Jini

Peer Hasselmeyer
Darmstadt University of Technology

Friedemann Mattern
ETH Ztirich

Andreas Zeidler
Darmstadt University of Technology

- Java Intelligent Network Infrastructure
- Jini Is Not Initials

Jini

* Infrastructure (“middleware”) for dynamic,
cooperative, spontaneously networked systems
— facilitates writing / realizing distributed applications

Jini, Lenk, 07.03.2000, 2

Jini

* Infrastructure (“middleware”
cooperative, spontaneou
— facilitates writing / realizing'di

or dynamic,
tworked systems
applications

» framework of APIs with useful
functions / services

* helper services (discovery, lookup,...)

« suite of standard protocols and
conventions

Jini, Lenk, 07.03.2000, 3

Jini

* Infrastructure (“middleware”) for dynamic,
cooperative, spontaneously networked systems

— facilitates writing / r@distributed applications

* services, devices, ... find each other
automatically ("plug and play”)

¢ added, removed components

¢ changing communication relationships

» mobility

Jini, Lenk, 07.03.2000, 4

Jini

* Infrastructure (“middleware”) for dynamic,

cooperative, spontaneously networked systems
— facilitates writing / realizing distributed applications

» Based on Java and implemented in Java

— typed (object-oriented) communication structure
— may use RMI (Remote Method Invocation)

— requires JVM / bytecode everywhere

— code shipping

Strictly service-oriented

— everything is a service (hardware / software / user)
— Jini system is a federation of services

Jini, Lenk, 07.03.2000, 5

Jini <=

Jini is Java-based
— most mobile agent platforms are based on Java

=> Mobile Agents ?

— Java bytecode often used as a universal machine language
— applets are working instances of the mobile code paradigm

Jini uses the mobile code paradigm
— service proxies might be sent to the client (by the lookup

Mobile agents need an infrastructure

server)

— Jini is an infrastructure for highly dynamic distributed systems

— Jini provides elementary services and functionality

But: Jini is not a mobile agent platform!

— However: Jini (and similar systems) should be of general interest

to computer science students (--> ubiquitous computing)

Jini, Lenk, 07.03.2000, 6

Overview

 Jini, what's that? * Jini programming model
— motivation — leasing
— overview — distributed events
e RMI Jini services
— introduction — transactions and the
— example transaction manager
— serialization — JavaSpaces

Jini infrastructure Summary

— lookup service

— discovery & join protocols
— programming example

— detailed infrastructure

Jini, Lenk, 07.03.2000, 7

Service Paradigm

Everything is a service (hardware / software / user)
— like object-orientation: “everything” is an object

— e.g. persistent storage, software filter, help desk, ...
Jini's run-time infrastructure offers mechanisms for
adding, removing, finding, and using services
Services are defined by interfaces and provide their
functionality via their interfaces

— services are characterized by their type and their attributes

(e.g. “600 dpi”, “version 21.1")

Services (and service users) “spontaneously” form a
system (“federation”)

Jini, Lenk, 07.03.2000, 8

What Kind of Services?

» Devices:

— printer, fax machine, ...

— storage, persistency, configuration, ...

— computation, ...
» Software:

— spell checking, format conversion, ...

— online banking, stock trading, ...

— tourist guide, local maps, hotels, restaurants, ...
* Infrastructure:

— components, ...

Jini, Lenk, 07.03.2000, 9

A Jini Federation

Iy Picture mailing Picture directory _@

service and storage

Camera 1
(client)

H‘:j Camera 2
(client) 5 N

Print
service ﬁ

Jini, Lenk, 07.03.2000, 10

Network Centric

 Jiniis centered around the network
— remember: “the network is the computer”
* Network = hardware and software infrastructure
— includes helper services
* View is “network to which devices are connected to”,
not “devices that get networked”
— network always exists, devices and services are transient
* Network is static, set of networked devices is dynamic
— components and communication relations come and go
 Jini supports dynamic networks and adaptive systems

— added and removed components should affect other
components only minimally

Jini, Lenk, 07.03.2000, 11

Spontaneous Networking

Objects in an open, distributed, dynamic world find each
other and form a transitory community

— cooperation, service usage, ...

Typical scenario: client wakes up (device is switched on,
plugged in, ...) and asks for services in its vicinity

Finding each other and establishing a connection should
be fast, easy, and automatic

Jini, Lenk, 07.03.2000, 12

Why Jini?

* Infrastructure for tomorrow’s vision of
ubiquitous computing
— increasing number of internet users
powerful PDAs and notebooks
increasing mobility
new wireless information devices:

numerous processors in embedded systems

* e.g. software updates for your washing
machine, internet-ready microwave, ...

* Numerous mobile networked devices
* Trend towards ubiquitous networks and

spontaneous networking / service access
— high bandwidth, wireless, cheap

Jini, Lenk, 07.03.2000, 13

The Jini Domain

» Everything will be networked [
— server
e web server !
. Compute server www-selve R server
. accounting server
— desktop computer
— mobile devices &
+ notebooks =77

» Personal Digital Assistants (PDAS)
¢ SmartPhones

— embedded systems
— everyday things (“smart x”)

...and everything
— at home: washing machine, toys, ... wants to communicate!

xxxxxxxxx

o }

)

Jini, Lenk, 07.03.2000, 14

Challenges for Ubiquitous Networking

and about

what?

» How does the toaster talk to the ABS control system?
— problem: heterogeneity of hardware, OS, ...
— problem: varying resources, environments
— uniform “language”? (e.g. Java byte code, IDL, XML)
» Dealing with new usage scenarios
— high mobility of users and devices
— new services / business models
* revenue by providing services
» Hiding the complexity
— most important: usage must be easy
— no manual installation and/or configuration
— adaptation to local environment (not the other way round)

Jini, Lenk, 07.03.2000, 15

Middleware

» Approach from a different direction: “middleware”

— components to help build and deploy distributed applications
(compile-time and run-time)

— located between the application logic and the underlying
physical network

» Abstraction from tedious network programming wanted

» Abstraction from differing machine architectures wanted

— problem: data encoding (e.g. big/little endian, integer size, array
storage layout, ...)

» Components for recurring problems (e.g. naming
service, security service, ...)

Jini, Lenk, 07.03.2000, 16

Middleware

Application
APls
- - - Middleware
Platform
interface

Jini, Lenk, 07.03.2000, 17

Evolution of Middleware

Low-level protocols

— exchange of plain messages, e.g. HTTP, X.25, ASN.1, ...
e RPC

— communication often follows a typical pattern

— automatic generation of communication code

— procedural paradigm

CORBA

— object-oriented paradigm

— stubs: automatically generated local proxies that handle
communication

« RMI
— Java's native middleware
— code shipping

Jini, Lenk, 07.03.2000, 18

Problems with Current Middleware

» Systems hide the network from the programmer

— programmers don’t have to deal with the network and its inherent
problems (unreliability, latency, bandwidth, ...)

— no exception handling

» Data is moved to the computation
— “classical” client/server paradigm
— not always most efficient solution

— but: execution code is usually not available everywhere
(different system architectures, installation, ...)

— problem: different data formats (byte-order, character
representation, ...)

Jini, Lenk, 07.03.2000, 19

Some Fallacies of Common
Distributed Computing Systems

* The idealistic view...

the network is reliable
latency is zero

bandwidth is infinite

the network is secure
topology doesn’t change
there is one administrator

o ...isn’ttrue in reality
— Jini addresses some of issues
— at least it does not hide or ignore them

Jini, Lenk, 07.03.2000, 20

1C

Bird’s-Eye View on Jini

» Jini consists of a number of APIs

* Is an extension to the Java 2
platform dealing with distributed
computing

* Is a layer of abstraction between
application and underlying
infrastructure (network, OS)

— Jini is a kind of “middleware”
» Extension of Java in three dimensions:
— infrastructure
— programming model
— services

Jini, Lenk, 07.03.2000, 21

Jini’s Java Extensions

» Extensions regarding networked systems

Programming model Infrastructure Services
- Swing -JVM - Transaction Service
Java - Beans - RMI - Enterprise JavaBeans
- Transactions - Discovery - JavaSpaces
Jini - Distributed events - Lookup -
- Leasing
~ 1t ft “

‘ will be explained soon ‘

Jini, Lenk, 07.03.2000, 22

11

Jini’'s Use of Java

» Jini requires JVM (as bytecode interpreter) and RMI

— homogeneity in a heterogeneous
world

— is this realistic?
» But: devices that are not “Jini-enabled” or that do not have
a JVM, can be managed by a software proxy which resides
at some place in the net
— e.g. “Device Bay”
» Safety of Java applies to Jini as well
— type safety, checks for array bounds, sand box, ...

Jini, Lenk, 07.03.2000, 23

Remote Method Invocation (RMI)

Jini, Lenk, 07.03.2000, 24

Overview

e Jini, what's that?

Jini programming model

— motivation — leasing
—_overview — distributed events

« RMI Jini services
— introduction — transactions and the
— example transaction manager
— serialization — JavaSpaces

Jini infrastructure Summary

— lookup service

— discovery & join protocols
— programming example

— detailed infrastructure

Jini, Lenk, 07.03.2000, 25

RMI: Introduction

RMI: “Remote Method Invocation”
Java’s native middleware
“Regular” Java: method invocation within one Java VM

By using RMI objects can call methods of objects
running in a different Java VM

Java VMs can be distributed among machines in a
network

Jini, Lenk, 07.03.2000, 26

Remote Invocation

Jini, Lenk, 07.03.2000, 27

What Can You Do With RMI?

» Server objects offer their functionality (“services”: data,
computation) to clients

» Clients can access them via a network

* RMI offers mechanism to bring clients and servers
together

» Goal: clients can use remote server objects in (almost)
the same way as they use local objects
— partial failure possible
— larger latency

Jini, Lenk, 07.03.2000, 28

14

How Does RMI Work?

» Basic difference between local and remote objects:
different Java VMs

» |dea: create a proxy for the remote object in the local
Java VM
— so-called “stub”
— signature of methods is identical to methods in remote server
object
— handles communication with remote object
— “skeleton” in remote JVM is counterpart to stub
« forwards parameter to “real” server object
 returns result to stub

Jini, Lenk, 07.03.2000, 29

How Does RMI Work?

Client Server

i1 i1
Stub

.z——‘—-» Skeleton

Jini, Lenk, 07.03.2000, 30

More Details

Programmer's view

>

Jini, Lenk, 07.03.2000, 31

RMI Details

Client: invokes methods of an object

passes on parameters

machines and objects

Transport Layer: manages connections between
machines and handles data transfer

Skeleton: passes data to server object
Server: implements functionality

Stub: implements “remote interface” of server object,

Remote Reference Layer: maps object references to

Jini, Lenk, 07.03.2000, 32

1€

How to Get Access to Objects

Clients must get stubs for remote objects
RMI registry: naming service

mapping name (string) — object
location of registry (machine name and port number) must be
known

name of server object must be known

e.g. “/Iserver.tu-darmstadt.de:2222/HelloServer

”

usually supplies reference to first object only; all further objects
handled by this one (“factory pattern”)

e.g. root: database object, gives access to entries

Jini

Jini, Lenk, 07.03.2000, 33

RMI Example: Remote Interface

Remote methods are defined by “remote interfaces”:

public interface Hello extends java.rmi.Remote {
String sayHello() throws java.rmi.RemoteException ;

Methods can always throw RemoteException s
— server or network may fail

Interfaces are marked as remote by extending tag
interface java.rmi.Remote

Jini, Lenk, 07.03.2000, 34

RMI Example: Server Object

« Server implements remote interface and usually extends
UnicastRemoteObject

» UnicastRemoteObject handles RMI related work
(make object known to RMI, relay calls)

» Server has to realize interface’s functionality

Jini, Lenk, 07.03.2000, 35

RMI Example: Server Startup

* Appropriate security manager needs to be set to allow
remote access

» Server object is created and registered with RMI registry

Jini, Lenk, 07.03.2000, 36

1€

RMI Example: Client

« Security manager enables class download
* Get server’s stub from RMI registry
» Use the server

Jini, Lenk, 07.03.2000, 37

RMI Example: Deployment

* Naming Service must be running: rmiregistry

» Stub has to be created: rmic Hellolmpl
— creates classes Hellolmpl_Stub and Hellolmpl_Skel
— no skeletons needed in Java 2 (option -v1.2)

» Security policy needed to access sockets:
— java -Djava.security.policy=policy HelloStart
— java -Djava.security.policy=policy HelloClient

» For non-local environments classes (here:
Hellolmpl_Stub) have to put onto an HTTP server and
server’s codebase has to be supplied

Jini, Lenk, 07.03.2000, 38

Serialization

Parameters and return values (arbitrary objects) have to
be transferred between client and server

Copy of object has to be sent to remote JVM
Transform it into stream of bytes (“serialization”)

Problem: objects may contain references to other objects
— not only simple data types like integer, boolean, ...

— all referenced objects have to be recursively serialized
(“transitive closure” of objects)

Jini, Lenk, 07.03.2000, 39

Serialization

Source JVM Destination JVM

I|3yteI str(lea m|

Network

L L] L L]

Jini, Lenk, 07.03.2000, 40

2C

Serialization

» Transforming an object into a stream of bytes
— object consists of its code and its state (values of variables)
— code is stored in class files
— state is dynamic and only available at runtime
— take a “snapshot” of this state

Jini, Lenk, 07.03.2000, 41

Serialization - How Does It Work?

* Realized by Java’s introspection facilities

» All non-transient, non-static fields are recursively written
to a byte-stream

» Simple types have predefined storage functions

» Objects’ types (full class names, e.g. java.util.List)
and signatures are written

» Objects are only written once, even if referenced multiple
times

» Serial version UID to control versions
— calculated from the signature of a class
— override manually to mark compatible class evolution

Jini, Lenk, 07.03.2000, 42

21

Serialization - How Does It Work?

» Objects have to implement interface
java.io.Serializable
— “tag” interface: does not contain any functions
— not implementing this results in runtime error
java.io.NotSerializableException

» Predefined serialization semantics is defined in
java.io.ObjectOutputStream.defaultWriteObject()
java.io.ObjectInputStream.defaultReadObject()

« Can be overridden by implementing certain functions
(writeObject() , readObject())

Jini, Lenk, 07.03.2000, 43

What Can Be Serialized?

 All primitive types (int, boolean, etc.)
* “Remote objects” (by sending serialized stubs)

» Base types (String, Integer, ...) that implement
java.io.Serializable

» Most container classes (Hashtable, Vector, ...) if and
only if they only contain serializable objects

* Some AWT and Swing classes

* Your classes, if they implement
java.io.Serializable

Jini, Lenk, 07.03.2000, 44

What Cannot Be Serialized?

» Base types that do not implement Serializable
— “wrapper classes” possible
* “Low level” classes:
— input and output streams
— threads
— peer classes

Jini, Lenk, 07.03.2000, 45

Serialization - What To Use It For?

» Write to file: make objects persistent

— Configurations

— (Enterprise) Java Beans

— to continue working on the same state later
» Write to socket:

— to transfer objects to another JVM

— parameter passing

— mobile agents

Jini, Lenk, 07.03.2000, 46

Code Mobility

Objects consists of two parts:
— code (in Java class files)
— state (values of attributes, execution pointers)

RMI transfers only state

Problem: code is usually not locally available at recipient
(i.e. not listed in its classpath)

Solution: code can be downloaded at run-time (e.g. from
an HTTP server)

Jini, Lenk, 07.03.2000, 47

Code Mobility

Data from
source JVM

Code from
(web) server

Jini, Lenk, 07.03.2000, 48

24

Codebase

e Code can be downloaded, but;: where from?

» Location of code is transferred together with its state
(“codebase”)

* Codebase is a list of URLS

» Codebase is set as a property when starting a JVM (*-
Djava.rmi.server.codebase=<URL> ")

* URL might be
— directory containing the class tree
— JAR file containing the classes

Jini, Lenk, 07.03.2000, 49

Security

» Unknown objects are executed on local machine (like
applets)

» Access restrictions desired

» Access restrictions specified by security policies

— fine-grained control of local resources (especially storage,
network) possible
— rights are granted based on
« where code came from (network, local file system)
« who signed code

Jini, Lenk, 07.03.2000, 50

Jini Infra

Jini, Lenk, 07.03.2000, 51

Overview
 Jini, what's that? * Jini programming model
— motivation — leasing
— overview — distributed events
e RMI Jini services
— introduction — transactions and the
— example transaction manager
— serialization — JavaSpaces

« Jini infrastructure Summary

— lookup service

— discovery & join protocols
— programming example

— detailed infrastructure

Jini, Lenk, 07.03.2000, 52

2€

Jini Infrastructure

Main components are:
— lookup service as repository / naming service / trader

— protocols based on TCP/UDP/IP
 discovery & join, lookup of services

— proxy objects
« transferred from service to clients

« represent the service locally at the client
Goal: spontaneous networking and formation of
federations without prior knowledge of local network
environment

Problem: How do service providers and users get to
know their local environments?

Jini, Lenk, 07.03.2000, 53

Lookup Service (LUS)

Similar to RMI registry and CORBA naming service
Main component of every Jini federation
Repository of service providers

May be redundant and hierarchically organized (similar
to “Domain Name Service”)

Tasks:

— “help-desk” for services and clients
« registration of services (services advertise themselves)
« distribution of services (clients find services)
— offers mechanisms to bring together services and clients

Jini, Lenk, 07.03.2000, 54

Lookup Service

Lookup
Service

Federation

T Client use

Jini, Lenk, 07.03.2000, 55

Lookup Service

» Uses Java RMI for communication
— objects can migrate through the net
* Not only name/address of a service are stored (as in
traditional naming services), but also
— set of attributes
* e.g.: printer (color: true, dpi: 600, ...)
— proxies and attributes may be complex classes
¢ e.g.: user interface(s)

Jini, Lenk, 07.03.2000, 56

2€

Discovery: Finding a LUS

» Goal: Find a lookup service without knowing anything
about the network to
— advertise (register) a service
— find (look up) an existing service

» Discovery protocol:
— multicast to well-known address/port

— lookup service replies with a serialized object (interface
ServiceRegistrar)

* proxy object of lookup service gets loaded to discovering entity

e communication with LUS via this proxy (may implement any
(proprietary) protocol)

Jini, Lenk, 07.03.2000, 57

Disc

_foreign network

Where is
the lookup
service?

Lookup Service

Lookup Service
S

@)

Lookup Service

Communication

Join: Registering a Service

» Service provider already received a proxy of the lookup
service

* Provider uses this proxy to register its service
(register())

» Gives the lookup service
— its service proxy
— attributes that further describe the service

* Provider can now be found and used in this Jini
federation

Jini, Lenk, 07.03.2000, 59

Join

Service

Lookup Service

3

Jini, Lenk, 07.03.2000, 60

3C

Lookup: Searching Services

Client knows lookup service (e.g. via discovery protocol)
Looking for certain service

Creates query for lookup service
— in form of a “service template”

— matching by registration number of service and/or service type
and/or attributes

— wildcards possible
Lookup service returns one or more matches
Selection usually done by client
Service use by calling functions of service proxy
Any protocol between proxy and service provider possible

Jini, Lenk, 07.03.2000, 61

Client

Jini, Lenk, 07.03.2000, 62

31

Jini Programming Example

* How is a service realized?
* How does a client get access to a service?
* How is a service described?

Jini, Lenk, 07.03.2000, 63

The “"Running-Example”

application

Jini, Lenk, 07.03.2000, 64

The “"Running-Example”

» Printer registers itself with the office’s lookup service
— printer provides print interface as its service

— implementation of service consists of provider and proxy

— proxy is stored in the lookup service and will be transferred to
clients upon request

— protocol between proxy and service provider depends on
implementation and is not stipulated by Jini

Jini, Lenk, 07.03.2000, 65

Implementing a Service Provider

There’s no
Jini in here!

Jini, Lenk, 07.03.2000, 66

Registering a Service

Jini, Lenk, 07.03.2000, 67

Implementing the Client

Jini, Lenk, 07.03.2000, 68

Multicast Discovery Client

Jini, Lenk, 07.03.2000, 69

Round 2: More Details

Jini, Lenk, 07.03.2000, 70

Overview

e Jini, what's that?

motivation
overview

« RMI

e Jini infrastructure

introduction
example
serialization

lookup service

* Jini programming model

— leasing

— distributed events

» Jini services

— transactions and the
transaction manager

— JavaSpaces
Summary

— discovery & join protocols
—_programming example

— detailed infrastructure

Jini, Lenk, 07.03.2000, 71

Overview 2

* Detailed look at

discovery
join
lookup
entries
lookup service

e proxies

e groups
leases
distributed events
transactions

> Jini infrastructure

Jini programming model

transaction manager Jini services

JavaSpaces

Jini, Lenk, 07.03.2000, 72

3€

Discovery

Protocols to find lookup services

Multicast request protocol

— client asks for local lookup services

— no prior knowledge of local network necessary

Unicast request protocol

— used to contact known lookup services

— works across subnet boundaries and over the Internet
Multicast announcement protocol

— protocol for lookup services to announce their presence
Example: printer registers with the office via multicast,
but gets software updates from a dedicated server via
unicast discovery

Jini, Lenk, 07.03.2000, 73

Multicast Request Protocol

No information about the host network needed
Active search for lookup services

Discovery request uses multicast UDP packets
IP-centric
multicast address for discovery is 224.0.1.85
default port number of lookup services is 4160

« hexadecimal subtraction: CAFE,s-BABE4=4160,,
recommended time-to-live is 15
usually does not cross subnet boundaries

Discovery reply is establishment of a TCP connection
— port for reply is included in multicast request packet

Jini, Lenk, 07.03.2000, 74

Multicast Request Protocol

Multicast request -
client < Multicast request
server

server

Multicast response
Multicast response client

JavaVM dient/service JavaVM lookup service

Jini, Lenk, 07.03.2000, 75

Multicast Request Protocol (Client)

 Initialize TCP server socket (“multicast response server”)

— wait for incoming TCP connections from responding lookup
services

« Initialize a UDP socket (“multicast request client”)
» Periodically send multicast request packets to well-known
address/port

— contains protocol version, contact information, desired groups,
and ServicelDs of known lookup services

— unlisted lookup services answer by opening a TCP connection
— multicasting is stopped after some time

Jini, Lenk, 07.03.2000, 76

3¢

Multicast Request Protocol (Server)

Initialize a datagram socket on well-known address/port
* Wait for incoming multicast requests

« “Multicast Request Server” answers, if groups match and
ServicelD is not listed in list of known lookup services

e Open TCP connection to client and continue with unicast
discovery protocol

Jini, Lenk, 07.03.2000, 77

Multicast Request Packet

N

> max. 512 bytes

Jini, Lenk, 07.03.2000, 78

Unicast Discovery Protocol

» Used to contact lookup services with known locations
* Uses TCP (unicast) connections to port 4160
» Simple request-response protocol

‘Establish TCP connection

Unicast request

Unicast response

Jini, Lenk, 07.03.2000, 79

Unicast Packets

» Unicast Request (client - lookup service)

» Unicast Response (lookup service - client)

Jini, Lenk, 07.03.2000, 80

Multicast Announcement Protocol

Used by lookup services

Announces the availability of lookup services

Based on multicast UDP

Announcements are sent periodically

— recommended: every 120 seconds

Receivers of announcements have to create a “multicast
announcement server”

— listens for announcements on well-known address/port

— announcements contain protocol version, contact information,
groups, and ServicelD of lookup service

— if not yet known, start unicast discovery of this service

Jini, Lenk, 07.03.2000, 81

Multicast Announcement Packet

\

> max. 512 bytes

Jini, Lenk, 07.03.2000, 82

41

Join: More Features

* Tojoin, a service supplies:

— its proxy
— its ServicelD (if previously assigned; “universally unique identifier”)
— set of attributes, set of groups
— (possibly empty) set of specific lookup services to join
« Service waits a random amount of time after start-up
— prevents packet storm after restarting a network segment
* Registration with a lookup service is bound to a lease
— service has to renew its lease periodically

» Discovery and join can be handled by objects of class
JoinManager

Jini, Lenk, 07.03.2000, 83

Lookup

» Client looks for service(s) registered with a lookup service
— any combination of search criteria possible:
* ServicelD
« service type
* certain attributes
— client creates a net.jini.core.lookup.ServiceTemplate

template filled with interfaces, entries and/or ServicelD
wildcards possible, represented by null

attributes: only exact matching possible (no “larger-than”, ...)
no query language

Jini, Lenk, 07.03.2000, 84

Entries

 Difference to “traditional” naming services
» Not only a name for a service

» Properties:

— set of attributes
e e.g.: printer (dpi: 600, type: color, ...)

— every serializable data type is possible

— data and methods

— complex classes possible
« different user interfaces (AWT, Swing, speech, ...)
« references to further (complex) objects

Jini, Lenk, 07.03.2000, 85

Entries (Examples)

public class Name extends
AbstractEntry {
public String name;
public Name() {}
public Name(String name) {
this.name = name;

}

public class PrinterEntry extends
AbstractEntry {

public PrinterType type;

public Integer pagesPerSecond;

[..]
public PrinterEntry() {}
public PrinterEntry(PT type) {
this.type = type;
[.]

}

public class AWTGUIEntry extends ;

AbstractEntry {
public Panel panel;

(-]
public GUIENtry() {}
public GUIEntry(Panel panel) {
this.panel = panel;

(-]

Jini, Lenk, 07.03.2000, 86

Entries (Examples)

public class Name extends

ublic class PrinterEntry extends
ry {
terType type;

]

terEntry() {}
terEntry(PT type) {
€ = type;

ger pagesPerSecond;

Jini, Lenk, 07.03.2000, 87

Entries

« Base is interface net.jini.core.Entry.Entry

* More useful: class net.jini.entry.AbstractEntry
— implements Entry
— realizes equals() , hashCode() , and toString()
» Entries usually extend class AbstractEntry

Jini, Lenk, 07.03.2000, 83

Template Matching (Examples)

e ServiceTemplate(null, Print.class, null)

— matches all services that implement interface Print

— attributes are ignored (wildcard null matches everything)
e ServiceTemplate(servicelD, null, null)

— matches at most one service

« A ServiceTemplate filled with entries matches exact
data structure and values of entries

entry E matches template T if field values are the same

wildcards in T match any value in the respective field in E

fields in E must have the same type or a subtype of field in T

lookup service compares serialized forms of entries and
templates

Jini, Lenk, 07.03.2000, 89

Template Matching (Examples)

matches

Template T1

matches

Template T2

does NOT match

Template T3

Jini, Lenk, 07.03.2000, 90

Lookup Service Details

)
o
@
(2]
=
)
O
s
(0]

Client

Jini, Lenk, 07.03.2000, 91

Lookup Service

Jini systems are grouped around one or more lookup
service(s)

Service providers register their services and capabilities
with the lookup service (registration)

Clients find services via the lookup service (lookup)
Further possibilities:

— increase robustness by running redundant lookup services

— responsibility can be distributed to a number of (logically
separated) lookup services

Jini, Lenk, 07.03.2000, 92

4¢

Groups

» There may be lots of lookup services in a large Jini system

* lIdea: split services into groups and assign responsibility for
each of them to a different lookup service
— so-called “lookup groups”
— clients/services always announce interest in certain group(s)
— unwanted groups are ignored
— simple text identifier

« Example: a company has different lookup services for all
departments, e.g. accounting, production, research, ...

Jini, Lenk, 07.03.2000, 93

Lookup Service Versus
“Traditional” Naming Service

Naming service Lookup service

Description by text only Description by Serviceltem s
» /devices/printers/ — all printers interface Printer
» /devices/printers/color — color printers « interface ColorPrinter

* Isoftware/wordprocessing/ - additional information by typed attributes
Name, Location, dpi, etc.

Lookup by well-known text identifier Lookup by specifying the (well-known)
(convention: print services are in service type
/devices/printers/)

Reference might have unknown type (fax Reference always has known interface
machine in /devices/printers/) (base or subtype thereof)

Standardized naming conventions Standardized interfaces

Usually no expiration of entries (heartbeat, | Services have to renew their entries in the
keep-alive) lookup service periodically (leasing)
Identified by (static) address; groups can be | Discovery; group concept

modeled by addresses

Jini, Lenk, 07.03.2000, 94

Lookup Service: Proxy Interface

Used by service
providers

Used by clients

Jini, Lenk, 07.03.2000, 95

Proxies and Entries

* Registration record of a service in the lookup service is
not “just a name”

» Registration record consists of a Serviceltem

» Service-ID is a 128 bit “universally unique identifier”
— generated by the lookup service when registering the first time
— service has to reuse it for all later registrations
— service has to make it persistent

Jini, Lenk, 07.03.2000, 96

Proxies and Entries

* Reaqistration record of a service in the lookup service is

not Descriptive attributes The proxy
* Reg as Entry objects 5 of a service

Serviceltem(Obiject 5. rvice, ServicelD id,
Entry[] attributes)

» Service-ID is a 128 bit “universally unique identifier”
— generated by the lookup service when registering the first time
— service has to reuse it for all later registrations
— service has to make it persistent

Jini, Lenk, 07.03.2000, 97

Proxy: Features

» Proxy object is stored in the lookup service upon
registration
— serialized object
— implements one or more service interfaces
— service type is defined by the type of the interface

» Upon request, stored object is sent to the client as a
local proxy of the service

if needed, client retrieves necessary classes

— class location stored in codebase property (URL)

— client communicates with service implementation via service’s
proxy: client invokes methods of the proxy object

proxy implementation hidden from client

Jini, Lenk, 07.03.2000, 98

Proxy: Implementation

* Implementation of service functionality is not stipulated

Partition of service functionality depends on service

implementer’s choice

» Parts of or whole functionality may be executed by the
client (within the proxy)

When dealing with large volumes of data, it usually

makes sense to preprocess parts of or all the data

- e.g.

Client

Proxy

: compressing video data before transfer

Service Client Service
Communication @@ﬂﬁ ’

Jini, Lenk, 07.03.2000, 99

Overview

e Jini, what's that?

Jini programming model

— motivation — leasing

— overview — distributed events
 RMI Jini services

— introduction — transactions and the

— example transaction manager

— serialization — JavaSpaces

e Jini infrastructure

Summary

— lookup service

— discovery & join protocols
— programming example

— detailed infrastructure

Jini, Lenk, 07.03.2000, 100

SC

Leases

Leases are contracts between two parties

Leases introduce the notion of time
— resource usage is restricted to a certain time frame

— interaction is modeled by repeatedly expressing interest in some

resource:
e I'm still interested in X
— renew lease periodically
— lease renewal can be denied
e I don't need X anymore
— cancel lease or let it expire
— lease grantor can use X for something else

Leases enable intelligent resource allocation
Leases enable intelligent service removal

Jini, Lenk, 07.03.2000, 101

Why Leases?

For allocating hardware and software resources

— examples: persistent storage, input/output devices, group

communication: participation is leased
Inside Jini

— distributed “garbage collection”
* registrations with lookup service are leased
 resource allocations are leased (e.g. transactions)
* lease expired - “garbage”

— event natification registrations

Time-based charging for service use (maybe...)

Jini, Lenk, 07.03.2000, 102

5]

Distributed Events

* Objects in a JVM can register interest in certain events
of another object in a different VM
— JVMs can be on different machines connected by a network
* network failure
« crossing of event naotifications
« late and lost messages

* “publisher/subscriber” model
» Architecture:

1. Registration

A 4

Subscriber AT Event 2. Event occurs
N4

source

3. Send notification

Jini, Lenk, 07.03.2000, 103

Distributed Events

» Participants
event source
« indicates the occurrence of a certain event by emitting a notification
» sends notifications to all listeners registered for this event
remote event listener
< object that wants to be notified about a certain kind of events
object that registers the remote event listener
 usually the same as the listener, but not mandatory
« “store and forward” agent
« “event mailbox”
remote events
« objects of class RemoteEvent (or subclass)

Jini, Lenk, 07.03.2000, 104

Distributed Events (Example)

» Again: printer was plugged in
— printer registers itself with local lookup service
* Now: maintenance application wants to update software

Lookup-Service

Az
N

Maintenance
application
Jini, Lenk, 07.03.2000, 105

Distributed Events (Example)

» Maintenance application is run on demand, search for
printers is “out-sourced”

— “sensor service” looks for certain services on behalf of the
maintenance application i

— application registers for
events showing the arrival
ensor

of certain types of printers ;
service
— sensor observes the
lookup service
— notifies application as soon Tell me about the arrival

as matching printer arrives of new printers of type x!

— realized by distributed (S >
events J

»»»»»» < /)
e
Maintenance

application Jini, Lenk, 07.03.2000, 106

~
I~

Distributed Events (Example)

* Now: printer arrives, registers with lookup service

— printer performs
discovery and join

— sensor finds new
printer in lookup
service

— checks if there
is an event registration
for this type of printer Notificatio

ensor
service

— notifies all
interested objects =
— maintenance (ﬂs,

application retrieves
printer proxy and
updates software

V== = /) ?\
Y

Maintenance

application

Jini, Lenk, 07.03.2000, 107

Distributed Events (Example)

* Realization (interfaces):
— application implements interface RemoteEventListener

¢ can now receive notifications
« notify(RemoteEvent theEvent) is only method

— sensor could implement the interface:

Event type to be
registered for.

“handback” is returned to the
notified object in every notification.

It can easily attach arbitrary
information to its registration.

Reference to the
object to be notified.

Registrations
are leased.

Jini, Lenk, 07.03.2000, 108

Distributed Events (Example)

Realization (pseudo code):

— maintenance application looks for sensors and registers for
event notifications:

Represents
whole Lookup

ServiceTemplate for
event description

i

ServiceTemplate
is event type

Lease is

unlimited
Jin, Lenk, U7.03.2000, 109

Handback is |Application implements
not used here | RemoteEventListener

Distributed Events (Example)

Realization (pseudo code):
LUSSensor informs maintenance application about new printer

Recipient Event source

— event source informs the recipient of an event by sending a
RemoteEvent

— RemoveEvent identifies event unambiguously by tuple
<event source, event id>

— notification is synchronous
* recipient has to accept event, store it, and return from notify()-method
— maintenance application looks up printer service

Jini, Lenk, 07.03.2000, 110

Jini, Lenk, 07.03.2000, 111

Overview

 Jini, what's that?
— motivation
— overview
e RMI
— introduction
— example
— serialization
 Jini infrastructure
— lookup service

Jini programming model

leasing

— distributed events

Jini services
— transactions and the

— JavaSpaces

transaction manager

— discovery & join protocols
— programming example
— detailed infrastructure

Summary

Jini, Lenk, 07.03.2000, 112

5€

Transactions: Properties

No “traditional” transaction model

No enforced semantics
— participants implement semantics
— system only provides synchronization mechanism

— system distributes information about status of transactions
Design goal: maximum flexibility, minimum number of

interfaces

Jini, Lenk, 07.03.2000, 113

Two-Phase Commit Protocol

Transaction encapsulates a number of operations

Central: a manager

— consistency: each transaction participant will ultimately perform a

“commit” or an “abort”
Every object can participate in a transaction:
— implements interfaces
— not only traditional applications possible

Example: transfer money from one account to another

Jini, Lenk, 07.03.2000, 114

Distributed Transactions in Jini...

...are no transactions in a traditional sense

“Lightweight” transaction
ACID properties

— atomicity / consistency / isolation / durability
— each participant implements these properties how he sees fit
— reason: two phase commit protocol not only in traditional
transaction context
e e.g.: transient objects do not need persistency
e main property is atomicity
« the other properties are “sometimes” optional

Transactions are leased from the manager

Jini, Lenk, 07.03.2000, 115

Transactions: Participants

Transaction manager

— Jini service

— coordinates transaction

— implements interface TransactionManager
Clients

— initiate transactions

Transaction participants

— have active role in transactions

— implement interface TransactionParticipant
— participation is shown by join operation

Jini, Lenk, 07.03.2000, 116

Transactions: Semantic Objects

» Transactions have no a priori semantics

— class Transaction tells objects to use their standard
transaction semantics

» Participants need the same “view” on the transaction
=>» semantic objects
— encapsulate transaction ID
— their type defines the kind of transaction
» Services only accept known transaction types
« Example: DBTransaction
— requires database semantics
— transient objects not allowed (durability)

Jini, Lenk, 07.03.2000, 117

Two-Phase Commit Protocol: Details

» Start of a transaction
— get transaction manager from lookup service
— implements interface TransactionManager
— callto create() starts transaction
« usually indirectly via semantic object factory
» Participation in a transaction

— participants find out about transaction upon first invocation
* has to report to the transaction manager
e callsitsjoin() method

— implements interface TransactionParticipant

Jini, Lenk, 07.03.2000, 118

Two-Phase Commit Protocol: Details

-

» Participation in a transaction

Jini, Lenk, 07.03.2000, 119

Transactions: Example (Client)

commit() OK!
[E—— [
% &5
0

g S

Nl
Q'DQ)
- ¥

Jini, Lenk, 07.03.2000, 120

6C

Transactions: Example (Participant)

Jini, Lenk, 07.03.2000, 121

Transactions: Example (Manager)

Jini, Lenk, 07.03.2000, 122

6]

Jini, Lenk, 07.03.2000, 123

What are JavaSpaces?

Tool for developing distributed applications

Platform for exchanging objects between distributed

applications (“shared blackboard”)
Realizes distributed persistency
Jini service
— implemented completely in Java
— uses RMI (in current implementation)
— client gets local proxy from service (via lookup service)

Jini, Lenk, 07.03.2000, 124

What for?

* Models “object flow”
— e.g. producer / consumer applications
» Job-oriented view
— jobs / events are put into the space and picked up
“eventually”
» Build-in “good” properties
— ‘“reliable storage system”
concurrent access possible
write / read are atomic operations
access within transaction possible

Jini, Lenk, 07.03.2000, 125

Objects

» JavaSpaces = “a bag full of objects”
— entries in a JavaSpace service:
* net.jini.core.entry.Entry - known as Entry class In Jini
 strongly typed by Java type system
< two entries are not equal, even if they encapsulate the same data

types
— Entry A {Integer, Integer} # Entry B {Integer, Integer}

— classes: include data/state and methods = behavior
— may become active on the client side (security?)

Jini, Lenk, 07.03.2000, 126

~
I~

Basic Operations: Write

e write puts an entry into a JavaSpace

» Uses copy of the object, never the object itself
« write returns a lease

— entry in a JavaSpace has a limited duration

— “garbage collection” in a JavaSpace service

— easier implementation?

 recovery after failure of producer
« mobility of client

1. write(Entry)

.
>

Java
<« eas Space

Producer

Jini, Lenk, 07.03.2000, 127

Basic Operations: Read

 read/readIfExists
uses template (Entry)
e null returns everything
* matches subclasses as well
exact value match
« if more than one match, select and return one at random

readIfExists returns reference to copy of the entry, null if
no match

read waits until matching entry was found
* take/takelfExists =read + removal of entry

read/take(Entry)

, Consumer

Jini, Lenk, 07.03.2000, 128

renew lease

Producer
Lease

Basic Operations: Notify

» Uses Jini distributed events
» Clients can register with JavaSpace services

— implements RemoteEventListener interface

— registers for certain events by supplying a “matching template”
» JavaSpace service notifies listeners

— if a matching entry is written to the space, all listeners will be
notified (order not specified)

— registration is leased
— “first come, first serve” for registered listeners on take

Jini, Lenk, 07.03.2000, 129

Peculiarities

» All operations can be part of a transaction
— sometimes necessary
» Entries can be “lost”:
— write/take - may cause a RemoteException
— meaning: “may or may not have been successful”
 write: often unproblematic (may be repeated)

« take: entries may be lost
* transactions necessary
— example: moving entries between JavaSpaces
 e.g. for load balancing
« entries may not be lost

Jini, Lenk, 07.03.2000, 130

JavaSpaces and Linda

» Design based on Linda tuple spaces
— David Gelernter (Yale University)

 Differences:
— strong type checking and objects (methods/behavior)
* matching on whole tuple, not just entries in tuple
« templates match subclasses as well
« all (serializable) data types can be used as entries

— multiple spaces possible
— leasing
— no “eval” - a JavaSpace is just a repository

Jini, Lenk, 07.03.2000, 131

Overview
 Jini, what's that? * Jini programming model
— motivation — leasing
— overview — distributed events
e RMI Jini services
— introduction — transactions and the
— example transaction manager
— serialization — JavaSpaces

« Jini infrastructure Summary

— lookup service

— discovery & join protocols
— programming example

— detailed infrastructure

Jini, Lenk, 07.03.2000, 132

6€

Jini: Summary

* Vision:
— everything will be networked
— everything will (be able to) communicate
— communication will be cheap (or free)
— mobility will be important feature

* Problem:
— infrastructure should adapt to devices, not the other way round
— spontaneity as paradigm
— incorporation of small devices
— distribution
« partial failure
e communication via networks

Jini, Lenk, 07.03.2000, 133

Summary

» Solution (?)

Jini as infrastructure for service-oriented, ubiquitous networks
RMI for abstracting from the network

discovery & join, lookup

leases, distributed events, transactions

service as the main abstraction

« Challenges for Jini:
— interfaces
 standards (e.g. printer, ...)
— distribution
e “always in the back of your head”

« code required for intelligent error handling (network problems,
failed/missing services, ...)

Jini, Lenk, 07.03.2000, 134

Conclusion

Right direction
— ubiquitous networks
— mobility

* A number of good ideas

simplicity

— “less is more” > flexibility

discovery & join

extension of name services by describing attributes
leases, transactions = recurring design patterns

Individual concepts are not new, but together they form
new possibilities (“the whole is more than its parts”)

Jini, Lenk, 07.03.2000, 135

But...

Resource usage
— each service usually requires a JVM
— JavaSpaces tend to grow quickly
Performance
— Java/RMI
Small devices
— JVM and RMI required on device
— adaptation to resource-restricted environment necessary (how?)
— proxy objects are moved to device (memory...)
Standardized (base) interfaces
— allow for type-safe invocation of methods
What about the competitors (SLP, UPnP, e”speak, ...)?

Jini, Lenk, 07.03.2000, 136

6¢

Problem Areas

» Security
— important especially in dynamic environments
— user requires confidentiality
e communication
* data
» e-commerce
— services use other services on behalf of the user
 principals, delegation
« what about charging for services?
— Java RMI security extension does not seem to be the solution

» Scalability
— does Jini scale to a global level?

Jini, Lenk, 07.03.2000, 137

Hope

Specialized Jini hardware

— costs per chip are important (< 10$)

— performance

 Increasing power of hardware (e.g. PDAS)
— is it the answer to all problems?

Concepts for integrating (dumb) devices

— proxies, device bay, ...

* Open source movement

— Jini comes with a “half-open” license

— initiatives of vendors to standardize service interfaces more
important (printer, storage, network management, ...)

Faster Java ;-)

Jini, Lenk, 07.03.2000, 138

Suggested Reading

 Jini Homepage:
http://www.sun.com/jini

¢ Jini Community:
http://www.jini.org

* W. Keith Edwards: Core Jini , Prentice Hall, 1999
— good motivation, very detailed

— don't be frightened by more than 700 pages (everything is said
at least twice...)

Jini, Lenk, 07.03.2000, 139

End

Contact:

Peer Hasselmeyer

Darmstadt University of Technology
peer@ito.tu-darmstadt.de
http://www.ito.tu-darmstadt.de/staff/Peer/

Friedemann Mattern

ETH Zurich
mattern@inf.ethz.ch
http://lwww.inf.ethz.ch/~mattern

Jini, Lenk, 07.03.2000, 140

7C

