
1

-LQL

Peer Hasselmeyer
Darmstadt University of Technology

Friedemann Mattern
ETH Zürich

Andreas Zeidler
Darmstadt University of Technology

� -DYD ,QWHOOLJHQW 1HWZRUN ,QIUDVWUXFWXUH

� -LQL ,V 1RW ,QLWLDOV

-LQL� /HQN� ����������� �

• Infrastructure (“middleware”) for dynamic,
cooperative, spontaneously networked systems
– facilitates writing / realizing distributed applications

-LQL

2

-LQL� /HQN� ����������� �

• Infrastructure (“middleware”) for dynamic,
cooperative, spontaneously networked systems
– facilitates writing / realizing distributed applications

-LQL

� IUDPHZRUN RI $3,V ZLWK XVHIXO

IXQFWLRQV � VHUYLFHV

� KHOSHU VHUYLFHV �GLVFRYHU\� ORRNXS�����

� VXLWH RI VWDQGDUG SURWRFROV DQG

FRQYHQWLRQV

-LQL� /HQN� ����������� �

• Infrastructure (“middleware”) for dynamic,
cooperative, spontaneously networked systems
– facilitates writing / realizing distributed applications

-LQL

� VHUYLFHV� GHYLFHV� « ILQG HDFK RWKHU

DXWRPDWLFDOO\ �³SOXJ DQG SOD\´�

� DGGHG� UHPRYHG FRPSRQHQWV

� FKDQJLQJ FRPPXQLFDWLRQ UHODWLRQVKLSV

� PRELOLW\

3

-LQL� /HQN� ����������� �

-LQL

• Strictly service-oriented
– everything is a service (hardware / software / user)

– Jini system is a federation of services

• Infrastructure (“middleware”) for dynamic,
cooperative, spontaneously networked systems
– facilitates writing / realizing distributed applications

• Based on Java and implemented in Java
– typed (object-oriented) communication structure

– may use RMI (Remote Method Invocation)
– requires JVM / bytecode everywhere

– code shipping

-LQL� /HQN� ����������� �

-LQL�� !�0RELOH�$JHQWV�"

• Jini is Java-based
– most mobile agent platforms are based on Java

– Java bytecode often used as a universal machine language
– applets are working instances of the mobile code paradigm

• Jini uses the mobile code paradigm
– service proxies might be sent to the client (by the lookup server)

• Mobile agents need an infrastructure
– Jini is an infrastructure for highly dynamic distributed systems

– Jini provides elementary services and functionality

• But: Jini is not a mobile agent platform!
– However: Jini (and similar systems) should be of general interest

to computer science students (--> ubiquitous computing)

4

-LQL� /HQN� ����������� �

2YHUYLHZ

• Jini, what’s that?
– motivation

– overview

• RMI
– introduction

– example

– serialization

• Jini infrastructure
– lookup service

– discovery & join protocols

– programming example

– detailed infrastructure

• Jini programming model
– leasing

– distributed events

• Jini services
– transactions and the

transaction manager

– JavaSpaces

• Summary

-LQL� /HQN� ����������� �

6HUYLFH�3DUDGLJP

• Everything is a service (hardware / software / user)
– like object-orientation: “everything” is an object
– e.g. persistent storage, software filter, help desk, …

• Jini’s run-time infrastructure offers mechanisms for
adding, removing, finding, and using services

• Services are defined by interfaces and provide their
functionality via their interfaces
– services are characterized by their type and their attributes

(e.g. “600 dpi”, “version 21.1”)

• Services (and service users) “spontaneously” form a
system (“federation”)

5

-LQL� /HQN� ����������� �

:KDW�.LQG�RI�6HUYLFHV"

• Devices:
– printer, fax machine, ...

– storage, persistency, configuration, ...
– computation, ...

• Software:
– spell checking, format conversion, ...

– online banking, stock trading, ...

– tourist guide, local maps, hotels, restaurants, ...

• Infrastructure:
– components, ...

-LQL� /HQN� ����������� ��

$�-LQL�)HGHUDWLRQ

&DPHUD��
�FOLHQW�

&DPHUD��
�FOLHQW�

3ULQW
VHUYLFH

3LFWXUH�GLUHFWRU\
DQG�VWRUDJH

3LFWXUH�PDLOLQJ
VHUYLFH

1HWZRUN

6

-LQL� /HQN� ����������� ��

1HWZRUN�&HQWULF

• Jini is centered around the network
– remember: “the network is the computer”

• Network = hardware and software infrastructure
– includes helper services

• View is “network to which devices are connected to”,
not “devices that get networked”
– network always exists, devices and services are transient

• Network is static, set of networked devices is dynamic
– components and communication relations come and go

• Jini supports dynamic networks and adaptive systems
– added and removed components should affect other

components only minimally

-LQL� /HQN� ����������� ��

6SRQWDQHRXV�1HWZRUNLQJ

• Objects in an open, distributed, dynamic world find each
other and form a transitory community
– cooperation, service usage, …

• Typical scenario: client wakes up (device is switched on,
plugged in, …) and asks for services in its vicinity

• Finding each other and establishing a connection should
be fast, easy, and automatic

7

-LQL� /HQN� ����������� ��

:K\�-LQL"

• Infrastructure for tomorrow’s vision of
ubiquitous computing
– increasing number of internet users
– powerful PDAs and notebooks

– increasing mobility

– new wireless information devices:

– numerous processors in embedded systems
• e.g. software updates for your washing

machine, internet-ready microwave, ...

• Numerous mobile networked devices
• Trend towards ubiquitous networks and

spontaneous networking / service access
– high bandwidth, wireless, cheap

-LQL� /HQN� ����������� ��

7KH�-LQL�'RPDLQ

• Everything will be networked
– server

• web server
• compute server
• accounting server

– desktop computer
– mobile devices

• notebooks

• Personal Digital Assistants (PDAs)
• SmartPhones

– at home: washing machine, toys, ...

– embedded systems

– everyday things (“smart x”)

Co m pute Se rver

XXXSe rverW W W -Se rver

Co m pute Se rver

XXXSe rverW W W -Se rver
Co m pute Se rver

XXXSe rverW W W -Se rver

PD A

F ax

���DQG HYHU\WKLQJ

ZDQWV WR FRPPXQLFDWH�

8

-LQL� /HQN� ����������� ��

&KDOOHQJHV�IRU�8ELTXLWRXV�1HWZRUNLQJ

• Hiding the complexity
– most important: usage must be easy

– no manual installation and/or configuration
– adaptation to local environment (not the other way round)

• How does the toaster talk to the ABS control system?
– problem: heterogeneity of hardware, OS, ...

– problem: varying resources, environments
– uniform “language”? (e.g. Java byte code, IDL, XML)

• Dealing with new usage scenarios
– high mobility of users and devices

– new services / business models
• revenue by providing services

DQG DERXW

ZKDW"

-LQL� /HQN� ����������� ��

0LGGOHZDUH

• Approach from a different direction: “middleware”
– components to help build and deploy distributed applications

(compile-time and run-time)

– located between the application logic and the underlying
physical network

• Abstraction from tedious network programming wanted
• Abstraction from differing machine architectures wanted

– problem: data encoding (e.g. big/little endian, integer size, array
storage layout, ...)

• Components for recurring problems (e.g. naming
service, security service, ...)

9

-LQL� /HQN� ����������� ��

0LGGOHZDUH

$SSOLFDWLRQ $SSOLFDWLRQ$SSOLFDWLRQ

3ODWIRUP
• OS
• network

3ODWIRUP
• OS
• network

Middleware
Service

Service

Service

Service

APIs

Platform
interface

-LQL� /HQN� ����������� ��

(YROXWLRQ�RI�0LGGOHZDUH

• Low-level protocols
– exchange of plain messages, e.g. HTTP, X.25, ASN.1, ...

• RPC
– communication often follows a typical pattern

– automatic generation of communication code

– procedural paradigm

• CORBA
– object-oriented paradigm

– stubs: automatically generated local proxies that handle
communication

• RMI
– Java’s native middleware

– code shipping

10

-LQL� /HQN� ����������� ��

3UREOHPV�ZLWK�&XUUHQW�0LGGOHZDUH

• Systems hide the network from the programmer
– programmers don’t have to deal with the network and its inherent

problems (unreliability, latency, bandwidth, ...)

– no exception handling

• Data is moved to the computation
– “classical” client/server paradigm

– not always most efficient solution

– but: execution code is usually not available everywhere
(different system architectures, installation, ...)

– problem: different data formats (byte-order, character
representation, ...)

-LQL� /HQN� ����������� ��

6RPH�)DOODFLHV�RI�&RPPRQ
'LVWULEXWHG�&RPSXWLQJ�6\VWHPV

• The idealistic view…
– the network is reliable

– latency is zero
– bandwidth is infinite

– the network is secure

– topology doesn’t change

– there is one administrator

• …isn’t true in reality
– Jini addresses some of issues

– at least it does not hide or ignore them

11

-LQL� /HQN� ����������� ��

%LUG¶V�(\H�9LHZ�RQ�-LQL

• Jini consists of a number of APIs
• Is an extension to the Java 2

platform dealing with distributed
computing

• Is a layer of abstraction between
application and underlying
infrastructure (network, OS)

– Jini is a kind of “middleware”

• Extension of Java in three dimensions:
– infrastructure

– programming model

– services

1HWZRUN

2SHUDWLQJ V\VWHP

-DYD WHFKQRORJ\

-LQL WHFKQRORJ\

$SSOLFDWLRQV 6HUYLFHV

-LQL� /HQN� ����������� ��

-LQL¶V�-DYD�([WHQVLRQV

• Extensions regarding networked systems

3URJUDPPLQJ�PRGHO ,QIUDVWUXFWXUH 6HUYLFHV

� 6ZLQJ

� %HDQV

� ���

� -90

� 50,

� ���

� 7UDQVDFWLRQ 6HUYLFH

� (QWHUSULVH -DYD%HDQV

� ���

� 7UDQVDFWLRQV

� 'LVWULEXWHG HYHQWV

� /HDVLQJ

� 'LVFRYHU\

� /RRNXS

� -DYD6SDFHV

� ���

-DYD

-LQL

will be explained soon

12

-LQL� /HQN� ����������� ��

-LQL¶V�8VH�RI�-DYD

• Jini requires JVM (as bytecode interpreter) and RMI
– homogeneity in a heterogeneous

world

– is this realistic?

• But: devices that are not “Jini-enabled” or that do not have
a JVM, can be managed by a software proxy which resides
at some place in the net
– e.g. “Device Bay”

• Safety of Java applies to Jini as well
– type safety, checks for array bounds, sand box, ...

Able to perform protocol
for discovery and join;
have a JVM; ...

-LQL� /HQN� ����������� ��

5HPRWH�0HWKRG�,QYRFDWLRQ��50,�

1HWZRUN

&OLHQW

&OLHQW

&OLHQW 6HUYHU

6HUYHU

13

-LQL� /HQN� ����������� ��

2YHUYLHZ

• Jini, what’s that?
– motivation

– overview

• RMI
– introduction

– example

– serialization

• Jini infrastructure
– lookup service

– discovery & join protocols

– programming example

– detailed infrastructure

• Jini programming model
– leasing

– distributed events

• Jini services
– transactions and the

transaction manager

– JavaSpaces

• Summary

-LQL� /HQN� ����������� ��

50,��,QWURGXFWLRQ

• RMI: “Remote Method Invocation”
• Java’s native middleware
• “Regular” Java: method invocation within one Java VM
• By using RMI objects can call methods of objects

running in a different Java VM
• Java VMs can be distributed among machines in a

network

14

-LQL� /HQN� ����������� ��

5HPRWH�,QYRFDWLRQ

-DYD�90

Network

-DYD�90

Client Server
Method invocation

Result

-LQL� /HQN� ����������� ��

:KDW�&DQ�<RX�'R�:LWK�50,"

• Server objects offer their functionality (“services”: data,
computation) to clients

• Clients can access them via a network
• RMI offers mechanism to bring clients and servers

together
• Goal: clients can use remote server objects in (almost)

the same way as they use local objects
– partial failure possible

– larger latency

15

-LQL� /HQN� ����������� ��

+RZ�'RHV�50,�:RUN"

• Basic difference between local and remote objects:
different Java VMs

• Idea: create a proxy for the remote object in the local
Java VM
– so-called “stub”

– signature of methods is identical to methods in remote server
object

– handles communication with remote object

– “skeleton” in remote JVM is counterpart to stub
• forwards parameter to “real” server object

• returns result to stub

-LQL� /HQN� ����������� ��

+RZ�'RHV�50,�:RUN"

-DYD�90

Network

-DYD�90

SkeletonStub

Client Server

16

-LQL� /HQN� ����������� ��

0RUH�'HWDLOV

7UDQVSRUW�/D\HU

5HPRWH 5HIHUHQFH /D\HU

6WXE

&OLHQW�3URJUDP

7UDQVSRUW�/D\HU

5HPRWH 5HIHUHQFH /D\HU

6NHOHWRQ

6HUYHU�3URJUDP

1HWZRUN

3URJUDPPHU
V YLHZ

-LQL� /HQN� ����������� ��

50,�'HWDLOV

• Client: invokes methods of an object
• Stub: implements “remote interface” of server object,

passes on parameters
• Remote Reference Layer: maps object references to

machines and objects
• Transport Layer: manages connections between

machines and handles data transfer
• Skeleton: passes data to server object
• Server: implements functionality

17

-LQL� /HQN� ����������� ��

+RZ�WR�*HW�$FFHVV�WR�2EMHFWV

• Clients must get stubs for remote objects
• RMI registry: naming service

– mapping name (string) → object
– location of registry (machine name and port number) must be

known

– name of server object must be known
– e.g. “//server.tu-darmstadt.de:2222/HelloServer ”

– usually supplies reference to first object only; all further objects
handled by this one (“factory pattern”)

– e.g. root: database object, gives access to entries

• Jini

-LQL� /HQN� ����������� ��

50,�([DPSOH��5HPRWH�,QWHUIDFH

• Remote methods are defined by “remote interfaces”:

• Methods can always throw RemoteException s
– server or network may fail

• Interfaces are marked as remote by extending tag
interface java.rmi.Remote

public interface Hello extends java.rmi.Remote {
 String sayHello() throws java.rmi.RemoteException ;
}

18

-LQL� /HQN� ����������� ��

50,�([DPSOH��6HUYHU�2EMHFW

public class HelloImpl extends java.rmi.server.UnicastRemoteObject
implements Hello {
 public HelloImpl() throws java.rmi.RemoteException {
 super();
 }
 public String sayHello() throws java.rmi.RemoteException {
 return “Hello World!”;
 }
}

• Server implements remote interface and usually extends
UnicastRemoteObject

• UnicastRemoteObject handles RMI related work
(make object known to RMI, relay calls)

• Server has to realize interface’s functionality

-LQL� /HQN� ����������� ��

50,�([DPSOH��6HUYHU�6WDUWXS

• Appropriate security manager needs to be set to allow
remote access

• Server object is created and registered with RMI registry

public class HelloStart {
 public static void main(String args[]) {
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new java.rmi.RMISecurityManager()) ;
 }
 try {
 HelloImpl obj = new HelloImpl();
 java.rmi.Naming.rebind (“//server.tud.de/HelloServer”, obj);
 } catch (Exception e) {}
 }
}

19

-LQL� /HQN� ����������� ��

50,�([DPSOH��&OLHQW

• Security manager enables class download
• Get server’s stub from RMI registry
• Use the server

public class HelloClient {
 public static void main(String args[]) {
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new java.rmi.RMISecurityManager()) ;
 }
 try {
 Hello obj = (Hello)
 java.rmi.Naming.lookup (“//server.tud.de/HelloServer”);
 System.out.println(obj.sayHello());
 } catch (Exception e) {}
 }
}

-LQL� /HQN� ����������� ��

50,�([DPSOH��'HSOR\PHQW

• Naming Service must be running: rmiregistry

• Stub has to be created: rmic HelloImpl
– creates classes HelloImpl_Stub and HelloImpl_Skel

– no skeletons needed in Java 2 (option -v1.2)

• Security policy needed to access sockets:
– java -Djava.security.policy=policy HelloStart

– java -Djava.security.policy=policy HelloClient

• For non-local environments classes (here:
HelloImpl_Stub) have to put onto an HTTP server and
server’s codebase has to be supplied

20

-LQL� /HQN� ����������� ��

6HULDOL]DWLRQ

• Parameters and return values (arbitrary objects) have to
be transferred between client and server

• Copy of object has to be sent to remote JVM
• Transform it into stream of bytes (“serialization”)
• Problem: objects may contain references to other objects

– not only simple data types like integer, boolean, ...

– all referenced objects have to be recursively serialized
(“transitive closure” of objects)

-LQL� /HQN� ����������� ��

6HULDOL]DWLRQ

'
H
V
H
UL
D
OL
]
D
WL
R
Q

1HWZRUN

6RXUFH -90 'HVWLQDWLRQ -90

6
H
UL
D
OL
]
D
WL
R
Q

...%\WH VWUHDP

21

-LQL� /HQN� ����������� ��

6HULDOL]DWLRQ

• Transforming an object into a stream of bytes
– object consists of its code and its state (values of variables)

– code is stored in class files
– state is dynamic and only available at runtime

– take a “snapshot” of this state

-LQL� /HQN� ����������� ��

6HULDOL]DWLRQ���+RZ�'RHV�,W�:RUN"

• Realized by Java’s introspection facilities
• All non-transient, non-static fields are recursively written

to a byte-stream
• Simple types have predefined storage functions
• Objects’ types (full class names, e.g. java.util.List)

and signatures are written
• Objects are only written once, even if referenced multiple

times
• Serial version UID to control versions

– calculated from the signature of a class

– override manually to mark compatible class evolution

22

-LQL� /HQN� ����������� ��

6HULDOL]DWLRQ���+RZ�'RHV�,W�:RUN"

• Objects have to implement interface
java.io.Serializable

– “tag” interface: does not contain any functions
– not implementing this results in runtime error

java.io.NotSerializableException

• Predefined serialization semantics is defined in
java.io.ObjectOutputStream.defaultWriteObject() ,
java.io.ObjectInputStream.defaultReadObject()

• Can be overridden by implementing certain functions
(writeObject() , readObject())

-LQL� /HQN� ����������� ��

:KDW�&DQ�%H�6HULDOL]HG"

• All primitive types (int, boolean, etc.)
• “Remote objects” (by sending serialized stubs)
• Base types (String, Integer, ...) that implement

java.io.Serializable

• Most container classes (Hashtable, Vector, ...) if and
only if they only contain serializable objects

• Some AWT and Swing classes
• Your classes, if they implement

java.io.Serializable

23

-LQL� /HQN� ����������� ��

:KDW�&DQQRW�%H�6HULDOL]HG"

• Base types that do not implement Serializable
– “wrapper classes” possible

• “Low level” classes:
– input and output streams

– threads

– peer classes

-LQL� /HQN� ����������� ��

6HULDOL]DWLRQ���:KDW�7R�8VH�,W�)RU"

• Write to file: make objects persistent
– Configurations

– (Enterprise) Java Beans
– to continue working on the same state later

• Write to socket:
– to transfer objects to another JVM

– parameter passing

– mobile agents

24

-LQL� /HQN� ����������� ��

&RGH�0RELOLW\

• Objects consists of two parts:
– code (in Java class files)

– state (values of attributes, execution pointers)

• RMI transfers only state
• Problem: code is usually not locally available at recipient

(i.e. not listed in its classpath)
• Solution: code can be downloaded at run-time (e.g. from

an HTTP server)

-LQL� /HQN� ����������� ��

&RGH�0RELOLW\

State
a=5
b=7

Implementation
a=?
b=?

&RGH IURP

�ZHE� VHUYHU

'DWD IURP

VRXUFH -90

Reconstructed object
a=5
b=7

25

-LQL� /HQN� ����������� ��

&RGHEDVH

• Code can be downloaded, but: where from?
• Location of code is transferred together with its state

(“codebase”)
• Codebase is a list of URLs
• Codebase is set as a property when starting a JVM (“-

Djava.rmi.server.codebase=<URL> ”)

• URL might be
– directory containing the class tree

– JAR file containing the classes

-LQL� /HQN� ����������� ��

6HFXULW\

• Unknown objects are executed on local machine (like
applets)

• Access restrictions desired
• Access restrictions specified by security policies

– fine-grained control of local resources (especially storage,
network) possible

– rights are granted based on
• where code came from (network, local file system)
• who signed code

grant signedBy “sysadmin”, codeBase “http://server.tud.de/-” {
 permission java.net.SocketPermission “*:1024-”, “connect,accept”;
};

26

-LQL� /HQN� ����������� ��

-LQL�,QIUD VWUXFWXUH

-LQL� /HQN� ����������� ��

2YHUYLHZ

• Jini, what’s that?
– motivation

– overview

• RMI
– introduction

– example

– serialization

• Jini infrastructure
– lookup service

– discovery & join protocols

– programming example

– detailed infrastructure

• Jini programming model
– leasing

– distributed events

• Jini services
– transactions and the

transaction manager

– JavaSpaces

• Summary

27

-LQL� /HQN� ����������� ��

-LQL�,QIUDVWUXFWXUH

• Main components are:
– lookup service as repository / naming service / trader

– protocols based on TCP/UDP/IP
• discovery & join, lookup of services

– proxy objects
• transferred from service to clients
• represent the service locally at the client

• Goal: spontaneous networking and formation of
federations without prior knowledge of local network
environment

• Problem: How do service providers and users get to
know their local environments?

-LQL� /HQN� ����������� ��

/RRNXS�6HUYLFH��/86�

• Similar to RMI registry and CORBA naming service
• Main component of every Jini federation
• Repository of service providers
• May be redundant and hierarchically organized (similar

to “Domain Name Service”)
• Tasks:

– “help-desk” for services and clients
• registration of services (services advertise themselves)
• distribution of services (clients find services)

– offers mechanisms to bring together services and clients

28

-LQL� /HQN� ����������� ��

/RRNXS�6HUYLFH

/RRNXS�
6HUYLFH

&OLHQW 6HUYHU

UH
J
LV
WH
U

OR
R
NX
S

XVH

-LQL�

)HGHUDWLRQ

-LQL� /HQN� ����������� ��

/RRNXS�6HUYLFH

• Uses Java RMI for communication
– objects can migrate through the net

• Not only name/address of a service are stored (as in
traditional naming services), but also
– set of attributes

• e.g.: printer (color: true, dpi: 600, ...)

– proxies and attributes may be complex classes
• e.g.: user interface(s)

29

-LQL� /HQN� ����������� ��

'LVFRYHU\��)LQGLQJ�D�/86

• Goal: Find a lookup service without knowing anything
about the network to
– advertise (register) a service
– find (look up) an existing service

• Discovery protocol:
– multicast to well-known address/port

– lookup service replies with a serialized object (interface
ServiceRegistrar)

• proxy object of lookup service gets loaded to discovering entity
• communication with LUS via this proxy (may implement any

(proprietary) protocol)

-LQL� /HQN� ����������� ��

foreign network
'LVFRYHU\

Where is
the lookup
service?

/RRNXS 6HUYLFH

/RRNXS 6HUYLFH
That’s me!!!

/RRNXS 6HUYLFH

3UR[\

/RRNXS 6HUYLFH

3UR[\

0XOWLFDVW 5HTXHVW

5HSO\

&RPPXQLFDWLRQ

/RRNXS 6HUYLFH

/RRNXS 6HUYLFH

3UR[\

30

-LQL� /HQN� ����������� ��

-RLQ��5HJLVWHULQJ�D�6HUYLFH

• Service provider already received a proxy of the lookup
service

• Provider uses this proxy to register its service
(register())

• Gives the lookup service
– its service proxy

– attributes that further describe the service

• Provider can now be found and used in this Jini
federation

-LQL� /HQN� ����������� ��

...

/RRNXS 6HUYLFH

6HUYLFH GDWDEDVH LQ /86

-RLQ

/RRNXS 6HUYLFH

3UR[\

Entry 1Entry 2 Entry n...
6HUYLFH

SUR[\

Entry1Entry2 Entry n...
6HUYLFH

SUR[\

5HJLVWU
DWLRQ

6HUYLFH

5HJLVWU
DWLRQ

31

-LQL� /HQN� ����������� ��

/RRNXS��6HDUFKLQJ�6HUYLFHV

• Client knows lookup service (e.g. via discovery protocol)
• Looking for certain service
• Creates query for lookup service

– in form of a “service template”

– matching by registration number of service and/or service type
and/or attributes

– wildcards possible

• Lookup service returns one or more matches
• Selection usually done by client
• Service use by calling functions of service proxy
• Any protocol between proxy and service provider possible

-LQL� /HQN� ����������� ��

...

/RRNXS 6HUYLFH

6HUYLFH GDWDEDVH LQ /86

Entry1Entry2 Entry n...
6HUYLFH

SUR[\

Entry1Entry2 Entry n...
6HUYLFH

SUR[\

/RRNXS

/RRNXS 6HUYLFH

3UR[\ /RRNXS

"

"
"

&
R
P
P
X
Q
LF
D
WLR
Q

&OLHQW

Entry1Entry2 Entry n...
6HUYLFH

SUR[\

32

-LQL� /HQN� ����������� ��

-LQL�3URJUDPPLQJ�([DPSOH

• How is a service realized?
• How does a client get access to a service?
• How is a service described?

-LQL� /HQN� ����������� ��

7KH�³5XQQLQJ�([DPSOH´

/RRNXS 6HUYLFH

2IILFH
DSSOLFDWLRQ

3ULQWHU

SUR[\ Any protocol

&RPPXQLFDWLRQ EHWZHHQ

DSSOLFDWLRQ DQG SULQWHU YLD

IXQFWLRQ FDOOV RI SUR[\

3ULQWHU

SUR[\

3ULQWHU

SUR[\

33

-LQL� /HQN� ����������� ��

7KH�³5XQQLQJ�([DPSOH´

• Printer registers itself with the office’s lookup service
– printer provides print interface as its service

– implementation of service consists of provider and proxy
– proxy is stored in the lookup service and will be transferred to

clients upon request

– protocol between proxy and service provider depends on
implementation and is not stipulated by Jini

public interface Print extends java.rmi.Remote {
public PrinterParams readPrinterParams()

throws java.rmi.RemoteException;
public SuccessCode print(Document doc)

throws java.rmi.RemoteException;
 [...etc...]
}

-LQL� /HQN� ����������� ��

,PSOHPHQWLQJ�D�6HUYLFH�3URYLGHU

public class PrintImpl extends UnicastRemoteObject
 implements Print {
[...]
 public PrinterParams readPrinterParams()
 throws RemoteException {
 // something should be done here
 }
 public SuccessCode print(Document doc)
 throws RemoteException {
 // something else should be done here
 }
[...]
}

7KHUH¶V�QR
-LQL�LQ�KHUH�

34

-LQL� /HQN� ����������� ��

5HJLVWHULQJ�D�6HUYLFH

public class PrintRegistration {
 public static void main(String[] args) {
 if (System.getSecurityManager() == null)
 System.setSecurityManager(new RMISecurityManager());
[...]
 Print service = new PrintImpl();
 Entry[] attribute = new Entry[2];
 attribute[0] = new Name(“PrintService”);
 attribute[1] = new ServiceInfo (“Shiny Print Service”,
 “HyperClear”, “Shiny Inc.”,
 “2000”, “”, “08/15”);
 JoinManager jmgr = new JoinManager (service, attribute,

 (ServiceIDListener) new SvcIDListener(),
 new LeaseRenewalManager ());
[...]
 }
}

-LQL� /HQN� ����������� ��

,PSOHPHQWLQJ�WKH�&OLHQW

public class PrintClient {
 public static void main(String[] args) {
 if (System.getSecurityManager() == null)
 System.setSecurityManager(new RMISecurityManager());
[...]
 LookupLocator lus = new LookupLocator(“jini://tud.de/”);
 ServiceRegistrar registrar = lus.getRegistrar();
 // The service we would like to find:
 Class[] cl = new Class[] { Print.class };
 ServiceTemplate template =
 new ServiceTemplate(null, cl, null);
 Print proxy = (Print) registrar. lookup (template);
 // Use the service
 proxy.print(doc);
[...]
 }
}

35

-LQL� /HQN� ����������� ��

0XOWLFDVW�'LVFRYHU\�&OLHQW

public class MCExample implements DiscoveryListener {
 public static void main(String[] args) {
[...Security Manager etc...]
 LookupDiscovery ld =
 new LookupDiscovery(LookupDiscovery.ALL_GROUPS);
 ld. addDiscoveryListener (new MCExample());
[...]
 }
 public void discovered (DiscoveryEvent ev) {
 ServiceRegistrar[] regs = ev. getRegistrars ();
 ServiceRegistrar reg = regs[0];
 Class[] cl = new Class[] { Print.class };
 ServiceTemplate tmpl = new ServiceTemplate(null,cl,null);
 Print proxy = (Print) reg. lookup (tmpl);
 }
 public void discarded (DiscoveryEvent e) {}
}

-LQL� /HQN� ����������� ��

5RXQG����0RUH�'HWDLOV

36

-LQL� /HQN� ����������� ��

2YHUYLHZ

• Jini, what’s that?
– motivation

– overview

• RMI
– introduction

– example

– serialization

• Jini infrastructure
– lookup service

– discovery & join protocols

– programming example

– detailed infrastructure

• Jini programming model
– leasing

– distributed events

• Jini services
– transactions and the

transaction manager

– JavaSpaces

• Summary

-LQL� /HQN� ����������� ��

2YHUYLHZ��

• Detailed look at
– discovery
– join

– lookup
– entries
– lookup service

• proxies
• groups

– leases

– distributed events
– transactions
– transaction manager

– JavaSpaces

Jini infrastructure

Jini services

Jini programming model

37

-LQL� /HQN� ����������� ��

'LVFRYHU\

• Protocols to find lookup services
• Multicast request protocol

– client asks for local lookup services
– no prior knowledge of local network necessary

• Unicast request protocol
– used to contact known lookup services

– works across subnet boundaries and over the Internet

• Multicast announcement protocol
– protocol for lookup services to announce their presence

• Example: printer registers with the office via multicast,
but gets software updates from a dedicated server via
unicast discovery

-LQL� /HQN� ����������� ��

0XOWLFDVW�5HTXHVW�3URWRFRO

• No information about the host network needed
• Active search for lookup services
• Discovery request uses multicast UDP packets

– IP-centric

– multicast address for discovery is 224.0.1.85

– default port number of lookup services is 4160
• hexadecimal subtraction: CAFE16-BABE16=416010

– recommended time-to-live is 15

– usually does not cross subnet boundaries

• Discovery reply is establishment of a TCP connection
– port for reply is included in multicast request packet

38

-LQL� /HQN� ����������� ��

0XOWLFDVW�5HTXHVW�3URWRFRO

-DYD90 FOLHQW�VHUYLFH

0XOWLFDVW UHTXHVW

FOLHQW

0XOWLFDVW UHVSRQVH

VHUYHU

-DYD90 ORRNXS VHUYLFH

0XOWLFDVW UHTXHVW

VHUYHU

0XOWLFDVW UHVSRQVH

FOLHQW

0XOWLFDVW UHTXHVW

SDFNHW

6HUYLFH

UHJLVWUDU

7&3

8'3

-LQL� /HQN� ����������� ��

0XOWLFDVW�5HTXHVW�3URWRFRO��&OLHQW�

• Initialize TCP server socket (“multicast response server”)
– wait for incoming TCP connections from responding lookup

services

• Initialize a UDP socket (“multicast request client”)
• Periodically send multicast request packets to well-known

address/port
– contains protocol version, contact information, desired groups,

and ServiceIDs of known lookup services

– unlisted lookup services answer by opening a TCP connection
– multicasting is stopped after some time

39

-LQL� /HQN� ����������� ��

0XOWLFDVW�5HTXHVW�3URWRFRO��6HUYHU�

• Initialize a datagram socket on well-known address/port
• Wait for incoming multicast requests
• “Multicast Request Server” answers, if groups match and

ServiceID is not listed in list of known lookup services
• Open TCP connection to client and continue with unicast

discovery protocol

-LQL� /HQN� ����������� ��

0XOWLFDVW�5HTXHVW�3DFNHW

*URXS�P��6WULQJ�

���

*URXS����6WULQJ�

1XPEHU�RI�JURXSV��LQW�

/86�Q��6HUYLFH,'�

���

/86����6HUYLFH,'�

1XPEHU�RI�NQRZQ�/86HV��LQW�

5HSO\�SRUW��LQW�

3URWRFRO�YHUVLRQ��LQW�

PD[������E\WHV

40

-LQL� /HQN� ����������� ��

8QLFDVW�'LVFRYHU\�3URWRFRO

• Used to contact lookup services with known locations
• Uses TCP (unicast) connections to port 4160
• Simple request-response protocol

-DYD90

FOLHQW�VHUYLFH

-DYD90

ORRNXS VHUYLFH

8QLFDVW UHTXHVW

6HUYLFH

UHJLVWUDU

8QLFDVW UHVSRQVH

(VWDEOLVK 7&3 FRQQHFWLRQ

-LQL� /HQN� ����������� ��

8QLFDVW�3DFNHWV

• Unicast Request (client → lookup service)

• Unicast Response (lookup service → client)

*URXS�P��6WULQJ�

���

*URXS����6WULQJ�

1XPEHU�RI�JURXSV��LQW�

/86�SUR[\��0DUVKDOOHG2EMHFW�

3URWRFRO�YHUVLRQ��LQW�

41

-LQL� /HQN� ����������� ��

0XOWLFDVW�$QQRXQFHPHQW�3URWRFRO

• Used by lookup services
• Announces the availability of lookup services
• Based on multicast UDP
• Announcements are sent periodically

– recommended: every 120 seconds

• Receivers of announcements have to create a “multicast
announcement server”
– listens for announcements on well-known address/port

– announcements contain protocol version, contact information,
groups, and ServiceID of lookup service

– if not yet known, start unicast discovery of this service

-LQL� /HQN� ����������� ��

0XOWLFDVW�$QQRXQFHPHQW�3DFNHW

*URXS�P��6WULQJ�

���

*URXS����6WULQJ�

1XPEHU�RI�JURXSV��LQW�

6HUYLFH�LG��6HUYLFH,'�
PD[������E\WHV

3RUW�IRU�XQLFDVW�GLVFRYHU\��LQW�

+RVW�IRU�XQLFDVW�GLVFRYHU\��6WULQJ�

3URWRFRO�YHUVLRQ��LQW�

42

-LQL� /HQN� ����������� ��

-RLQ��0RUH�)HDWXUHV

• To join, a service supplies:

– its proxy

– its ServiceID (if previously assigned; “universally unique identifier”)

– set of attributes, set of groups

– (possibly empty) set of specific lookup services to join

• Service waits a random amount of time after start-up
– prevents packet storm after restarting a network segment

• Registration with a lookup service is bound to a lease
– service has to renew its lease periodically

• Discovery and join can be handled by objects of class
JoinManager

ServiceItem(Object service, ServiceID id,
Entry[] attributes)

-LQL� /HQN� ����������� ��

/RRNXS

• Client looks for service(s) registered with a lookup service
– any combination of search criteria possible:

• ServiceID
• service type
• certain attributes

– client creates a net.jini.core.lookup.ServiceTemplate

– template filled with interfaces, entries and/or ServiceID
– wildcards possible, represented by null

– attributes: only exact matching possible (no “larger-than”, …)

– no query language

ServiceTemplate(ServiceID serviceID,
java.lang.Class[] serviceTypes, Entry[] attrSetTemplates)

43

-LQL� /HQN� ����������� ��

(QWULHV

• Difference to “traditional” naming services
• Not only a name for a service
• Properties:

– set of attributes
• e.g.: printer (dpi: 600, type: color, …)

– every serializable data type is possible

– data and methods

– complex classes possible
• different user interfaces (AWT, Swing, speech, …)
• references to further (complex) objects

-LQL� /HQN� ����������� ��

(QWULHV��([DPSOHV�

public class Name extends
AbstractEntry {
 public String name;
 public Name() {}
 public Name(String name) {
 this.name = name;
 }
}

public class PrinterEntry extends
AbstractEntry {
 public PrinterType type;
 public Integer pagesPerSecond;

[...]
 public PrinterEntry() {}
 public PrinterEntry(PT type) {
 this.type = type;

[...]
 }
}public class AWTGUIEntry extends

AbstractEntry {
 public Panel panel;

[...]
 public GUIEntry() {}
 public GUIEntry(Panel panel) {
 this.panel = panel;

[...]
 }
}

44

-LQL� /HQN� ����������� ��

(QWULHV��([DPSOHV�

public class Name extends
AbstractEntry {
 public String name;
 public Name() {}
 public Name(String name) {
 this.name = name;
 }
}

public class PrinterEntry extends
AbstractEntry {
 public PrinterType type;
 public Integer pagesPerSecond;

[...]
 public PrinterEntry() {}
 public PrinterEntry(PT type) {
 this.type = type;

[...]
 }
}public class AWTGUIEntry extends

AbstractEntry {
 public Panel panel;

[...]
 public GUIEntry() {}
 public GUIEntry(Panel panel) {
 this.panel = panel;

[...]
 }
}

Complex data structures

-LQL� /HQN� ����������� ��

(QWULHV

• Base is interface net.jini.core.Entry.Entry

• More useful: class net.jini.entry.AbstractEntry
– implements Entry

– realizes equals() , hashCode() , and toString()

• Entries usually extend class AbstractEntry

45

-LQL� /HQN� ����������� ��

7HPSODWH�0DWFKLQJ��([DPSOHV�

• ServiceTemplate(null, Print.class, null)

– matches all services that implement interface Print
– attributes are ignored (wildcard null matches everything)

• ServiceTemplate(serviceID, null, null)

– matches at most one service

• A ServiceTemplate filled with entries matches exact
data structure and values of entries
– entry E matches template T if field values are the same

– wildcards in T match any value in the respective field in E
– fields in E must have the same type or a subtype of field in T

– lookup service compares serialized forms of entries and
templates

-LQL� /HQN� ����������� ��

7HPSODWH�0DWFKLQJ��([DPSOHV�

(QWU\ (

PDWFKHV

7HPSODWH 7�

QXOO QXOO

7HPSODWH 7�

PDWFKHV

(QWU\ (

7HPSODWH 7�

GRHV 127 PDWFK

(QWU\ (

46

-LQL� /HQN� ����������� ��

/RRNXS�6HUYLFH�'HWDLOV

/RRNXS 6HUYLFH

&OLHQW

5HJLVWUDWLRQ

/RRN
XS

6HUYLFH

6
H
UY
LF
H
X
VD

J
H

-LQL� /HQN� ����������� ��

/RRNXS�6HUYLFH

• Jini systems are grouped around one or more lookup
service(s)

• Service providers register their services and capabilities
with the lookup service (registration)

• Clients find services via the lookup service (lookup)
• Further possibilities:

– increase robustness by running redundant lookup services
– responsibility can be distributed to a number of (logically

separated) lookup services

47

-LQL� /HQN� ����������� ��

*URXSV

• There may be lots of lookup services in a large Jini system
• Idea: split services into groups and assign responsibility for

each of them to a different lookup service
– so-called “lookup groups”

– clients/services always announce interest in certain group(s)

– unwanted groups are ignored

– simple text identifier

• Example: a company has different lookup services for all
departments, e.g. accounting, production, research, ...

-LQL� /HQN� ����������� ��

/RRNXS�6HUYLFH�9HUVXV
³7UDGLWLRQDO´�1DPLQJ�6HUYLFH

Naming service Lookup service
Description by text only
• /devices/printers/ → all printers
• /devices/printers/color → color printers
• /software/wordprocessing/

Description by ServiceItem s
• interface Printer
• interface ColorPrinter
• additional information by typed attributes

(Name, Location, dpi, etc.)
Lookup by well-known text identifier
(convention: print services are in
/devices/printers/)

Lookup by specifying the (well-known)
service type

Reference might have unknown type (fax
machine in /devices/printers/)

Reference always has known interface
(base or subtype thereof)

Standardized naming conventions Standardized interfaces
Usually no expiration of entries (heartbeat,
keep-alive)

Services have to renew their entries in the
lookup service periodically (leasing)

Identified by (static) address; groups can be
modeled by addresses

Discovery; group concept

48

-LQL� /HQN� ����������� ��

/RRNXS�6HUYLFH��3UR[\�,QWHUIDFH

public abstract interface ServiceRegistrar {
 public ServiceRegistration register (ServiceItem item,
 long leaseDuration)
 throws RemoteException;
 public java.lang.Object lookup (ServiceTemplate tmpl)
 throws RemoteException;
 public ServiceMatches lookup (ServiceTemplate tmpl,
 int maxMatches)
 throws RemoteException;
 [...]
}

8VHG E\ VHUYLFH

SURYLGHUV

8VHG E\ FOLHQWV

-LQL� /HQN� ����������� ��

3UR[LHV�DQG�(QWULHV

• Registration record of a service in the lookup service is
not “just a name”

• Registration record consists of a ServiceItem :

• Service-ID is a 128 bit “universally unique identifier”
– generated by the lookup service when registering the first time

– service has to reuse it for all later registrations

– service has to make it persistent

ServiceItem(Object service, ServiceID id,
 Entry[] attributes)

49

-LQL� /HQN� ����������� ��

3UR[LHV�DQG�(QWULHV

• Registration record of a service in the lookup service is
not “just a name”

• Registration record consists of a ServiceItem :

• Service-ID is a 128 bit “universally unique identifier”
– generated by the lookup service when registering the first time

– service has to reuse it for all later registrations

– service has to make it persistent

ServiceItem(Object service, ServiceID id,
 Entry[] attributes)

7KH SUR[\

RI D VHUYLFH

'HVFULSWLYH DWWULEXWHV

DV (QWU\ REMHFWV

-LQL� /HQN� ����������� ��

3UR[\��)HDWXUHV

• Proxy object is stored in the lookup service upon
registration
– serialized object
– implements one or more service interfaces

– service type is defined by the type of the interface

• Upon request, stored object is sent to the client as a
local proxy of the service
– if needed, client retrieves necessary classes
– class location stored in codebase property (URL)

– client communicates with service implementation via service’s
proxy: client invokes methods of the proxy object

– proxy implementation hidden from client

50

-LQL� /HQN� ����������� ��

3UR[\��,PSOHPHQWDWLRQ

• Implementation of service functionality is not stipulated
• Partition of service functionality depends on service

implementer’s choice
• Parts of or whole functionality may be executed by the

client (within the proxy)
• When dealing with large volumes of data, it usually

makes sense to preprocess parts of or all the data
– e.g.: compressing video data before transfer

Client Service

Proxy Communication

Client Service

Proxy Comm ication

-LQL� /HQN� ����������� ���

2YHUYLHZ

• Jini, what’s that?
– motivation

– overview

• RMI
– introduction

– example

– serialization

• Jini infrastructure
– lookup service

– discovery & join protocols

– programming example

– detailed infrastructure

• Jini programming model
– leasing

– distributed events

• Jini services
– transactions and the

transaction manager

– JavaSpaces

• Summary

51

-LQL� /HQN� ����������� ���

/HDVHV

• Leases are contracts between two parties
• Leases introduce the notion of time

– resource usage is restricted to a certain time frame
– interaction is modeled by repeatedly expressing interest in some

resource:
• I’m still interested in X

– renew lease periodically
– lease renewal can be denied

• I don’t need X anymore
– cancel lease or let it expire
– lease grantor can use X for something else

• Leases enable intelligent resource allocation
• Leases enable intelligent service removal

-LQL� /HQN� ����������� ���

:K\�/HDVHV"

• For allocating hardware and software resources
– examples: persistent storage, input/output devices, group

communication: participation is leased

• Inside Jini
– distributed “garbage collection”

• registrations with lookup service are leased

• resource allocations are leased (e.g. transactions)

• lease expired → “garbage”

– event notification registrations

• Time-based charging for service use (maybe...)

52

-LQL� /HQN� ����������� ���

'LVWULEXWHG�(YHQWV

• Objects in a JVM can register interest in certain events
of another object in a different VM
– JVMs can be on different machines connected by a network

• network failure
• crossing of event notifications
• late and lost messages

• “publisher/subscriber” model
• Architecture:

6XEVFULEHU
(YHQW
VRXUFH

�� 5HJLVWUDWLRQ

�� (YHQW RFFXUV

�� 6HQG QRWLILFDWLRQ

-LQL� /HQN� ����������� ���

'LVWULEXWHG�(YHQWV

• Participants
– event source

• indicates the occurrence of a certain event by emitting a notification
• sends notifications to all listeners registered for this event

– remote event listener
• object that wants to be notified about a certain kind of events

– object that registers the remote event listener
• usually the same as the listener, but not mandatory

• “store and forward” agent
• “event mailbox”

– remote events
• objects of class RemoteEvent (or subclass)

53

-LQL� /HQN� ����������� ���

'LVWULEXWHG�(YHQWV��([DPSOH�

• Again: printer was plugged in
– printer registers itself with local lookup service

• Now: maintenance application wants to update software

/RRNXS�6HUYLFH

0DLQWHQDQFH

DSSOLFDWLRQ

Any protocol

3UR[\�

DWWULEXWHV

3UR[\�

DWWULEXWHV

3UR[\�

DWWULEXWHV

-LQL� /HQN� ����������� ���

'LVWULEXWHG�(YHQWV��([DPSOH�

• Maintenance application is run on demand, search for
printers is “out-sourced”
– “sensor service” looks for certain services on behalf of the

maintenance application
– application registers for

events showing the arrival
of certain types of printers

– sensor observes the
lookup service

– notifies application as soon
as matching printer arrives

– realized by distributed
events

/RRNXS�6HUYLFH

0DLQWHQDQFH

DSSOLFDWLRQ

6HQVRU

VHUYLFH

7HOO PH DERXW WKH DUULYDO

RI QHZ SULQWHUV RI W\SH [�

54

-LQL� /HQN� ����������� ���

'LVWULEXWHG�(YHQWV��([DPSOH�

• Now: printer arrives, registers with lookup service
– printer performs

discovery and join

– sensor finds new
printer in lookup
service

– checks if there
is an event registration
for this type of printer

– notifies all
interested objects

– maintenance
application retrieves
printer proxy and
updates software

/RRNXS�6HUYLFH

0DLQWHQDQFH

DSSOLFDWLRQ

$ QHZ SULQWHU DUULYHG�

, KDYH WR QRWLI\ DOO

LQWHUHVWHG REMHFWV�

1RWLILFDWLRQ

6HQVRU

VHUYLFH

3UR[\�

DWWULEXWHV

3UR[\�

DWWULEXWHV

-LQL� /HQN� ����������� ���

'LVWULEXWHG�(YHQWV��([DPSOH�

• Realization (interfaces):
– application implements interface RemoteEventListener

• can now receive notifications
• notify(RemoteEvent theEvent) is only method

– sensor could implement the interface:
public interface LUSSensor extends Remote {
 public EventRegistration register (

ServiceTemplate theEvent,
MarshalledObject handback,
RemoteEventListener toInform,
long leaseLength)

 throws UnknownEventException, RemoteException;
}

(YHQW W\SH WR EH
UHJLVWHUHG IRU�

³KDQGEDFN´ LV UHWXUQHG WR WKH
QRWLILHG REMHFW LQ HYHU\ QRWLILFDWLRQ�

,W FDQ HDVLO\ DWWDFK DUELWUDU\

LQIRUPDWLRQ WR LWV UHJLVWUDWLRQ�

5HIHUHQFH WR WKH
REMHFW WR EH QRWLILHG�

5HJLVWUDWLRQV
DUH OHDVHG�

55

-LQL� /HQN� ����������� ���

'LVWULEXWHG�(YHQWV��([DPSOH�

• Realization (pseudo code):
– maintenance application looks for sensors and registers for

event notifications:
[...]
// pseudo code: look for sensors and get proxy
LUSSensor sensor = doLookup(LUSSensor);
// describes events
Entry[] attributes = new Entry[10];
// [...] initialize array
ServiceTemplate toLookup = new ServiceTemplate(null,

 classToLookup, attributes);
// event registration
EventRegistration registration =
sensor. register (toLookup, null, this, Lease.FOREVER);
[...]

6HUYLFH7HPSODWH

LV HYHQW W\SH

+DQGEDFN LV

QRW XVHG KHUH

$SSOLFDWLRQ LPSOHPHQWV

5HPRWH(YHQW/LVWHQHU

/HDVH LV

XQOLPLWHG

5HSUHVHQWV

ZKROH /RRNXS

6HUYLFH7HPSODWH IRU

HYHQW GHVFULSWLRQ

-LQL� /HQN� ����������� ���

'LVWULEXWHG�(YHQWV��([DPSOH�

• Realization (pseudo code):
– LUSSensor informs maintenance application about new printer

– event source informs the recipient of an event by sending a
RemoteEvent

– RemoveEvent identifies event unambiguously by tuple
<event source, event id>

– notification is synchronous
• recipient has to accept event, store it, and return from notify()-method

– maintenance application looks up printer service

[...]
// LUSSensor found matching service in lookup service,
// Inform the application
toInform. notify (new RemoteEvent (this, eventID, seqNum, null));
[...]

(YHQW VRXUFH (YHQW
6HTXHQFH

QXPEHU

+DQGEDFN

5HFLSLHQW

56

-LQL� /HQN� ����������� ���

'LVWULEXWHG�7UDQVDFWLRQV�LQ�-LQL

-LQL� /HQN� ����������� ���

2YHUYLHZ

• Jini, what’s that?
– motivation

– overview

• RMI
– introduction

– example

– serialization

• Jini infrastructure
– lookup service

– discovery & join protocols

– programming example

– detailed infrastructure

• Jini programming model
– leasing

– distributed events

• Jini services
– transactions and the

transaction manager

– JavaSpaces

• Summary

57

-LQL� /HQN� ����������� ���

7UDQVDFWLRQV��3URSHUWLHV

• No “traditional” transaction model
• No enforced semantics

– participants implement semantics
– system only provides synchronization mechanism

– system distributes information about status of transactions

• Design goal: maximum flexibility, minimum number of
interfaces

-LQL� /HQN� ����������� ���

7ZR�3KDVH�&RPPLW�3URWRFRO

• Transaction encapsulates a number of operations
• Central: a manager

– consistency: each transaction participant will ultimately perform a
“commit” or an “abort”

• Every object can participate in a transaction:
– implements interfaces

– not only traditional applications possible

• Example: transfer money from one account to another

58

-LQL� /HQN� ����������� ���

'LVWULEXWHG�7UDQVDFWLRQV�LQ�-LQL���

• …are no transactions in a traditional sense
• “Lightweight” transaction
• ACID properties

– atomicity / consistency / isolation / durability

– each participant implements these properties how he sees fit

– reason: two phase commit protocol not only in traditional
transaction context

• e.g.: transient objects do not need persistency
• main property is atomicity
• the other properties are “sometimes” optional

• Transactions are leased from the manager

-LQL� /HQN� ����������� ���

7UDQVDFWLRQV��3DUWLFLSDQWV

• Transaction manager
– Jini service

– coordinates transaction
– implements interface TransactionManager

• Clients
– initiate transactions

• Transaction participants
– have active role in transactions
– implement interface TransactionParticipant

– participation is shown by join operation

59

-LQL� /HQN� ����������� ���

7UDQVDFWLRQV��6HPDQWLF�2EMHFWV

• Transactions have no a priori semantics
– class Transaction tells objects to use their standard

transaction semantics

• Participants need the same “view” on the transaction
Î semantic objects
– encapsulate transaction ID

– their type defines the kind of transaction

• Services only accept known transaction types
• Example: DBTransaction

– requires database semantics

– transient objects not allowed (durability)

-LQL� /HQN� ����������� ���

7ZR�3KDVH�&RPPLW�3URWRFRO��'HWDLOV

• Start of a transaction
– get transaction manager from lookup service
– implements interface TransactionManager

– call to create() starts transaction
• usually indirectly via semantic object factory

• Participation in a transaction
– participants find out about transaction upon first invocation

• has to report to the transaction manager
• calls its join() method

– implements interface TransactionParticipant

60

-LQL� /HQN� ����������� ���

7ZR�3KDVH�&RPPLW�3URWRFRO��'HWDLOV

• Start of a transaction
– get transaction manager from lookup service
– implements interface TransactionManager

– call to create() starts transaction
• usually indirectly via semantic object factory

• Participation in a transaction
– participants find out about transaction upon first invocation

• has to report to the transaction manager
• calls its join() method

– implements interface TransactionParticipant

public interface TransactionManager {
 TransactionManager.Created create(...);
 void commit(...)
 void abort(...)
 void join(...)
 int getState(...)
}

public interface TransactionParticipant {
 void commit(TransactionManager mgr, long id)
 void abort(TransactionManager mgr, long id)
 int prepare(TransactionManager mgr, long id)
 int prepareAndCommit(TransactionManager mgr, long id)
}

-LQL� /HQN� ����������� ���

7UDQVDFWLRQV��([DPSOH��&OLHQW�

Client
calls
create()

create()
returns

ACTIVE VOTING

ABORTED

COMMITTED

abort()

commit()

3
DU
WL
FL
S
DQ

W

A
B

O
R

TE
D

OK!

61

-LQL� /HQN� ����������� ���

7UDQVDFWLRQV��([DPSOH��3DUWLFLSDQW�

Partici-
pant
calls
join()

join()
returns

ACTIVE VOTING
prepare

ABORTED

PREPARED

NOTCHANGED

abort

abort

abort

COMMITTED

commit

-LQL� /HQN� ����������� ���

7UDQVDFWLRQV��([DPSOH��0DQDJHU�

create()

was
called

create()
returns

ACTIVE VOTING

ABORTED

COMMITTED

abort()

commit ()

3
DU
WL
FL
S
DQ

W

A
B

O
R

TE
D

OK!

join()
YDOLG RQO\ KHUH

62

-LQL� /HQN� ����������� ���

-DYD6SDFHV

-LQL� /HQN� ����������� ���

:KDW�DUH�-DYD6SDFHV"

• Tool for developing distributed applications
• Platform for exchanging objects between distributed

applications (“shared blackboard”)
• Realizes distributed persistency
• Jini service

– implemented completely in Java

– uses RMI (in current implementation)
– client gets local proxy from service (via lookup service)

63

-LQL� /HQN� ����������� ���

:KDW�IRU"

• Models “object flow”
– e.g. producer / consumer applications

• Job-oriented view
– jobs / events are put into the space and picked up

“eventually”

• Build-in “good” properties
– “reliable storage system”

– concurrent access possible
– write / read are atomic operations

– access within transaction possible

-LQL� /HQN� ����������� ���

2EMHFWV

• JavaSpaces = “a bag full of objects”
– entries in a JavaSpace service:

• net.jini.core.entry.Entry - known as Entry class in Jini

• strongly typed by Java type system
• two entries are not equal, even if they encapsulate the same data

types
– Entry A {Integer, Integer} ≠ Entry B {Integer, Integer}

– classes: include data/state and methods Æ behavior

– may become active on the client side (security?)

64

-LQL� /HQN� ����������� ���

%DVLF�2SHUDWLRQV��:ULWH

• write puts an entry into a JavaSpace

• Uses copy of the object, never the object itself
• write returns a lease

– entry in a JavaSpace has a limited duration

– “garbage collection” in a JavaSpace service

– easier implementation?
• recovery after failure of producer
• mobility of client

3URGXFHU

�� ZULWH�(QWU\�

/HDVH

-DYD

6SDFH

-LQL� /HQN� ����������� ���

3URGXFHU
UHQHZ OHDVH

/HDVH

-DYD

6SDFH

UHDG�WDNH�(QWU\�

&RQVXPHU

%DVLF�2SHUDWLRQV��5HDG

• read/readIfExists
– uses template (Entry)

• null returns everything

• matches subclasses as well

– exact value match
• if more than one match, select and return one at random

– readIfExists returns reference to copy of the entry, null if
no match

– read waits until matching entry was found

• take/takeIfExists = read + removal of entry

65

-LQL� /HQN� ����������� ���

%DVLF�2SHUDWLRQV��1RWLI\

• Uses Jini distributed events
• Clients can register with JavaSpace services

– implements RemoteEventListener interface

– registers for certain events by supplying a “matching template”

• JavaSpace service notifies listeners
– if a matching entry is written to the space, all listeners will be

notified (order not specified)

– registration is leased
– “first come, first serve” for registered listeners on take

-LQL� /HQN� ����������� ���

3HFXOLDULWLHV

• All operations can be part of a transaction
– sometimes necessary

• Entries can be “lost”:
– write/take - may cause a RemoteException

– meaning: “may or may not have been successful”
• write: often unproblematic (may be repeated)
• take: entries may be lost

• transactions necessary

– example: moving entries between JavaSpaces
• e.g. for load balancing
• entries may not be lost

66

-LQL� /HQN� ����������� ���

-DYD6SDFHV�DQG�/LQGD

• Design based on Linda tuple spaces
– David Gelernter (Yale University)

• Differences:
– strong type checking and objects (methods/behavior)

• matching on whole tuple, not just entries in tuple

• templates match subclasses as well
• all (serializable) data types can be used as entries

– multiple spaces possible

– leasing

– no “eval” - a JavaSpace is just a repository

-LQL� /HQN� ����������� ���

2YHUYLHZ

• Jini, what’s that?
– motivation

– overview

• RMI
– introduction

– example

– serialization

• Jini infrastructure
– lookup service

– discovery & join protocols

– programming example

– detailed infrastructure

• Jini programming model
– leasing

– distributed events

• Jini services
– transactions and the

transaction manager

– JavaSpaces

• Summary

67

-LQL� /HQN� ����������� ���

-LQL��6XPPDU\

• Vision:
– everything will be networked

– everything will (be able to) communicate
– communication will be cheap (or free)

– mobility will be important feature

• Problem:
– infrastructure should adapt to devices, not the other way round

– spontaneity as paradigm
– incorporation of small devices

– distribution
• partial failure
• communication via networks

-LQL� /HQN� ����������� ���

6XPPDU\

• Solution (?)
– Jini as infrastructure for service-oriented, ubiquitous networks

– RMI for abstracting from the network
– discovery & join, lookup

– leases, distributed events, transactions

– service as the main abstraction

• Challenges for Jini:
– interfaces

• standards (e.g. printer, ...)

– distribution
• “always in the back of your head”
• code required for intelligent error handling (network problems,

failed/missing services, ...)

68

-LQL� /HQN� ����������� ���

&RQFOXVLRQ

• Right direction
– ubiquitous networks

– mobility

• A number of good ideas
– simplicity

– “less is more” Æ flexibility

– discovery & join

– extension of name services by describing attributes
– leases, transactions Æ recurring design patterns

• Individual concepts are not new, but together they form
new possibilities (“the whole is more than its parts”)

-LQL� /HQN� ����������� ���

%XW���

• Resource usage
– each service usually requires a JVM

– JavaSpaces tend to grow quickly

• Performance
– Java/RMI

• Small devices
– JVM and RMI required on device
– adaptation to resource-restricted environment necessary (how?)

– proxy objects are moved to device (memory...)

• Standardized (base) interfaces
– allow for type-safe invocation of methods

• What about the competitors (SLP, UPnP, e’’speak, ...)?

69

-LQL� /HQN� ����������� ���

3UREOHP�$UHDV

• Security
– important especially in dynamic environments

– user requires confidentiality
• communication
• data
• e-commerce

– services use other services on behalf of the user
• principals, delegation

• what about charging for services?

– Java RMI security extension does not seem to be the solution

• Scalability
– does Jini scale to a global level?

-LQL� /HQN� ����������� ���

+RSH

• Specialized Jini hardware
– costs per chip are important (< 10$)

– performance

• Increasing power of hardware (e.g. PDAs)
– is it the answer to all problems?

• Concepts for integrating (dumb) devices
– proxies, device bay, ...

• Open source movement
– Jini comes with a “half-open” license

– initiatives of vendors to standardize service interfaces more
important (printer, storage, network management, ...)

• Faster Java ;-)

70

-LQL� /HQN� ����������� ���

6XJJHVWHG�5HDGLQJ

• Jini Homepage:
http://www.sun.com/jini

• Jini Community:
http://www.jini.org

• W. Keith Edwards: Core Jini , Prentice Hall, 1999
– good motivation, very detailed
– don’t be frightened by more than 700 pages (everything is said

at least twice...)

-LQL� /HQN� ����������� ���

(QG

Contact:

Peer Hasselmeyer
Darmstadt University of Technology
peer@ito.tu-darmstadt.de
http://www.ito.tu-darmstadt.de/staff/Peer/

Friedemann Mattern
ETH Zürich
mattern@inf.ethz.ch
http://www.inf.ethz.ch/~mattern

