] ’ 1)
' /

C_onsistent
view?

-->
7 (sufficiently well)

synchronized
local clocks?

timestamped
events!

CUBE RIHG HOK=CUBE
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Kiviat profile
Message queues

- Number of messages, number of bytes vs. time - Recent average fractional utilization of processors

- Each processor represented by a spoke of a wheel
- Size and shape indicate overall load balance

Kluiat|

rezsece ouene [uins | rom ane (A |

RURERLRRR NN

--> global time?
(or approximation of global time?)

- Is the” snapshot” consistent?
--> “wrong termination detection” phenomenon
would wrongly yield “load 0” for all processors!
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Spacetime diagram

- Processor activity (active/idle) on horizontal lines

- Full detail of message activity (slanted lines)

- Messages “reactivate” idle processors
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Critical path

- Longest serial thread (--> limiting performance)

- Identification of bottlenecks
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Monitoring and Visualization: Problems

- Observation problems

- Variable message delays
- Maintaining causality

- Online / offline?
- Real-time monitoring <--> Post mortem analysis

- Scalability? (--> massively parallel systems)
- Volumeof data -->

- Selective views, abstractions
- Hierarchies, clustering
- Filtering, zooming

- Pragmatics:
- Easy to manipulate, easy to understand pictures
- Layout of items in pictures (problem specific?)

- Multiple views
- Standards for graphics and trace data (tool interaction)

- Technical aspects:

- Intrusiveness, probe effect, perturbance, overhead
- Timestamps, clock synchronization

- Instrumentation (manual, automatic, code level)

- Drawing speed, human perception speed

- Network bandwith, storage capacity
- Architecture of event collection

Execution Replay
may help with
some of the
technical problems

s95 Dis Algo 94, F. Ma. 89

Another Application: Debugging

central
debugge- Debugger “observes” the computation.

Main focus of aistributeddebugger:

- Interaction among processes
- Global properties

Use a sequential debugger
for purely local errors

Problems

- Global state is distributed
- No unique time frame
- Error latency (too late when reported...)

Execution Replahelps:

- Reproducing the computation (--> “heisenbug”)
- Halting immediately (sequential execution!)

(observation of the original run!)

—

: .| Confusion: often ng
More seriousonceptual problems:— =2 =Er

- What is a single step? (Next event is not unique!)
- Can we detect global breakpoints? (NB: global halt state is consistent!)
- Observation must be “causally consistent”

- i ique!
Observations are not unique! ~ T Relativistic effects

s95 Dis Algo 94, F. Ma. 90
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BBN “TotalView” Multiprocess Debugger

= ToialView is sy toowse. 1
has a point-and-click interface,
online help, casy menus,
requires ma special malke files,
Jtll.l. II“FJLH“.'!‘- 0 TesirIC oS On

codie o -;'|I'||"‘Iv|l] tahle size.

= TotalView is fast. Try it You
have never seen X Windows

Ve s |:.|I-\.|__

= TotalView debugs multiple
processes simultancously. The
software awomatically attaches
fo newly created processes and
[ollows your lork and exec calls

* TotalView lets you debug
network distribued applics
vons. I you use PYR, R or

soclets, vou need TowmlView

& TotalViea shomes yion whai
vou need to see. Just click on

a variable and see data or the

underlving structure; click on
a Tunction name and see ils

SONLPCE

= TowmlView provides source
level |.||.'|:-||ggi.||.g for O, Coaw, and
FORTRAM.

= TowlView lets you debug an
assembly and mixed source’
assembler levels.

= TotalView lers vou write
conditional breakpoints in

C or FORTRAN; why leamn
“debugger language™ when you

already know how 1o program?

= TotalView is mvnilable on:

—%un SPARC station munning
Sund S 4. 1.x or Solaris 2.x.
Digital Equipment’s Alpha
rnring LSl

And here's something your boss
will like, TotalView software is

allordable.

To fimd owt how vou can

own “the besy debugger in the
world,” call 1-B00-422-2359 1o
request an evaluation copy of
the TotalView mulii-process
debugger. Or semd your request
wia electronic mail o

v b com,

1abbnga@ ssaosoidnni ferosswwo)

BEMN SysTeEms ar TECHNOLOGIES



Execution Replay Applications of Execution Replay

- Reconstructhe original computation

- Same initial state --> same “external behavior” - Reproduce an erroneous run in “slow motion™.
=" . .
. C : - add monitoring events _ _
- Computations are usualhon-deterministic - add print statement E Bﬁgﬁgg remains
--> During the original run of the program: - slow motion of a single proces
capture relevant information inlag-file
\ . .
- non-deterministic choices - Global single stepping of the run.

- relative order of significant events

- NB: next step is not unique!
--> Replay using the log-file to direct the scheduler

(€.g., deliver the "right” message to the process) . Hajt immediately and examine the variables of
a stopped state.

- Often, certain requirements are made:

- Deterministic processes

- No real-time dependent choices
- No asynchronous interrupts

- Usually not applicable to shared memory systems

- Visualize the computation with appropriate speed.

‘ --> overhead! \

- Behavior is not changed if during replay:

- Processes astowed down --> debugging|
- Processes astoppedand examine
- Graphicalisualizationworks in “slow motion”
- Execution issequential“step by step”)

S95 Dis Algo 94, F. Ma. 93 S95 Dis Algo 94, F. Ma. 94



Nondeterministic Situations

Pl—%»

- Which message arrives first at P2?

- Such “race conditions” are the

P2———eo—0— only (!) source for non-determinisms
el e2
- More involved situations (many racing
P3 messages, indirect overtakings) possible
- Idea:

- During theoriginal run P2 logs which message
was received at el and e2.

- Duringreplay P2 consults the log to receive
the correct message.

- Messages are uniquely identified by the tuple
(sender, event seq. number of sender, receiver, event seq. number of receiver)

- Only the order of messages is traced, not their
contents (“control driven replay”)

- for non-reproducable environments (data input, clock readings etc.)
thecontentsof messages must be logged (“data driven replay”)

- further problems: asynchronous interrupts
(expensive solution: register and trigger the instruction counter)

- Replay may start at the beginning or at a checkpoint
(= consistent snapshot)

s95 Dis Algo 94, F. Ma. 95
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Receiver-Driven Reproduction

(P7, 10)

/.23 2

Original run

(P7, 10, P9, 24)

log
file

P7
8 91
(P7, 10)
P9 23 7
/'. v 24
(P7, 10)!
(P9, 24)
log
file

- Is it possible to reduce the log information?

- “P9, 24" is of course unnecessary if each process has its own log file
- but: are further reductions possible?

Reproduction run:
receiver consults the log

- Is it possible to omit the message tags?

Dis Algo 94, F. Ma. 96
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Sender-Driven Reproduction

log
(P7,10 file
P9)? ~ (24)!

Reproduction run:
Sender consults the log

- the key “(P7, 10, P9)” is redundant
- “(24”) is sufficient for the msg tag

P7
9 10
(24) Receiver counts receive
events and accepts the
P9 /'23 ®, ~ Mmessage which matches
the next receive number

- But how does the sender know the correct event
sequence number of the receiver?

10 11

B
file

N

P7

1) Receiver told the
sender during the
original run

(24),
(P7,10),

P9
24

2) Receiver put the information (P7, 10, P9, 24) in
its local log file during the original run. All log
files are merged, sorted according to the sender,
and distributed to the relevant processes (after
the run).

Dis Algo 94, F. Ma. 97

Determining Race Conditions

- Idea: Trace only those messages which form a race

race. no race.:
P1
" \ rm'z\ :ﬁ
P2——o o~

PBL P3 rA»

- P2 should detect the race condition at r (“on the fly”)
during the original run (m and m’ are “concurrent”)

- However, no race condition at receive events rl, r2, r3
- second computation will be reproduced without further measures
- messages ml, m2, m3 are “not concurrent” (--> single causal chain)

- race condition“locally previous receive event does not causally
precede the send event of the message currently being received”

- Reduction of the log files

- for example: “accept next 3 messages without consulting the log”
- or: tag racing messages, untagged messages can always be receivec

- Use vector timestamps during original run to determine
whether two messages are concurrent or not

- whole vector is necessary (because of transitive relations)
- pairwise comparison of two messages suffices for race determination

- For the details see the paper by Netzer and Miller

- claim: log files are typically reduced to O - 20 %, run-time
overhead between 0 and 8 %

s95 Dis Algo 94, F. Ma. 98



Further Aspects of Execution Replay

- Reproduction of dynamic systems

- Partial reproduction

- replay of a subset only (e.g., a single process)
- replay in an open environment

Problem:Hidden causal
dependencies (may e2 be
reproduced before el ?)

el
e2

- Pure data-driven reproduction

- all messages are received P
from a log file
. log
- sending of messages — |file
is suppressed J ~—

==> during replay a message might be received before it is sent
(possibly violating causality and causing strange effects)

s95 Dis Algo 94, F. Ma. 99

Concepts Relevant to Distributed Debugging

- Global predicates

- Relativistic effects (multiple observers)

- Causality

e2

- el (but not e2 or e3) could
be the cause of e

- e potentially affects e3,
but not el or e2

/ h N - realizable with vector time
7 .

past future

cone cone

- Concurrent messages --> efficient replay

- Consistent snapshots --> checkpoints (“recovery lines”)

- Causally consistent observers

S95
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TRAPPER Graphical Design Tool for PVM

ff isualization Tool
Software Analysis

The Visualization Tool  graphically animates the sequental behaviour of each process and the
interactions between the processes. WWhether you want 1o see how the contents of a matrix
davelops in different processes, or whether
the exchange of boundary data causes
irregularities, or how scalar variables
develop in different processes over time,
TRAFPER gives you an Insight how your
application works and halps pou te debug e

Software Monitoring ———————————————
Every event collected by the TRAPPER monitoring system refers to the source code. This
enables you o wrace communication dead-locks and other programming errcrs down to source
cade level Aleo, you can refer Il performing pares of your application very quickly to the
corresponding lines in the source code.

TRAPPER Performance Tools

-T":’/arfnrnunce Tool

Minimize execution time

TRAPPER has a buile-in eritieal path anabysis
tool which helps you to find critical
computation and communecatian tmes i your applicaton. You are able o pinpoint commands
in the source code, which are respansible for these coritical tme periods,

Statistics
JE E—— N — T—

For time diagrams, statistics can be generated over any tme period. H :_ . —
This includes hardware performance diagrarms, process states e =
diagrarns and user data diagrams. Pressing a button provides you with =

information such as how much tme processes spent waiting for messages or how much time
they spent in a partcular function,
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Paragraph+ by PALLAS

Dis Algo 94, . Ma. 103

Valid and Invalid Observations

a) ldealized observationinstantaneous notification:
(What we want but can't get)

€11 €12 €13 €14
Process I I >
Process 3 >
€21 €22
@
7 e €1 € e €13 €

S95

b) Invalid observations violation of causality:
(What we can get but don’t want)

€13 €14

en €12
o D\ \ /'\\
Process 3 \ ‘
e €20

Y

Y

21

€21 €11 €22 €12 €14 €13

Effect is observed before its causeinconsistent view!
- Also: indirect effect / causes
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Valid Observations

- Cause always observed before its (possibly indirect) effect

(What we hope to get)

en €12 €13 €14
Process n_\\\ \ *~—e >
Process 3 >
€21
notification
delays
|
@ " en €21 €22 €14
perception
= vertical
projection
4 €1 €12 €13 egny h
Process 1 >
Process 2 ° >
€21 €22
Thevirtual image
\_of the observer... )
/ no message backwards in tih1e
- Virtual image is a valid elastic deformatjonve;lid
inter-
pretation
s95 Dis Algo 94, . Ma. 105

S95

Image and Reality

~ image
(virtual position)

true position

A
vertical
projection
‘/O B Does the image
sun | preservethe _
essential propertigs
of reality? >
=7
earth
—~
@ <
water line
._
true position@® Image
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Causally Consistent Observations

The observation problem if not new...

“When a spectator watches a battalion exercising from a
distance he sees the men suddenly moving in concert
beforehe hears the word of command or bugle-call, but
from his knowledge otausal connectionse is aware
that the movements are tresultof the command, hence
thatobjectivelythe latter must have preceded the former.”

Christoph von Sigwart1830-1904) ogic (1889)

battalion

commander

spectator

effect cause

Dis Algo 94, F. Ma. 108



Images of Invalid Observations

€12

€n
N
N
N
\\
.
| N\
[ N\ e
.
.\ €21
.
\
\
\
N
.
.
\\
.
.

N
.
.
.
.
.
.
N
—
e
N
€22
N\
AN

Y

ﬁ ‘ \“
[
f ;é § e e e e
2 ZZ \ 11 22 12

N effec cause

O

en

[ ]
\

€21

€22

- Message goes backwards in time!

- The global state aftepeshows that a

message is received which has not yet been sent!

--> |[nconsistent cut / global state

- How can weguaranteecausal consistency?

S95
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Detecting Global Predicates

“properties’

Example:
Does (x=y) hold for the following computation?

x:=0 x:=1
Process 1 e ° >
Process 2 |- ° >
y:=1 y:=2
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“YES, it does!”

x=0x=0 e x=1
Obsl@ | 2. . g
2 /
/
/
/ /
//
~
Obs 2 | e
@ | ? x=0 x=0 x=1
“NO, itdoes not!” y=1y=1 y=2 y=2
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Reconstructing the Views

_U
=

Y

Obs 1 P
X ::/O/ X:=1
P1 I—d\ «“ —~ >
P2 - a
N & >
y=1 \\ y:i=2 \\
\\ o
? 5 o\ N\
/
Obs2 |
O
P1 | ‘ -
x:=0 x:=1
Y Y

- Constant transmission speeds (slope)
- Both views are correct (i.e., consistent and equivalent)

- Both time diagrams represent s@me computation
--> rubber band transformations

So what?
Do we have x=y or x=/=y for the computation?

s95 Dis Algo 94, F. Ma. 113

Possible Worlds

- Different observers may sdéferent realities.

--> Question, whether a specific predicate holds,
might beneaningleds

A distributed program

No privileged observer

several nondeterminism
computation
\
N i o
: / -
A single distributed computati
several

- This isnot due to
observer oD nondeterminism!
relativistic
effects

=/

@

Set of observers, for which
a specific predicate is true

Consequences:

It is naiv (i.e., wrong), to try to construct a distributed
debugger which can answer such a question. (Which
IS a "good" question in the traditional sequential case!)

e.g., “stopwhen x =y”
Reason:

Computation and observation is the same thing in the

sequential case. But not for distributed systems!
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Relativity of Simultaneity

Two “causally independent” events can be
observed in either order!

Lightcone paradigm of relativistic physicg. >>

Obs1

Obs?2

space

Obsl

S95

Obs?2

A and B are concurrent

Observer independe
==> objective fact

n

t

B lies in the cone of A -->
B causally depends on A -->
All observerssee B after A
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Observations, Images and Reality

- Each observation is necessarily incomplete!

Observation 1

(single
dimension)

Observation 2 ‘-I

The “true” computation
(“multi dimensional”)

7V

Observation 3

- Observation should preserve "essential properties"
- Some properties are lost, however " our case: causality

- Can we reconstruct the “real thing” from
(all) observations?
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Incoherent Observations

20g

“inconsistent”
object?

The observed object might be “in reality”
much stranger than we would expect!
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An Inconsistent Image
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M.C. Escher: Belvedere (1958)

ot
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The Evidence!
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The Global State Lattice

observed global state

(i.e., observation must res-
pect the causality relation!)

‘ = linear extension of partial order

Process 2 observed global state

_ consistent global state space

€22 . .
inconsistent global state

€21

Observation willnot
detecta predicate that
is only valid here

e;1 €1, €13 ey Process 1

Observation = path in the state |attiq%vt‘;§g:§;“§‘ﬂgg

of valid states)

- All observers seall eventsbutdifferent global states!
- Snapshot algorithm will yieldomevalid global state

- Sequence of snapshots =someobservation

s95 Dis Algo 94, F. Ma. 123

The Eroded State-Hypercube

- Here: 2 processes --> 2 dimensional cube

_eroded / o
area

40!
/ a eroded

e ]

- Inconsistent global states are “eroded away”

- no message is received before it is sent
- messages synchronize the processes

- a process is blocked in a receive event until the message is
available (and the corresponding sent has thus been executed)
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The Lattice of Consistent States

- To eaclprefix corresponds a consistamnit.
- To eachcut corresponds a global (consistestgte.

- The “true” sequence of global states is one path through the
lattice (but it is unknown if exact global time is unavailable)

«— final state

- three “mutually
concurrent” global
states A, B, C

- question whether th
computation passed
through A, B, or C
makes no sense!

& first dimension

- second dimension
- equivalence class ---> “vector time”
[A, B, C] (all states
with 7 events)

- we only know that the
computation went

through thisclass -
<— initial state

- Consistent states form a (mathematitattjce

- earlier, later global state; closed w.r.t. “sup” and “inf’
- visualized as a compact set (no holes)
- sublattice of the lattice @l global states

Dis Algo 94, F. Ma. 125 s95

S95

The 3-Dimensional Lattice

[Claude Jard et al., Rennes, France]

- compact set
- synchronization --> edge / crinkle on the surface
- “bottlenecks” become visible
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The Dualism of the Diagrams

Eroded
hypercube g |0ba{;e j
>
\ event

Points --> global states
Slices --> events

N

Path --> chain of states | Both diagrams
represent the
computation

Time Points --> events /
diagram  Slices --> global states

Path --> chain of events

gIobaI state

event

' /

s95 Dis Algo 94, F. Ma. 127

Serious Conseguences...

Predicates are satisfied relative to observers|only

Debugging: “Next step” is not well-defined

Debugging: “stop whef<conditior™” meaningleds

(Although immediate halting is possible using execution replay!)

- Number of states is of polynomial siz .. hopeless
- Number of observers is of exponential size " general

- Single observer may miss the state where a
certain predicate holds
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Modal Operators and Local Predicates
Observer Independent Predicates et ato et s

Process
- Possibly® :“At least one observer sed@s”
Process Example:® = (x = 1)

Example: No observer must observe a state where more than one y=3

y=1
traffic light shows green: -Possibly® should be false.
o Process 2 x=1
- Definitely® :“All observers seap.” A g
| SN | | W |
w w send
oholds gray areas R a
here &= cannot be y=1
avoided by o o .
going from receive
q q atow o o o o o o 5
: . y=3
possiblyg holds definitelyp holds s )\ )\ ! )\ )\ L » Process 1

x=2 x=1 send x=0 rec. x=1 x=0
—— number of processes
W number of events

- Complexity in general O([3)|

More efficient determination of pos / def only for some predicate classes

Whatever events the other processes execute,
this does not change the valuedof

--> Hyperplanesn the n-dimensional lattice

Every path from the initial to the final state

- Predicatesp, for whichPossibly® < Definitely®: necessarily meets all hyperplanesinevitable

- If one observer sees thep_all observers sge --> Possibly® = Definitely®
- Independent of the specific observer. E “good”
- Efficient detection by a single observer is possiblglredicates Local predicates are not very interesting, however...

- Such predicates can be attributed todbeputatioh

- Examplesstableproperties (termination, deadlock)cal predicalt%)s

Dis Algo 94, F. Ma.

Disjunctions of inevitable (i.e., observer independent)
.. predicates are also inevitable...
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Conjunction of Local Predicats Determining “possibly ®; L1 d, [1...”

local predicatbl of

Process 2 — process 1 is valid here
, “Semantic filter”:
local predicatb2 of F1 Only relevantevents (change
process 2 is valid here of the local predicat) pass.
ol Filter for causal consistency:
An event can only pass, if
5 » Process 1 F2 | all causal predecessors of it

have already been observed.

. “ . " Dimension reduction filter:
- How determine whether “possib#yl [1 ®2” holds? keeps back all events of a

_ Why is that of interest? F3 I process as soon as the locall

- Example of traffic lights:possibly “traffic light 1 = green” and predicat of that process holds.

“traffic light 2 = green”should be false!
- Idea: Step by step the search space (n dimensional
“cube”) is reduced by one dimension

Idea try to find a rubber band transformation such that

there is a vertical line which cuts all processes in astate - However:F3 must let pass events if otherwise the
where the local predicat holds. observation would block:
NB: Each consistent cut line can be made vertical Stop! (F3) 2 ; . N .
P1 H—HY:——“ : i
P2 | ° o ommmp » ¢ :
Stop! (F2) °c®° .p1

Idea for that: All processes execute in parallel, but a process stops as ) . . ..
soon as its local predicate holds. Question: Does this idea work? - Why is that scheme correct? How efficient is it?
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Applications of the Detection Earliest State “®, O, [..”
Algorithm for “possibly &, L1d, [1..”

- Terminationfor synchronous communications:
Local predicateb;: process Pis passive.

- If some(consistent!) observer sees that all processes are
(simultaneously!) passive, the computation has terminated.

- Detect possibly (U P; : P; is passive).

- Detection scheme yieldsrmination detection algorithm.

- Debugging: STOP WHEN X1 =30 X2 >0

(where Xi is a local variable of Pi)

- Useful inreplay modgwhere immediate halting is possible).

- Algorithm yields the first” state where the conjunction is true. - State s i®arlier than state s’ if there exists an

observation “...s...s’...".
If P1 does not advance after . "
its predicated; becomes true, - For two or more global states wittb1 [1®2 [1...
the computation would there is always a common earliest such state.

block in global state s1.

- Take the “process wise” min...
- For states 2 and 3 in the example, this earliest state is state 1

- tion: What Id be th iat ti f . H 7 H ”
%‘fggovr\',HENax"l"i”@r o a0 OPHATE SEMANTES 0 - The consistent states form a lattice (3“garliest”)
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Stable Predicates Other Observer-Independent Predicates?

Forsomeglobal predicates

1) Some rather artificial predicates
- definition is meaningful (i.e., observer-independent)

- efficient detection is possible u
- e.g., “5 events have been executed”
. ; @
Example:stablepredicatep on global states .
- monotonic: "once true, ever trug" ﬁ_ predicate is true only
-if ¢l <c2 theng(cl) ==>¢(c2) ’\/ at these points

lattice of consistent states _
2) “Inevitable” global states

observation @ holds here
process? / . /f'”al state - all observations must go through it
3 ° . ° . ° L ]
“sub-h be” - a predicate which holds in such
P . Ssub-hypercube a state isdefinitely” true
I * (pM ‘ - typically: synchronization points
? s c ot ® - e.g.,barrier synchronization:
s .+ each process waits until all other
processes have also reached
» process 1 the barrier (“bottleneck”)
\ initial state
The problem is not so much to verify whether the predicate holds
- All observers will inevitably detect the stable predicate in this particular state, but to make sure t_hat such a state is
(some observers will detect it earlier than others) eventually reached (before some action is executed)!

- Occasional testing fab on some consistent states Typical realization:

is sufficient -->snapshot algorithm makes sense! A process reaching
_ _ the barrier informs a
- If the snapshot algorithm establishes the trutlp, of ack ck  coordinator and blocks
ois still true “now”! until it receives an ack.
- There exist some important stable predicates “At” the synchronization point all processes kI’IO\rI)V that all other
... (€.9., "object is garbage”, computation has terminated,..).. .. ... 135 . processes have also reached it (simultaneously?). e 136



What if Global Time Exists?

e.g., perfectly synchronized local clocks
(but how good is “perfect’?)

==> 1) Obtain “vertical” snapshots
2) Virtual image = real computation

Dual problemraced

exact instantaneous snapshot

—e P >
b

Different execution of the
samedeterministicprogram

First process is “slower”
2) a this time...
—e ® >

This global state (“after b but
before a”) is not observable in 1)

Hence the observed global state is not “absolute” or “definite”!

Dis Algo 94, F. Ma. 137

Do We Need Consistent
Detection of Global Predicates?

—

@
/NN

—[00 9 Distributed traffic light control:
SN Do all observers see at

most one green light?
[

Sometimesnconsistenbbservations aracceptable

Examples:

1) Performance debugging

2) load(P1) + h > load(P2)} “inherently
global”

==> “weakly stable”
==> (slightly) inconsistent views do not harm

But For deadlock detection, distributed recovery
point,... inconsistent views aret acceptable!
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Observations... Time in Distributed Systems

- Consistent observation important: e

- Termination detection, deadlock detection,...

- Debugging, monitoring... -
| | | (T
- Predicates are meaningful only relative to an observer § ™7 \

K

;“5/’ -‘:.":_p/'.-l._u :_:'
I I

- Huge number of different observers

==> Global property may escape to a debugger!

- Only “few” predicates are observer independent, e.g.

- stable (e.g., termination, garbage, deadlock, GVT-approximation)
- local (rather trivial!)

I e.g., snapshot algorithm

- Efficient detection schemes exist for those predicates,
all other predicates are difficult / impossible to detect

Observing parallel and distributed programs is much R. G. Herrtwich, G. Hommel
more difficult than observing sequential programs!
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Time ?

/Quid est ergo tempus?
Si nemo ex me quaerat,
scio,
si quaerenti explicare ve
nescio.

~

lir

Augustine (354-430)

-

J

n

What then is time?
If no one asks me (what it is),
| know (what it is),

but if I want to explain it to someone,

(I find that) 1 do not know.

Benjamin Franklin (1706-1790)

[Time IS money.

Richard Feynman (*1918, Nobel prize in physics 1965)

[Time is how long we wait.

The indefinite continued progress of existence,
events, etc., in past, present,
and future regarded as a whole.

Concise Oxford Dictionary, 8th Ed.
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The Arrow of Time:
Past, Present, and Future

o/ i This is the melancholic
H_‘ Tempus fugltA/ dimension of time...

(Time flees / flies)

Time goes, you say?
Ah no! Alas, time stays, we go.
Austin Dobson, The Paradox of Time

Present ﬁl’wo roads diverged in a yellow wc%
And sorry | could not travel both.
And be one traveler, long | stood
And looked down one as far as | could
To where it bent in the undergrowth

2

Then took the other, as just as fair,

| shall be telling this with a sigh

Somewhere ages and ages hence:
Two roads diverged in a wood, and | -
| took the one less traveled by,
And that has made all the difference.

Robert Frost (1874-1963)

The Road Not Taken (19/16)

-

linear past
-

—»
possible "branching” future

- Looking backtime always seems to be linear...
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- Clock Device to measure the physical phenomenon “time”.

t
C(t) =kxo(t) dt + C(fy)  Value of clock C at t
to

Clocks and Real Time

C

- Precisionof a clock depends on the stability
of its oscillator (with ideal frequenayy).

A _
o *Y - Ideal clock: C'(t) = 1,
-y i.e.w(t) = constant.
» t - Many influencing factors

Divergence from ideal frequency

on the stability

- Deviations may accumulate!

--> Resynchronizatiors necessary from time to time

S95

a) set clock back / forward (--> C(t) jumps and is hon-monotonic)
b) increase / decrease oscillator frequency

Dis Algo 94, F. Ma. 143

(age, temperature,...)

Time Is Powerful

1. Population cencugconsistency by simultaneity)

- agree upon a future date
- everyone gets counted at the same moment

2. Determiningpotential causality(“alibi principle”)

crime @

alibi event

max speed
line

- events ar@ot causally related

300000
km/s

“speed limit of

causality”

(P.

Langevin)

3. Mutual exclusior{fairness by linear time order)
- the earliest gets access...

We don’t have (real) time in distributed systems
--> look for an adequate substitute (legical timeg

t |

- has most important propert
- is (easily) realizable

S95

es
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Time: Properties and Models

- Points*“in time” together with a relation “later”
- Or: timeintervalstogether with “later”, “overlaps”...

Time and Clocks in Computer Science

- Hardware counters as cloc =
--> time becomediscrete ' «> H @

- Clock overflow (e.g., long simulation runs)

\é\(l)f;ratetéts/the --> time is not eternal bislounded
I — model? . . .
— — - Event oriented view: nothing happens between two events
--> Clocks need not run continuously
- Are the two models / views “compatible”? (e.g., startpoint and endpoint) --> Change clock value only when an event happens

- Structure and properties of time points:
! atomic events

- transitive

- irreflexive }--> lin. order

- linear

- unbounded ("time is eternal”: no beginning and no end)

- dense (there is always a point between two other points)

- continuous

- metric

- homogeneous

- archimedian / inductive (each point will eventually be reache

- Models: real numbers, rational numbers (?)

- Are all these properties needed? (when? for what?)
- e.g., discrete (instead of continuous) --> integers suffice!

- "World view": Time = Happening of events

- Example of this world view: Event driven simulation
—0—0—0— 00— 0 00— 0 — 0 >
Clock
value

N o

“real” time

Hence: We call concepts / devices “time” / “clocks” even
though they do not have all the ideal properties!

'but what are thessentiaproperties?
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Logical Timestamps

- Purpose: compare events by their timestamps.

- Goal: mappingC: E-->T
\ \ “Time domain”; ‘<'

partially ordered set
--> "earlier", "later"

Clock Set of events with
partially ordered
causality relation

- For el E we call C(e) théimestamf e.

- C(e’) later than C(e) if C(e) < C(e").

-
’

or. e or. e

- How should T look like? |N (linear order)
f R (REAL datatype)
power set of E (i.e.,®
N" (product lattice)

- Reasonable requirements:  order homomorphism

Clock condition e <e’ ==> C(e) < C(e)

\{ causally precedes

Interpretation: “time respects causality”

If an event e may influence another event e’,

then e must get a lower timestamp than e’

- We would also like to have the converse relation

595 Dis Algo 94, F. Ma. 147

_- Proof Causality paths are monotonic.

Lamport’s Logical Clocks

Communications of the ACM 1978:
Time, Clocks, and the Ordering of Events in a Distributed System

Assigns timestamp

C: (E’<) --> N’<)

causality relation (“potential” causality)

e<e ==> C(e) <C(e)

Clock condition

1‘ @ @
/3
@ @
4
1 2 3 3
L @ @
1 4 5

- “Paths of causality” from left to right

- Protocol for clock implementation:

- local clock ticks forachevent
- sendevent: timestamp is piggybacked
- receiveevent: max(local clock, timestamp)

\

- Proposition Protocol guarantees clock condition.

before the clock ticks
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Properties of Lamport-Timestamps  Lamport-Timestamps: “Non-Properties”

) : : o
What remains from the properties of real time~ 1) Mapping is not injective:

+ lin. order, unbounded \
+ respects causality (clock conditiem}—{as does real time! - Important, e.g for: "The -
_ Giscrete one who came earliest wins E N

- does not “flow automatically”

- Solution Lexikographical order (C(e),i), where i
_ denotes the process number, on which e happens
“critical path” --> ==> Now- all events havdifferenttimestamps (i is a “tie breaker”)

- Timestamp = Length of longest preceding chain

- Clock condition ==>
goncurrencl‘,y r_?easure, - there is uniquemallestevent for each set of events
- locally increasing timestamps Ime complexity . o | | |
- send event has smaller timestamp than receive event - Linear order (a,b) < (a’,b’)= a<a’ll a=a’b<b
-C(@) <C(b) ==> not (b<a) . . .
Proof.. b<a ==>C(b) <C(a) | Future cannot ir- - Mapping (still) respects causality: (E,<) -¥XN, <)
==>-(C(a) < C(b)) fluence the past! (only causally independent events are ordered by their second component)

- . = == lly ind d
We have: C(a) = C(b) ==> wcausa y rcependent 2) Loss of structural information:

- Proof left as an exercise... l.e,~(@a<b)l-(a>b)

Important defect
since one purpose
of timestamps is to
draw conclusions o
the structural rela-
tion among events!

- Do we have the converse of the clock condition?
- No, C(e) < C(e") ==>e < e’ doesthold!

- We only have: C(e) < C(e') ==> e <@ e||e'«—|see example

- Hence:

>

From the timestamps we cannot (always) conclude - Negation is lost
| . . .
whether two events are causally dependent or not! - Orderhomomorphismbutno isomorphis !%é?grf? a
- But wouldn’t that be the major goal of timestamps (since causality is - E ist apartial order, N ist dinear order timestamp-
the only structure we have in our abstract distributed computations)? (Causally independent ev,ents may become compara |e!ij19 scheme?
- Yet, Lamport timestamps are useful for some purposes Also note that =" is transitive, but “||" is not!

(e.g., mutual exclusion) i Ao 94, e, 149 o5 Dis Algo 94, F. a. 150

S95



Realizing Causally Consistent
Observers with Real-Time

- Basic ideaTime respects causality

==> Sortingby global time = “sorting by causality”
(--> topological sorting)

en(1)

Process

\

@ e12(14)
2
sorting
— !
@ en(1) ex(5) ex2(11)  e15(14)
A
5 10 15 20

- Observer recreates the “true” computation.
- Problem: requires (global) real-time for timestamps!

S95
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Realizing Causally Consistent
Observers with Lamport Time

- Basic idealLamport time respects causality>

Sorting yields dinear extensiorof the causality relation.

e11(1) e12(2) e13(4)
Process

Process :\ '\/\

e1(2) €22
e1(2) en(1) e22(3) e13(4) e12(2)

Y

\

®

~—

sorting

O))

en(1) en(2) e21(2) ex(3) e13(4)

- Problem: Not well suited faynline monitoring.

- Before delivering (“committing”) an event, one must be sure that
no event with a smaller timestamp will arrive later (sgeed g>)!

- FIFO channels to the observer help, but may still ckugpdelays.
- Problem also, if only aubsebf all events is observed.

==> Find a more suitable model of logical time!
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VeC'[OI‘ T| M e(Stam pS) Quot tempora tot astr

G. Bruno (1548-1600

o

Vector Timestamps
of Events

reasonable definition in our modlel

-Ti é ==>
Time:= set of past events Formal Tight coneset F»
; — A of (causally) past events
- Timestamp(e) := {e’| ex e} - 2! (causally) past 3
1 2 3 4 ’5/.‘%
———0 090 @
) SRSy B S "N N
- Light cone can be representedlbyally latest eventfeft closed sets) 4///
- There exist n such events (n= number of processes) P3 @
DM D :
. . : - causal chains
==> Define the n-dimensional vecte) as follows:
t(e)[i] := {e’OE| e’< e} - Each event has a “vector time stamp”

- Component i points to the most recent causally

f—{ Set of events on procesg P !
past event on process |.

- Therefore, because events of a process are totally

1 A g : )
2 ordered, it implicitly also “points” to all earlier events.
3
1 causality

Time vectort(e) ==> Vector represenishole causal past—|relation

of e with associated  __, Fncodeknowledgeabouteachpasf event.

formal light cone

I Formal light cones are consistent cuts
(--> cut line in the shape of a cone)

- Sometimes some optimizations are possible (omit 0-components,
sparse arrays, send only delta-values, use topological knowledge...)

--> Timestamps an n-dimensional vector

--> Timeis the set of all n-dimensional vectors “Vector time”: isomorphic representation of the
--> Clockis an array C[1:n}“device” to keep current time) causality relation (partial order --> lattice structure)
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Timestamp “Arithmetic” Vector Time and Ideal Observers

1 1 1 5
3 7 3 3 0 2
4 < |4 4 | | 8 0 4
3 6 3 3 0 5
2 2 7 2 0 4
0 3
comparable concurrent
Observations of
the ideal observer
1 1
12 ) 3
T(e) - g' Id(e) g' NB: The causel past of an
‘ ‘<'is defined as £ butz” ‘ 1 > event forms a consistent cut!
Interpretation of(e) < 1(e):
- e lies in the causal past of e’ e e’ = LOC8.”y number a” eventS 1,2,3,...
- cone of e is included in the cone of & - Ideal observer sees an event immediately

- Adequate data structure for representing this ideal

knowledge: vector / array Componentis

- Foreverycausally consistent observefe) < id(e) (Ue)
- a causally consistent observer knows the whole causal past of an event
- ideal observer typically also knows some other events

Sup - 1(e) = Infimum of all possible ideal views id(e)

- Note: id(e) depends on the specific time diagram!
- But: 1(e) is invariant w.r.t. rubber band transformations!

~NWN A~

NWhWOo
[

~Nwh DO

sSup = componentwise maximum
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Propagation of Time Knowledge

(--> Implementation of vector time)

(--> keeps knowledge about past events)

1

1

0

0
0 0 /-Iocal event: )
1 2 increment the own component
0 0
0 0

- send event:

2
3
3
1
increment the own component
2 and piggyback the new vector
1
:ii - receive event:
0
0
0
2
L

ﬁ - Each process hasvactor clock
0
0

increment the own component
and build componentwise
supremunof the two vectors

union of the
two cones

\ componentwis Isomorphic representation
: ; , of the causality relation!
-Claim e<e’= 1(e) <t(e)

: monotonic w.r.1.
- Interpretation time vectors!

-1(e)< 1(e’) = there exists a causal chain from e to e’

. ) ~ Interpretation: Two events
- Corollary: e || e = T(e) [|[T(€") do not influence each other

\ c{( iff they are concurrent
not relate (w.r.t. the time domain)
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Computing with Sets of Events

Time vectors

Events
f =2
n 00O time
sup, inf,<
Set theoretic <  Algebraic operations
operations (--> “compute”)

Lattice structure
on Z (ideals) <

00000
0@ 0e 0

O O O O}lo
OO O0OO0/0

OO00@0

Order theoretic
properties

Vector clocks / vector timestamps -->
operational “manipulation” of the causality relation

Product lattice omN"

< Algebraic properties
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Applications of Vector Time The Cut Matrix

<Momo meets Professor Hera

4 . . : - .
Clocks were standing or hanging wherever Mom - Cut matrix $ of a cut C (with cut evenig:c
looked - not only conventional clocks mgherical $ = (T(cy), 1(Cy),...1(Cy)
timepieces showing what time it was anywhere | _ _ "
the world... (i.e., take time vectors of cut eventsas the columns)

“Perhaps one needs a watch like yours to recognize
these critical moments,” said Momo. Professor Hora
smiled and shook his head. “No, my child, the watch C#/ C

by itself would be no use to anyorvau have to *\ . o | sup
know how to read it as well.” M dia 22
/4 \ CE\_‘\\F *311003
i 04300 4
Y Michael Ende, Momo o o o o 00500 &
01340 4
_ R 001133
- Debugging Y

- Localising errors (“... can / cannot be the cause...) P

- Race conditions (causal independence) ~ Ch

- Efficient replay

- Performance analysis, concurrency measures

- “bottleneck” in the lattice; degree of synchronization C consistent= dia($)= Syp($]
- causally independent events can be executed in parallel ¢

- Implementation of causally consistent observers —
P y diagonal vector for each line:

- Causal broadcast maximal value

- Causal order . , , :
(i.e., the maximum of a row is the diagonal element)

- Implementation of consistent snapshots

- Local snapshots at pairwise concurrent events
- ?
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The “sup = dia” Consistency Ciriterion
., ¢4[3] = 6 > dia[3] =4

X
X
6
X

P
1 f. 5 C1 C1 C3
P>

X g( X
P3 X X
* 6
Pa—17 | | X X
C = X X sup|[3] > dia[3
=

A process (I other than Rknows (at cut event
something about local events og Bn which B itself
does not yet know anything (i.e., which happéer c;).

<==>
There exists a path from a-Bventafter c; to an
eventbeforec;.
<==>
[generalization over all indicegj]

The cut is inconsistent.
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Implementing Consistent Observers

- See onlyconsistent snapshoits their reconstructed view

- Sequence of observed evergspect the causality order
(i.e., observation islanear extensiorof the causality relation)

currently observed global state

Identify cut event with
locally preceding even

~—+

Which event ¥, X3, X4
can be observed next
(without violating
causality)?

Observer

currently
observed
global state

- Which column may be replaced?
(X0, X4, but not %)

0

2
- Observer keeps dia($). Timesta pO 100
of next observed event mustde | 1 O 2 O

dia($), except diagonal component\. ) O Q Q

- Goal: Keep always consistent, i.e., diaf®up($) j

- NB: Observer needs onlyvactor(dia), not anatrix
to identify the currently observed state!
- All observation messages do also have a vector.

- Idea:*This event depends on another event that | should have observed
earlier. Hence | better wait until | get notice from the other event...”
- NB: Does also work if only aubsef all events is observed!
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Realizing Causally Consistent The Communication Hierarchy
Observers with Vector Time

=) , |9eneral not FIFO (but
1 O Q\ asynchronous asynchronous)
“ | U)
x N X c
P, / ‘x O _ 2 -
‘\ \ o < not causally
‘u | 2 3 FIFO ordered
g E (but FIFO)
8 8 o
] = g causally not synchronous
\ £ 7 ordered (but causally ordered)
‘u = \
| | S
] 1\ 2 L, T - _
Y vy oY Y 3 . 1 Y svnchronous informally: ‘
—0—~0-10 O—O—— Observer > y 1 computation respects the causality
0

Events which have already been observed relation (“global FIFO”)

- Which event ¥, X3, X4 can be observed next

(without violating causality)? Typical questions:

1) Given a computation with asynchronous communications
o " --> can it be realized with FIFO channels?
- Event % should not be observed, because it “knows” of (i.e., does it respect the FIFO property?)

one event on Avhich the observer has not yet seen.

- Idea:*This event depends on another event that | should have observed

earlier. Hence | better wait until | get notice from the other event...” --> is it realizable with synchronous communications _
(e.g., does it run on a transputer with occam? Or does it block?)

- Compare vector time of event with observer’s vector.

--> does it respect the causality relation?

- Realization: Delivery filter which uses message queues. _ . .
4 g9eq 2) Is a given algorithm, which is correct for synchronous

communications, still correct for a more general model?

Vectors are rather clumsy. Do we really need them to guarantee --> e.g., can the algorithm tolerate receiving messages out of order?
consistency and to make correct statements about the system?
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What are synchronous communications?

(relative toasynchronougommunications)

- Naive telephone <--> |etter

- Does this mean that send and

- Literally: syn - chronou _ _
receive happesimultaneously

oo

_ - Butinstantaneous message
same time

transmissionis unrealistic!

- NB: There exist distributed programming languages

- which use synchronous message passing (e.g., CSP or Occam)
- which use asynchronous message passing
- which use both (e.g., MPI)

- Restate the headline-question in a more formal way:

- How do wemodelsynchronous communication?
- How do wedefinedistributed computations
with synchronous message passing?

- Proposition:
Synchronous wirtually simultaneous

= as if msg transmission were instantaneous

suitable rubber 7 o

band trans- /: =

formation ?

BE
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“As If” Messages were Instantaneous

If for a distributed computation a phenomenon can be
observed which is impossible with instantaneous
messages, the computation must not be realizable
with synchronous message passing semantics.

==> message passing should then not be called “synchronous”

The observer first asks A about the
number of messages it sent to B.

Example:

Then it asks B about the number
of messages it received from B.

1 msg sent

Observer learns that a message from A toiB is
transit for a certairduration ==> not synchronous!
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Vertical Message Arrows
B /g/
Ob

A

- The message from A to Bawertaken in an indirect
way by achainof other messages.

- The direct message ctrereforenot be made
vertical by a rubber band transformation.
(A message of the chain would then go backwards in time)

- Another computation which is not possible with
synchronous communications (==> deadlock):

e

Although eaclsinglearrow can be made vertical, it is not possible

to draw the diagram in such a way thatharrows are vertical!
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Various Characterizations of
Synchronous Communications

- Question: are they all equivalent?

- Problem: some characterizations are informal or less formal than others

S95

1) Best possible approximation iostantaneous
communications.

(Without clocks, it is not possible to prove that a message
was not transmitted instantaneously)

2) Space-time diagrams can be drawn such that
all message arrows are vertical.

3) Communication channetdways appear to bEmpty
(i.e., messages are never seen to be in transit)

4) Correspondingend-receive eventsrm onesingle
atomic action.

- But what exactly does
“atomic” mean?

- Does the combined event
happen before or after
the wave? Should this be
possible with synchronous
communication?
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5) Send actiomlocksuntil an acknowledgement from

the receiver is received. 7) No cycleis possible by moving alongessagarrows

in either direction but always from left to right

- But can’t synchronous )
on process lines.

blocked communication be
implemented (on a system
\/ with asynchronous
a

ck communications)
without blocking? ¢ . L adn
» -
- Motivation: As if the message is sent at the moment it is actually received. _— -
-
P

6) Llinear extensiorof (E, <) such thail corresponding
communic. events s)ris an immedate predecessor of s.

- Interpretation Ignoring the direction of message arrows ==>

s2sl,rly2 s2 r1 s1,82,r2r1

\ — - send / receive is "symmetric"
sl r2 - "identify" send / receive
°
/ \ - If such a cycle exists ==> no "first" message to schedule

sls2y1,r2 s2slrar - If no such cycle does exists ==> message schedule exists

- The example has 4 different linearizations. In all of them a pair of
corresponding send-receive events is separated by other events.
Hence this computatiarannotbe realized synchronously.

- Motivation: corresponding events form a single atomic action

7) Define a (transitive3cheduling relatior' on messages:
m ‘< n iff send(m) < receive(n)
The graph of ‘<’ must beycle-free.

- Then whole messages (i.e., corresponding send-receive events s, r)
can be scheduled at once (s before r), otherwise this is not possible.
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8) Synchronous causality relation << ipaxtial order.

S95

Definition of << :

1. If a before b on the same process, thena << b
2. x<<s iff x<<r (“common past”)| forall corresp.

. “ ” s, r and for all
3. s << x Iiff r<<x(“common future”) | events x

4. Transitive closure

Interpretation corresponding s, r are not related, but with respect to
the synchronous causality relation they are "identified"

they have the same
past and future

Example:

s2 rl a)sl<<r2 (1)

b)rl<<r2 (a, 3
s:1><.r2 ) @3- cycle, but
° c)s2<<rl (1) M#r2 1

dr2<<rl (b,3

Compare this characterization to the earlier one
"no cycle in the message scheduling relation”.
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Causally Ordered Computations

Informally: “Globalizing” the FIFO-property

(Similarly as FIFO respects causality on a single channel,
causal order respects causality in general)

Formal requirementt] (s,r), (s',r'): s <8 ==>(r'<r).

Equivalent characterizations:

1) “Triangle inequality”: No message is bypassed by
a chain of other messages.
- NB: This implies FIFO.

2) “Empty interval™:d (s,r):-m0x: s<x<T.

- Cf. similar property otinear extensiongor synchronougommunications.

3) “Weakly instantaneousT] messages nilspace-time
diagram where m is a vertical arrow.

- Cf. “all vertical arrows” property afynchronoug€ommunications.

- Interpretation: For each (single) message it is possible to claim that
this message was transmitted instantaneously.

Problem: What are appropriate generalizations for multicast / broadcast?
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Causal Order Message Delivery Problem

- Message delivery preserves the causality relation.
- Problem is related to realization of causally consistent observers.

s2

Not causally ordered:
sl s1 depends on s2

m2

P (Obs)

rl r2

- A message is only delivered to process P if all
causally preceding messages (w.r.t. send events)

sent to the same process have already been delivered. p

- No overtaking of a single message by a chain of
messages ==>Global FIFO property.

- Canonical realizatiornzector of vectorg‘matrix clock”)

- Each process is a causally consistent observer w.r.t. send events

of messages addressed to it.

Causality Preserving Message
Delivery without Vector Time

- Each process P has a FIFO-buffgi;Bnd R,

- With “send”, the message is handed over to the output byjfer P
Pout IS then responsible for transmitting the message to the receiver.

- When executing “receive”, the input buffgy P

- returns the oldest message if the buffer is not empty,
- otherwise it blocks P until a message it available.

send
>
i .\\ > Rule:
ou ac \messagef An output buffer waits
to other for an acknowledgmen
process (from the input buffer)
an _ before transmitting the
: : :: - next message.
receive

- Use scheme for causal observer with n vector timestamps of length n.

Matrix on channel pg: q
number of known

messages sent | J

from processi |/

to process | \ p

i \
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S95

- Sender and receiver a decoupled.

- Because buffers are FIFO and communicate by a hand-
shake protocol, no indirect msg overtaking is possible.

==> Correct and efficient implementation of causal
order message delivery.
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Causal Broadcast

Utrecht
- Confusion because indi-
Paris Saar- rect communication was
- ~ (0 Prucken sometimes faster than
direct communication.
U ° - Solution: Each participant
is a consistent observer
P \ of all relevant events.
S ® o —
?7?

Date: Fri, 3 Nov 89 16:46:55 +0100
From: Bernadette Charron <charron@...fr>
To: mattern

DATE : (101,5,5)
Bonjour a tous,
Me revoila...

Au fait, avec vos estampilles
vectorielles, les processus “lents”
sont tout de suite detectes...On ne
peut plus dormir en silence, sans etre
repere, a moins d’'accuser le reseau.

Comme j’ai BEAUCOUP reflechi, je
rajoute 100 actions internes pour ma
composante.
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Implementing Snapshots with
Vector Time

Idea: Population cencus paradigm:

- Agree on a common time instant T (well in the future)
- Each process takes its local snapshot at T

==> Does this work withogical time?

- Consider the locally first even#s  with a timestamp

- Take a local snapsh{]  just before these events.

- first event

p2 =2Tonh
P3
Py o—

- A message x -->y from the “future” to the “past” of the
cut line does not exist(y) > t(x) = T contradicts the
assumption that no event befogenas a timestamp T.

- Hence the cut isonsistenit
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Choosing the Snapshot Time The Snapshot Scheme

Strategy announcement of T push clocks to a vatilie

- Initiator fixes T and distributes it (wave algorithm,
broadcast,...) to all processes.

= (Je_e —

NN

- I_Each process takes a local snapgisitbefore \ack” ____ application
its clock jumps to a valueT. P3 message
L cf. time leaps when DST starts! \snapshot event
Init. —é
Problems [liveness .| Initiator knows —_ .| NB: Sett = inT if initia-
.| thatall pro- tor should not freeze its
(1) Eventually, each local clock must reach or bypass T. t-1) cessesknow T t local clock component

(2) Processes must learn about T “in time”
safet
(i.e.,beforeT happens!)

- When a process learns about T, its clock is noeyet

Solutions - Why doesn't it work with Lamport clocks (without freezing)?

.- . . . - What about real-time clocks? (Bounds on message delay times?)
(1) Initiator increments its clock to vector time T and

sends messages (wave...) to all processes. The - Scheme can be simplified and optimized!
timestamping scheme automatically pushes all

" . - Only last component of vector clocks is relevant.
late” clocks to a value T.

- Binary time (black / red) is sufficient.

) - Single wave suffices (if all processes initially know T)
(2) Using vector clocks:

- Initiator sets T := timestamp of itextevent.
(Or it sets its own component in Tag which will “never” be reached)

- Initiator announces T to all processes.

- Initiator does not set its clock to T (according to
(1)) until it learns (by acknowledgments, wave...)
that all processes know T.

==> Yields the snapshot algorithm presented earlier!

Using vector time and a well known protocol from our
“distributed real world” yields a consistent snapshot scheme!
(Vector time is a good substitute for real time)
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Vector Time and
Minkowski’s Space-Time

i e
R>P,
pre-cong butP || Q
post-cone
= \ N - 1
“present” of P (not transitive!)
space-time vector time

Partial order Partial order
Time vectors build a lattice (sup)

2-dimensional cones build
(cuts also w.r.t. inclusion)

a lattice (w.r.t. intersection)

Rubber band transformation leaves

Lorentz-transformation leaves | tran: _
causality relation invariant

light cone invariant

Space time coordnates enable to testTime vectors enable a simple test,
for (potential) causal relationship: | whether two events are (potentially)
with u= (xq, t1), v= (%, t,) check causally dependent (check, whether
cz(tz-tl)z ) (XZ'X1)2 >= 0 in all components smaller)

Space-time / vector time yield a more accurate view
of our distributed world than “standard time”!
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Lightcone Order and Vector Time Order

A X1

45
—

: R

-

VXZ

X=(X1,X2), Y=(Y1,Y)

vectors = coordinates of the points

9P light cones (normalize the maxi-
mum speed to “1 space unit per
time unit”, e.g., “light year / year”)

- Light cone of Y fully contained in the light cone of X
(left picture) = x;<y; OXo<y, (right picture)
= (X1.X2) < (ynYy2) = X<Y.

==> 2 dimensional cones2 dimensional cubes

==> At least for 2 dimensions, space-time and vector
time have essentially the same structure!

A

- “later”
- potential causality

- lattice structure
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The End




