
Coherent rendering of virtual smile previews with fast neural style transfer
Valentin Vasiliu*

Kapanu AG and EPFL
Switzerland

Gábor Sörös†

Kapanu AG and Nokia Bell Labs
Switzerland and Hungary

Figure 1: Our method improves the look of the rendered virtual teeth. Left: original frame. Middle: AR preview with default
rendering settings. Right: AR preview after our post-processing.

ABSTRACT

Coherent rendering in augmented reality deals with synthesizing
virtual content that seamlessly blends in with the real content. Un-
fortunately, capturing or modeling every real aspect in the virtual
rendering process is often unfeasible or too expensive. We present a
post-processing method that improves the look of rendered overlays
in a dental virtual try-on application. We combine the original frame
and the default rendered frame in an autoencoder neural network
in order to obtain a more natural output, inspired by artistic style
transfer research. Specifically, we apply the original frame as style
on the rendered frame as content, repeating the process with each
new pair of frames. Our method requires only a single forward pass,
our shallow architecture ensures fast execution, and our internal
feedback loop inherently enforces temporal consistency.

Index Terms: Computing methodologies—Image manipulation
Computing methodologies—Mixed / augmented reality

1 INTRODUCTION

1.1 Motivation
Augmented reality (AR) technology blends in digital information
with the real world. The computer-generated digital content is
matched with the reality in space and time in an interactive way.
AR has found uses in applications such as navigation, medicine,
maintenance guides, virtual try-on, and others.

One example application of AR allows creating live visualizations
for dental restorations (see Figure 2). The patient can simply smile
into the camera of a tablet and immediately see his or her teeth
replaced by a digital 3D model on the displayed image. For patients
who need or wish a dental restoration, a photorealistic virtual preview
of the expected outcome is highly desired. In this example, AR
technology provides a solution for patients who wish to know how
the restoration will look like and also for dentists who wish to
simplify the communication of treatment options with their patients.

To achieve great user experience, it is vital that the rendered con-
tent matches the real content in every aspect. While the overlaid
virtual content in Figure 2 is geometrically correct and looks highly
realistic, it does not perfectly blend in with the real photograph. The

*e-mail: valentin@kapanu.com—valentin.vasiliu@epfl.ch
†e-mail: gabor@kapanu.com—gabor.soros@nokia-bell-labs.com

reason for this is the virtual content being created with an idealized
model that does not take into account various deficiencies of the real
camera such as blur, image noise, tone, and others. These effects
cannot be modeled or easily identified by the rendering method,
which is a general limitation for most augmented reality applica-
tions where a photorealistic result is expected, and solutions to this
problem are termed coherent rendering in the literature.

Figure 2: An existing virtual preview app for dentistry. Left: orig-
inal camera image. Right: virtual teeth overlaid. The rendered
denture appears realistic but its style does not perfectly match the
background. Our goal is to enhance the rendering.

1.2 Contributions

This paper deals with improving the look of rendered virtual dentures
in a dental try-on application, but can be further generalized to other
AR scenarios. We apply ideas from recent artistic style transfer
methods and adapt them to the coherent rendering problem. Using
traditional style transfer terminology, we take the style of a real
image and apply it to the corresponding rendered image, the content.
The main novelty for AR is that instead of simply overlaying virtual
content on the background, our method fully re-generates the output
image in an autoencoder respecting both the real style and the real
plus virtual content.

We propose and compare various convolutional neural network
architectures and evaluate the quality of the generated images. We
experiment with and expand upon existing work for fast style transfer
and temporally consistent video style transfer. We also verify in
a small user study that the solutions presented here allow more
realistic and seamless blending of real and virtual content.

2 RELATED WORK

A detailed survey on coherent rendering by Kronander et al. [16]
and a survey on real-time perception-driven rendering by Weier et
al. [32] have been published recently. We only highlight the most
important related works here with a focus on AR applications.

Besides geometric registration, perhaps the most important aspect
in AR is to match the color tone of real and virtual. Earlier color
transfer methods adapt the colors of a destination image to match
those of a source image based on pixel statistics [24], color histogram
matching, or linear color transformations [23].

More complex effects of real cameras (motion blur, defocus blur,
Bayer mosaicing, chromatic aberrations, lens distortion, etc.) are
addressed by Klein et al. [15] for realistic AR compositing. Park
et al. [22] extend the ESM tracking algorithm for handling severe
motion blur and also a very fast method for rendering realistic motion
blur as image warping. Oskam et al. [21] propose a fast color
balancing method for matching the tone of images, given that the
user manually selects multiple reference points in both the source
and destination images. The works of Meilland et al. [20], Rohmer et
al. [26] [27], and Rhee et al. [25] deal with the realistic reproduction
of lighting on virtual objects. Our goal is rather to match the low-
level properties of real and virtual (tone, noise, blur, etc.) and we
aim for a fast and robust method without need for user intervention.

An interesting and novel application of deep learning, “A neural
algorithm of artistic style” was introduced by Gatys et al. [7] in
2015. This work formulated a method to separate the “style” and
“content” of an image and transfer arbitrary styles from one image to
another by matching feature activations produced by a convolutional
neural network pre-trained on an image classification task. While
this method is very slow, it showcased the versatility of deep learning
models to process and alter higher level concepts in an image such as
style or content and it inspired a great line of works on style transfer.

To address the runtime issue, Johnson et al. [12] train a specific
architecture for an individual style so that at inference time only
one pass is needed to produce the stylized result. Concurrently,
Ulyanov et al. [31] replace the batch normalization layers with
instance normalization layers, which intuitively helps in removing
the contrast information in each instance in the content image and
simplifies the style transfer process. The drawback of these methods
is that they are limited to specific styles, i.e., one has to retrain the
architectures for each new style image as opposed to our desired
method which would work independently from the style image used.

To allow arbitrary style transfer, Huang and Belongie [11] intro-
duce a novel adaptive instance normalization (AdaIN) layer which
aligns the mean and variance of a set of features to another set of
features. This operation transfers style by transferring first level
statistics between the feature activations of any pair of content and
style images which rivals the speed of simple feed-forward methods.
While AdaIN concerns itself with transferring first order statistics,
the whitening-coloring transform (WCT) by Li et al. [17] transfers
second order statistics. Both transformations can be seen as steering
the distribution of features of one image to become closer to the
distribution of features of another image, and both are reasonably
fast even on an average CPU.

Similar to our goal are the painterly harmonization method of
Luan et al. [19] which allows to seamlessly paste objects into an
image, and the spatial fusion GAN by Zhan et al. [34] which com-
bines artistic images with additional objects in a coherent manner.
Generative adversarial networks (GANs) have shown remarkable
quality in generating images [13], and even though a very recent
method by Zakharov et al. [33] is able to generate single face images
in real time on a very powerful GPU, we consider these methods too
complex for interactive applications.

Style transfer applications typically serve artistic purposes, for ex-
ample transferring the style from a painting to a normal photograph
while preserving the content of the photograph. Recently, there have

been attempts to extend this idea towards video style transfer and
photorealistic style transfer [4, 6, 10, 28]. We adapt and apply these
works and their variations for a different purpose, specifically to
make the virtual content in AR applications appear more realistic.
We are not aware of any other work applying style transfer for AR,
which is quite different from traditional offline or online image or
video stylization. In coherent rendering, we have the main goals
of both spatial- and temporal consistency (realism as opposed to
abstraction) and speed, and we show how we can adapt neural style
transfer methods to this rather different task, even if only in a quite
specific application area.

3 COHERENT RENDERING WITH FAST STYLE TRANSFER

3.1 Overview
Instead of directly improving the AR renderer by modeling all subtle
effects of reality, we propose a post-processing step that can be
applied on the virtual content created by any AR renderer. The
method is inspired by the recent success of artistic style transfer
research. Features inside a convolutional neural network (CNN)
represent more and more abstract versions of an image when going
deeper in the network. Style transfer creates a new image by mixing
two inputs, taking higher level features from the content but lower
level features from the style, which is intuitively similar to what we
aim for in our coherent rendering problem.

The core idea of our method is to apply the style of the original
unaltered image to the rendered virtual content image such that the
two seamlessly blend together. Our hypothesis was that the geometry
defined by the rendering is preserved while different image attributes
such as noise, color tone, blur etc. are transferred from the original
image. Our initial tests with the method of deepart [1] (presumably
based on [7]) showed great potential for transferring the original
image characteristics such as noise, color tone, etc. onto the rendered
image, while also preserving the geometry of the latter. However,
we cannot directly apply the method to AR applications for two
reasons.

First, the computational requirements are too high. In our ex-
periments with the method [7], it takes more than 10 minutes to
process a pair of content and style images on an nvidia GTX 1080
GPU. Similarly, most other methods that promise “real-time” per-
formance imply using a state-of-the-art powerful desktop GPU for
inference, which prohibits the use of such methods on most average
laptops let alone on mobile devices. In contrast, our goal is a fast
post-processing step in a single feed-forward pass which can be
potentially implemented even on a mobile device in the future.

Second, only a few style transfer methods deal with temporal
consistency in videos, and those either rely on the computation of
optical flow which is slow, or have to train a different network for
each style which does not provide enough flexibility. We enforce
local temporal consistency within our architecture with only little
computational overhead.

3.2 General structure
Our first step is to construct autoencoders from various popular
architectures but truncated at different depths (the exact configura-
tions are explained in Section 3.4). An autoencoder model involves
an encoder network which takes an image as input and produces
a set of feature maps. The encoded features are further passed to
a decoder network which tries to reconstruct an output image that
resembles the original input image. Either the whole network is
trained from scratch or the encoder can be pretrained on some other
task in advance, in which case only the decoder needs to be trained.

The training loss for our autoencoders is a combination of the
standard pixel loss (so that the output image is as similar as possible
to the input image) and of the perceptual loss proposed in [12]
(so that the corresponding feature maps of the two inputs inside a
so called loss network are as similar as possible), in other words

comparing images in the CNN feature space rather than in pixel
space. For example, if we decrease the intensity of every pixel by
1, the perceptual loss is minimal but the pixel loss is large. The
loss network extracts high-level representations of the images and
compares them at higher abstraction levels. Formally,

L= αLpixel +βLperceptual = α||O− I||2 +β ||F [O]−F [I]||2 (1)

where I is the input image, O is the output of the autoencoder, and
α , β are weighting parameters. Similar to [12], for loss network
we chose the normalized VGG19 architecture pre-trained on Image-
Net [5] for the image classification task, and F [·] represents the
feature map encoding at its relu4 1 layer. The VGG19 is capable
of producing good feature representations and has been used success-
fully in many other tasks, but some other pre-trained architecture
could also be used as a loss network. For training all our autoen-
coders, we used the updated COCO 2017 dataset [18] with a batch
size of 8 and the ADAM optimizer [14] with a starting learning rate
10−4. Note that our autoencoders are not specific to faces or mouth
images but are trained to reconstruct any kinds of images. There is
no need to do any adaptations to a specific person either. Training
on randomly cropped images from COCO helps with the generaliza-
tion of the network to obtain robust features. All training sessions
were performed on an nvidia GTX 1080 GPU. We implemented all
methods in PyTorch [2].

Figure 3: General architecture for style transfer: autoencoder with
a feature mixing block at the bottleneck. We apply style transfer
between the original video frame at time t (style) and the corre-
sponding rendered AR frame at time t (content). We experiment
with various encoder-decoder pairs and also compare AdaIN and
WCT as mixing blocks.

3.3 Stylization component
A new idea in our approach is to use every single frame as a new
style, because the style has to continuously adapt to the input video
or camera stream. There are multiple ways for transferring statistics
from the style feature maps to the content feature maps, but this
adaptation requires style mixing blocks that work with arbitrary
styles without retraining anything.

We use the whitening-coloring transform (WCT) proposed in [17].
Statistical whitening means transforming the data such that it has
an identity covariance matrix, then statistical coloring is applied to
convert the data to have a different set of target statistics. Alter-
natively, we could use AdaIN proposed in [11] which is simpler
and faster, but requires the training process to be modified with
the mixing block enabled at the bottleneck. In contrast, the WCT
operation can be inserted into any previously trained autoencoder
without extra training effort. As the authors of [17] point out, AdaIN
which transfers first-order statistics across feature maps can also be
considered as a special case of the more general WCT operation
which transfers second-order statistics. WCT generally delivers
higher quality results at the expense of more computations. When
using deeper architectures, the WCT operation has to be repeated at
multiple depths [17]. In practice, this is done by chaining multiple

autoencoders with different depths, each with a WCT block in the
middle. The chain starts with the deepest and ends with the shal-
lowest autoencoder, the whole chain producing significantly higher
quality results then each of its parts. We provide a derivation of the
WCT formulas and an illustration of chaining in the supplement. In
our method, we omit the chaining of multiple autoencoders as we
use relatively shallow archtitectures because (i) we aim to transfer
only low-level features and (ii) we aim for very fast inference.

3.4 Architectural variations
We created and compared various autoencoder architectures. The
encoders are truncated versions of the original MobileNet [9], Mo-
bileNetV2 [29], and VGG19 [30] architectures while the decoders
are mirrored versions of them. The preference for smaller (trun-
cated) networks is not only motivated by the computation time and
memory consumption, but also by the fact that we do not require
the highest level features at the deepest parts of the networks as the
image characteristics we are transferring are mostly local features.

More specifically, we experimented with the following archi-
tectures: MobileNetV1 (see [9]) truncated at ReLU6 3 (9th layer)
or ReLU6 7 (21st layer) or ReLU6 11 (33rd layer), MobileNetV2
(see [29]) truncated at BatchNorm 3 (8th layer) or BatchNorm 9
(24th layer) or BatchNorm 18 (48th layer), VGG19 (see [30]) trun-
cated at ReLU 1 (3rd layer) or ReLU 3 (8th layer) or ReLU 8 (22nd

layer). For all these configurations, we tested the strategy of training
the whole autoencoder from scratch, and also tested the strategy
of using pre-trained weights for the encoder and training only the
decoder.

MobileNets perform very well on image classification and are
significantly faster than other networks. Unfortunately, our archi-
tectures based on MobileNets proved to be insufficient in terms of
style transfer quality, even though they were capable to reproduce
the original images when used as simple autoencoders. Nevertheless,
we also report our negative results to share knowledge with inter-
ested readers. In particular, we found little variation in the stylized
outputs when different style images were used with the same content
image, for example only the color palette changed but the detailed
patterns were not transferred.

A general issue we experienced with deeper versions of the au-
toencoder models is that the outputs lacked finer details and often
the geometrical structures became significantly deformed. Instead
of using the autoencoder training approach, we also tried the AdaIN
training approach proposed in [11], i.e., having the mixing block
enabled during training. However, our results were rather under-
whelming and uncanny (see Appendix). Next, we turned our atten-
tion to the normalized VGG19 architecture, specifically truncated
versions of it. While slower than MobileNet, the VGG model and its
extensions have been used with success in other style transfer works.

In our final version, we use the architectures detailed in tables 1,
2 and 3, which consist of encoder-decoder networks where the
encoder is a subset of the full VGG19 architecture and the decoder
is a mirrored version of the encoder. The encoder weights are fixed
by values of the VGG19 model pre-trained on the ImageNet dataset
for the image classification task, and only the decoders are trained
as described in Section 3.2. Once the encoders and decoders are
trained in an autoencoder fashion, we can use them for style transfer
by applying the WCT operation between the feature maps produced
by the encoder and passing the transformed features through the
decoder to reconstruct a stylized output image.

3.5 Temporal consistency
Another key aspect to consider for AR is the temporal consistency
when applying style transfer on a sequence of images (frame by
frame in a video or in a live camera stream). Because the style
transfer methods reconstruct each frame individually, it is natural
to expect flickering artifacts when using them for videos, which

Type Filter Input Size

Encoder
Conv2D 3×3×3×3 224×224×3
Conv2D 3×3×3×64 224×224×3
Decoder
Conv2D 3×3×64×3 224×224×64

Table 1: Reduced VGG19
architecture type 1, referred
from now on as VGG19.1

Type Filter Input Size

Encoder
Conv2D 3×3×3×3 224×224×3
Conv2D 3×3×3×64 224×224×3
Conv2D 3×3×64×64 224×224×64
Maxpool 2×2
Conv2D 3×3×64×128 112×112×64
Conv2D 3×3×128×128 112×112×128
Maxpool 2×2
Conv2D 3×3×128×256 56×56×128
Conv2D 3×3×256×256 56×56×256
Conv2D 3×3×256×256 56×56×256
Conv2D 3×3×256×256 56×56×256
Maxpool 2×2
Conv2D 3×3×256×512 28×28×256

Type Filter Input Size

Encoder
Conv2D 3×3×3×3 224×224×3
Conv2D 3×3×3×64 224×224×3
Conv2D 3×3×64×64 224×224×64
Maxpool 2×2
Conv2D 3×3×64×128 112×112×64
Decoder
Conv2D 3×3×128×64 112×112×128
Upsampling NN 112×112×64
Conv2D 3×3×64×64 224×224×64
Conv2D 3×3×64×3 224×224×64

Table 2: Reduced VGG19
architecture type 2, referred
from now on as VGG19.2

Decoder
Conv2D 3×3×512×256 28×28×512
Upsampling NN 28×28×256
Conv2D 3×3×256×256 56×56×256
Conv2D 3×3×256×256 56×56×256
Conv2D 3×3×256×256 56×56×256
Conv2D 3×3×256×128 56×56×256
Upsampling NN 56×56×128
Conv2D 3×3×128×128 112×112×128
Conv2D 3×3×128×64 112×112×128
Upsampling NN 112×112×64
Conv2D 3×3×64×64 224×224×64
Conv2D 3×3×64×3 224×224×64

Table 3: Reduced VGG19
architecture type 4, referred
from now on as VGG19.4

is indeed confirmed in our experiments. Among the works we
reviewed for video style transfer, only the one proposed by Ruder et
al. [28] can be applied for arbitrary pairs of content and style images,
however, it is based on the slow optimization approach by Gatys et
al. [7] and the expensive procedure of computing the optical flow,
making the whole process impractical for our purposes.

Our goal is to stylize Ct−1 (content) with St−1 (style) and Ct with
St while ensuring that Xt−1 (output) and Xt are also very similar.
In the classical video style transfer applications St−1 = St , and in
our AR use case they are not equal but very similar. We propose
two extensions to the basic architecture that add minimal extra
computational cost compared to single-frame stylization.

The first extension we propose is shown in Figure 4 denoted by
αF . In this network architecture, we introduce a parameter αF to
weigh the current (stylized) features Ft with the previous (stylized)
features Ft−1, formally F∗t = (1−αF)Ft +αF Ft−1. Afterwards, the
feature maps F∗t are passed through the decoder to obtain the output
frame Xt . This additional operation acts like a temporal filter, it
smooths out variations in the output in nearby frames, reducing arti-
facts such as flickering and structural inconsistencies. We could also
feed back multiple previous frames with for example exponentially
decaying weights over time, but then in case of fast motion in the
video, the results may exhibit trailing artifacts as each feature map
is essentially blended with several previous feature maps. As our
results with more complex feedback were not significantly better,
we feed back only a single history frame.

The second extension we propose is feeding back the output style,
denoted by αS in Figure 4. In this setup, we combine the style
features FSt with the stylized output of the previous frame (Xt−1),
formally FS∗t = (1−αS)FSt +αSFXt−1. The motivation behind this
step is the following: assuming we have the content image Ct and
we wish to stylize it in a specific way St , the ideal style input image
would be an image in content similar to Ct and already stylized by
the respective style. In fact, the previous output Xt−1 is very similar
to Ct and it is already stylized.

Note that in both extensions, we could feed back directly Ft−1,
but instead we feed back Xt−1 and pass it through an encoder again
to get FXt−1. This intermediate step is supposed to overcome any
particular effects that the decoder may introduce to the image be-
cause those should also be consistent across the outputs Xt−t and Xt .
The cost of this feedback is the additional execution of the encoder.
Also note that our two simple temporal extensions do not require
retraining the networks.

Figure 4: Our proposed architecture. Temporal consistency is en-
forced by feeding back the previous output to the style (αS) and
directly to the features (αF).

3.6 Discussion

We noticed a quality decrease in the decoder’s output when going
deeper with the autoencoder architectures. Specifically, while the re-
constructed background and reconstructed overlay seamlessly blend
together as intended, the general quality of the whole output image
is often blurrier than the original image (cf. the 1st , 3rd , and 4th

columns in Figure 5). This is because the decoders may not be able
to perfectly reconstruct the input from the more abstract features. By
going deeper in the networks we may loose fine details, especially
with networks trained for image classification, because for classifi-
cation only the whole image content matters. For our case, loosing
local details is a problem with deeper architectures and results in the
blurry outputs mentioned above. The problem may be addressed by
further training the decoders, but we can also ignore it when using
shallow architectures as we are primarily interested in transferring
local properties.

There are multiple ways of dealing with the region of interest
(ROI). In our experiments, the input images and videos were cropped
around the mouth area. A potential extension would be to apply
style transfer only on a specific selection like the inner mouth area
by constructing a binary segmentation mask around the rendered
content. Ideally, one would extract a binary mask from the renderer,
and process and recombine the two images only inside the mouth
region. Restricting a style transfer network to a specific area covered
by segmentation masks defined in the image space has been shown
also by Gatys et al. [8], which is in general the way to go.

Without such a mask, we still have the following fallback options:
(i) We can take the whole input image as style and regenerate the
whole output image at once, but then also the background may
influence the style of the teeth, i.e., in our example application the
results may depend on the face and the background. This works
well as long as mostly mouth areas are in the video. Alternatively,
(ii) we can take a rectangular region in the style image and apply its
style to the whole output at once, similar to traditional style transfer.
However, in our case when we may improve the virtual content, we
may deteriorate the background, but this is not apparent with the
proposed variants. If we consider more important for the output
real and virtual to be indistinguishable from each other compared
to having the output indistinguishable from the input (in a virtual
mirror the background might be also beautified), then this can be
an acceptable trade-off. Finally, (iii) processing only a rectangular
ROI of the output no matter whether the style comes from a small
part or from the whole input image is not recommended, because a
post-processed rectangular ROI could stand out from an unprocessed
background. Blending may help to smooth the borders, but having a
mask from the renderer should be preferred.

In the default case, the content and style images are aligned, as

the content image is nothing else but the style image with a rendered
denture model on the mouth area. Since this setup reduces the chance
of introducing structural artifacts, we also tested traditional color
transfer methods but the CNN models proved to be more successful
in also matching other low-level features like image noise.

Our solution for temporal consistency requires that subsequent
incoming frames are similar. This is true for camera or uncut video
input, but it is obviously violated at video cuts.

Finally, as our architectures and our training procedure are not
restricted to faces or teeth, our method can be easily transferred
to other application domains. However, it is advantageous if the
virtual overlay is replacing a real counterpart in the image because
then otherwise it is difficult to decide which part of the original
image should be taken as style. This restriction is less important
if segmentation masks are available and we perform style transfer
between segmented counterparts.

4 EVALUATION

In this section, we present our results combining the proposed meth-
ods and applying them on our dental AR improvement task. Sec-
tion 4.1 showcases several examples of our post-processing method
applied on the rendering outputs, Section 4.2 describes the effect
of the temporal extensions, Section 4.4 presents a preliminary user
study to measure the subjective quality of the results, and Section 4.5
lists statistics regarding the computation time of various architec-
tures.

(a) P3 original (b) P3 rendered (c) P3 VGG19.1 (d) P3 VGG19.4

(e) P16 original (f) P16 rendered (g) P16 VGG19.1 (h) P16 VGG19.4

(i) P18 original (j) P18 rendered (k) P18 VGG19.1 (l) P18 VGG19.4

(m) P15 original (n) P15 rendered (o) P15 VGG19.1 (p) P15 VGG19.4

Figure 5: Example results using shallow VGG19.1 and deep
VGG19.4, further examples and results with other architectures
can be found in the supplement. All test frames are from [3].

4.1 Quality
We present and compare how our proposed style transfer methods be-
have on a set of rendered frames. As a short reminder, the VGG19.1,
the VGG19.2 and the VGG19.4 are encoder-decoder architectures
with the encoders being truncated versions of the popular VGG19
architecture and the decoders are the mirrored versions of the en-
coders. With the encoders being fixed, the architectures are trained
in an autoencoder fashion with the decoder weights being the learned
parameters. For style transfer, we use the WCT operation between

the feature maps of the content and style images obtained at the bot-
tleneck of the autoencoders. After this step, the transformed features
are passed through the decoder and the final result is produced.

Example results are illustrated in Figure 5, further results can
be found in the appendix. From the samples shown, we can iden-
tify certain behaviours depending on the style method used. The
shallower networks, for example VGG19.1 and VGG19.2 primarily
deal with low-level features and manage to capture features such
as colors and noise patterns, our primary targets. In contrast, the
deeper VGG19.4 produces outputs that in some cases can exhibit
high smoothing. Interestingly, at the same time it is able to capture
the level of blur in images, i.e., when the scene goes in and out of
focus, a particularly difficult case for coherent rendering (also see
the video supplement).

For comparison, we show in Figure 6 the outputs of some classical
tone mapping approaches like histogram matching and linear color
transfer. RGB histogram matching may introduce false colors, there-
fore color transfer in the Lab color space is preferred. Linear color
transfer with PCA and with MK [23] work reasonably well except
in a few bright overflow regions. Our method (cf. Figure 5(g)) with
style transfer generates comparable or higher quality output, and
it can not only transfer color distributions, but also other low-level
properties. More images can be found in the supplement. We also
experimented with the work of Reinhard et al. [24], however, this
method cannot capture the subtle differences when the input images
are very similar.

(a) P16 HM-RGB (b) P16 HM-LAB (c) P16 LCT-PCA (d) P16 LCT-MK

Figure 6: Qualitative comparison with traditional color transfer
methods. HM-RGB and HM-LAB stand for histogram matching in
RGB and Lab color space, respectively. LCT-PCA and LCT-MK
stand for linear color transfer with principal component analysis and
with Monge-Kantorovitch distance [23].

We also show a qualitative comparison with other style transfer
methods in Figure 7. The result of deepart.io is of highest quality,
but the processing takes minutes. The original AdaIN [11] is fast but
tends to produce wavy artefacts and flickering in the frame stream.
The original WCT [17] is too deep and may distort the geometry too
much. Our method (VGG19.2) is a good trade-off between quality
and speed. More examples can be found in the supplement.

(a) deepart (b) AdaIN (c) WCT (d) ours

Figure 7: Qualitative comparison with other style transfer meth-
ods [1, 11, 17]. Input content P16 in Fig. 5(f) and style in Fig. 5(e).

In summary, our proposed methods greatly improve the photo-
realistic look of the virtual dentures. The VGG19.1 and VGG19.2
methods focus more on the fine details but fail to correctly capture
the defocus blur of the camera. The VGG19.4 method can deal
well with the camera blur, however, at the price of deteriorating
the overall quality of the original background – the decoder is not
capable to perfectly reconstruct the original video frame.

4.2 Temporal consistency
In Section 3.5, we proposed two extensions to improve the temporal
stability of a style transfer network on videos without significantly
increasing the overall computation time.

Here, we analyze the temporal consistency of the results when
applied on the test videos. Because of subtle differences, the results
can be better seen in video format, ideally compared side by side.
We recommend the reader to refer to the video supplement1 for a
closer inspection of example videos that show the influence of the
two extensions with various weights. Note that we cannot directly
compare our method with video style transfer methods like [6, 10,
28] because they (1) require re-training for each style, and our
’style’ changes at every frame and (2) rely on dense optical flow
and optimization which is costly. While our simple feedback can be
expected to have lower quality, it is very fast and appears sufficient
for the presented application.

The experiments validate our initial assumption that for shallower
architectures (VGG19.1 and VGG19.2), the temporal artifacts are
hardly noticeable and in these cases the addition of our temporal
feedback brings little contribution. However, as the architectures
grow deeper (as is the case of VGG19.4), the temporal artifacts
become more pronounced consisting of unwanted flickering and
distortions in the final output. In these cases, our methods smooth
out such effects to a considerable degree, improving the overall
quality of the stylized video. While most results presented here were
generated with αS = 0.2 and αF = 0.1, we leave these parameters
manually adjustable, for example if there is a lot of motion and quick
movements in the video, a trailing effect may appear if the weight
of feedback is too high.

We use only 1 frame history in smoothing, but it has longer effect
due to the feedback loop. One could also limit the extent a single
frame can influence in the stream by storing and recombining the fea-
tures in a buffer instead of always feeding back the generated frames.
We also experimented with directly combining multiple previous fea-
tures with exponentially decaying weight but this introduced trailing
effects, as can be expected.

In conclusion, our architectural extensions produce better re-
sults compared to performing style transfer frame-by-frame inde-
pendently, while doing so at no significant additional cost. We
also acknowledge that general video style transfer methods using
optical flow provide better results both short term and long term,
however, at significant computational costs. In our approach, we
are smoothing the features which is even faster than smoothing the
output and gives similar results. Due to the nature of our AR task,
we use fairly shallow architectures which, in our experiments, are
not as prone to temporal artifacts as deeper architectures. In fact, if
we use the VGG19.2 model, which was preferred in the user study,
temporal smoothing may not even be necessary. Our conclusion is
that the methods described in this paper for improving the temporal
consistency are sufficient for handling the subtle artifacts between
consecutive frames and during short temporal intervals.

4.3 Defocus blur and masking
In this example, we would like to highlight a particularly difficult
case for coherent rendering, where the amount of defocus blur is
continuously changing in the original video. This is very difficult
to measure and reproduce in real time. However, it is well captured
and transferred by the deep VGG19.4 network, as we can see in the
video of Person16 in the supplement2.

A second interesting observation we can make here is that towards
the end of the videos of Person16, the teeth become too dark. This
is because the video is not cropped to only around the mouth region,
and when the dark background becomes visible, the dark color

1See the conference proceedings and the authors’ website
2person16/video fps-15 arch-wct mode-4 alphaS-08 alphaF-09.mov

(a) original (b) WCT1, αS =
0.2, αF = 0.1

(c) WCT2, αS =
0.2, αF = 0.1

(d) WCT4, αS =
0.2, αF = 0.1

also gets transferred and applied on the whole image. We could
overcome this by cropping closer to the mouth or applying a masks
for processing, as also mentioned in the discussion section of the
paper. We kept this video as is for illustration purposes.

4.4 Qualitative user study
We conducted a small user study with 8 participants in order to
assess the quality of our results when compared to the default re-
sults produced by the rendering method. The study consists of a
short questionnaire in which users have to answer several questions
about the quality of the outputs according to their own perceptual
standards.

For the study, we randomly extracted individual frames from
8 reference videos [3] as original frames, and we generated the
corresponding output variations we wish to compare, specifically the
output produced by the default rendering method, and the outputs
of VGG19.1, VGG19.2, VGG19.4 produced by the respective style
transfer methods (in total 128 images per person). Given a set of
images, the participants had to answer two questions: Q1: How well
does the smile area fit the rest of the image? and Q2: How well
does the new smile match the style of the original image? As Q2 is
concerned only with the mouth area for each frame, we replace the
region outside of the mouth with the same region from the original
frame in order for the users to focus on the region of interest.

We requested the users to rank 6 frames (1 default rendered and
5 post-processed with 5 different autoencoders) such that a frame
ranked 1 answers the question better than all the other frames and
a rank of 6 suggests that the respective frame is the least preferred
option. The motivation behind adding a ranking system is that hu-
mans are better at perceiving relative differences rather than absolute
values, therefore only having labels would merely provide a rough es-
timate of the quality but without knowing which option is preferred.
The results of the survey are summarized in Table 4. The ranking
verifies our hypothesis that all VGG19.x methods improved over the
original rendering, and the outputs of VGG19.2 and VGG19.1 were
ranked best and without significant difference.

Question Type Rank average Rank standard deviation

Q1

Rendered 5.39 0.63
VGG19.1 3.00 1.27
VGG19.2 2.98 1.22
VGG19.4 3.04 1.56

Q2

Rendered 5.66 0.60
VGG19.1 2.63 1.34
VGG19.2 2.52 1.25
VGG19.4 3.45 1.39

Table 4: Survey results: average rank given by the users and the
standard deviation of the rank for output images generated by the
respective methods.

We repeated the survey with 6 users on a different set of images
(in total 7× 8 images per person) in which we asked the users
to compare outputs of our method with traditional color transfer
methods, answering the same questions Q1 and Q2 as before. The
results of this survey are summarized in Table 5. We learned that
users preferred every post-processed result over the default rendered

images, and among the traditional methods the simple histogram
matching in the Lab color space was preferred in most of the cases.
Still, the images processed with our methods ranked highest in the
answers of both questions, which verifies our assumption that more
low-level properties than just color need to be transferred in order to
get seamless and coherent virtual smile previews.

Question Type Rank average Rank standard deviation

Q1

Rendered 6.02 0.91
HM-RGB 4.29 1.88
HM-LAB 3.31 1.34
LCT-PCA 3.33 1.33
LCT-MK 5.02 1.26
VGG19.1 3.02 1.45
VGG19.2 3.00 1.50

Q2

Rendered 6.23 0.63
HM-RGB 4.35 1.93
HM-LAB 3.67 1.22
LCT-PCA 3.58 1.38
LCT-MK 5.13 1.16
VGG19.1 2.06 0.97
VGG19.2 2.98 1.51

Table 5: Survey results: average rank given by the users and the
standard deviation of the rank for output images generated by the
respective methods. The abbreviations are defined in Section 4.1.

4.5 Speed
In this section, we compare our methods VGG19.1, VGG19.2,
VGG19.4 with respect to computation time, and also include the
AdaIN method proposed by [11]. We selected AdaIN as it is the
fastest method for arbitrary style transfer that we tested, and also
because it is among the fastest style transfer methods in general. The
results of our tests concerning the inference speed of the selected
models are presented in table 6.

We obtained these measurements by repeating the inference step
51 times for each of the respective models using a content image of
size 512×512 and a style image of size 512×512. Our unoptimized
PyTorch code ran on a 2017 MacBook Pro with Intel Core i7 3.1 GHz
CPU (without GPU), and we also compared the runtime on a PC
with an nvidia 1080 GTX GPU.

Model M i7 A i7 S i7 M GPU A GPU S GPU

VGG19.1 1.237 1.237 0.020 0.031 0.032 0.002
VGG19.2 3.455 3.460 0.030 0.044 0.044 0.001
VGG19.4 9.590 9.614 0.131 0.147 0.149 0.003

AdaIN 8.204 8.231 0.118 0.147 0.147 0.007

Table 6: Inference time in seconds (without feedback for temporal
consistency, PyTorch, CPU only and GPU, 512× 512 resolution).
M: median, A: average, S: standard deviation.

Note that VGG19.2, which was preferred by the users, takes 3.56s
on the MacBook, and only 44ms on the GPU. The VGG19.1 and
VGG19.2 are considerably faster than the AdaIN model as expected.
Interestingly, VGG19.4 seems to be slower when compared to AdaIN
even though the corresponding encoder and decoder of VGG19.4 are
shallower than the ones used by the latter. The higher computation
time is caused by the WCT operation which is more computationally
intensive than the AdaIN transfer operation which only normalizes
the feature maps based on mean and variance. It is worth noting that
the computational cost of the WCT (please refer to the Appendix
for the complete derivation of the WCT formulas) will not increase
with the image size as the covariance matrix only depends on the
number of channels.

In the example dental AR application, the mouth area would
be typically smaller by at least a factor of 2 in both width and
height compared to the 512×512 image sizes we used, hence the
computation time would be reduced by a factor of 4. Still, the
current speed allows only video processing but no interactive AR on
the CPU. The next step in the future would be to test these models
on a mobile device, leveraging popular deep learning libraries and
hardware acceleration provided by embedded GPUs and neural
network chips.

4.6 Unsuccesful architectures
For completeness, we also showcase a few unsuccessful architec-
tures in Figure 8 for comparison. MobileNets performed well in
our experiments when used as autoencoders to re-generate images,
however, when we tried to transfer MobileNet feature statistics with
WCT, the results were underwhelming. AdaIN fails to transfer the
style properly and produces wavy artifacts. Even worse, the arti-
facts are different at every frame and lead to severe flickering in the
videos. Chaining several WCT blocks as suggested in [17] also led
to unwanted artefacts. The reason why the features constructed by
one network work better than the other remains an open research
question.

(a) original (b) rendered (c) VGG19.2 +
WCT (proposed)

(d) AdaIN (e) VGG19.4 +
WCT

(f) VGG19.4 +
WCT + chained

(g) MobileNet
V2.1 + WCT

(h) MobileNet
V2.2 + WCT

(i) MobileNet
V2.3 + WCT

Figure 8: Outputs of various architectures – Person3. The first row
a)-c) shows the original image, the rendered output, and our post-
processed output. The second and third rows d)-i) show negative
examples.

5 CONCLUSIONS

With this work, we improved the natural aspect of rendered AR
overlays in a virtual try-on application. We also provided extensive
analysis and experiments with different architectures. The core
idea of using autoencoders for seamlessly blending real and virtual
content is not limited to a dental scenario and could be generalized
to other applications as well. However, an important limitation of
the presented technique is that it only works when a photorealistic
virtual content is replacing real objects in the scene. Obviously,
because the style is taken from the original image, the real object
needs to be present, which limits the application domain. While
the method finds good use in virtual previews of teeth (as in our

example), it cannot be applied in just any AR use case. Also, to
achieve high frame rates, the post-processing should be limited to a
smaller area of the image.

While our method is able to match the tone, noise, and to some
extent the defocus blur between images, it does not take into account
occlusions and shadows. It is an interesting open question whether
and how a CNN method could be extended to also handle severe
lens distortions as a component of style. Generally, a promising
and interesting direction to explore is AR rendering in such neural
architectures. In particular, several attempts have been shown re-
cently with generative adversarial networks that can add, remove,
and even edit certain objects in the scene. The obvious advantage is
that when a completely new image is generated, the real background
and virtual overlays match well in style. However, determining the
correct position and orientation of a virtual object and representing
this information inside a deep network remain open questions.

ACKNOWLEDGMENTS

We thank all participants of our study for their time and effort. We
thank Roland Mörzinger and Sabine Süsstrunk for valuable feedback
on our ideas.

REFERENCES

[1] DeepArt.io. http://www.deepart.io. Accessed: 2019-06-05.
[2] PyTorch. http://www.pytorch.org. Accessed: 2019-06-05.
[3] YouTube people smiling (first hit on Google query “youtube peo-

ple smiling”). http://www.youtube.com/watch?v=f8OmSWxF6h8.
Accessed: 2019-06-05.

[4] D. Chen, J. Liao, L. Yuan, N. Yu, and G. Hua. Coherent online
video style transfer. In International Conference on Computer Vision,
ICCV’17, 2017.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:
A large-scale hierarchical image database. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR’09, 2009.

[6] C. Gao, D. Gu, F. Zhang, and Y. Yu. Reconet: Real-time coherent
video style transfer network. In Asian Conference on Computer Vision,
ACCV’18. Springer, 2018.

[7] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using
convolutional neural networks. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR’16, 2016.

[8] L. A. Gatys, A. S. Ecker, M. Bethge, A. Hertzmann, and E. Shecht-
man. Controlling perceptual factors in neural style transfer. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR’17,
2017.

[9] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. MobileNets: Efficient con-
volutional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017.

[10] H. Huang, H. Wang, W. Luo, L. Ma, W. Jiang, X. Zhu, Z. Li, and
W. Liu. Real-time neural style transfer for videos. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR’17,
pp. 7044–7052. IEEE, 2017.

[11] X. Huang and S. Belongie. Arbitrary style transfer in real-time with
adaptive instance normalization. In International Conference on Com-
puter Vision, ICCV’17, 2017.

[12] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time
style transfer and super-resolution. In European Conference on Com-
puter Vision, ECCV’16, pp. 694–711. Springer, 2016.

[13] T. Karras, S. Laine, and T. Aila. A style-based generator architecture
for generative adversarial networks. arXiv preprint arXiv:1812.04948,
2018.

[14] D. P. Kingma and J. Ba. ADAM: A method for stochastic optimization.
In 3rd International Conference on Learning Representations, ICLR’14,
2014.

[15] G. Klein and D. W. Murray. Simulating low-cost cameras for aug-
mented reality compositing. IEEE Transactions on Visualization and
Computer Graphics, 16(3):369–380, May 2010.

[16] J. Kronander, F. Banterle, A. Gardner, E. Miandji, and J. Unger. Photo-
realistic rendering of mixed reality scenes. Computer Graphics Forum,
34(2):643–665, May 2015.

[17] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang. Universal
style transfer via feature transforms. In Advances in Neural Information
Processing Systems, NIPS’17, pp. 386–396, 2017.

[18] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick. Microsoft COCO: Common objects in
context. In European Conference on Computer Vision, ECCV’14, pp.
740–755, 2014.

[19] F. Luan, S. Paris, E. Shechtman, and K. Bala. Deep painterly harmo-
nization. In Computer Graphics Forum, vol. 37, pp. 95–106. Wiley
Online Library, 2018.

[20] M. Meilland, C. Barat, and A. Comport. 3D high dynamic range dense
visual SLAM and its application to real-time object re-lighting. In
2013 IEEE International Symposium on Mixed and Augmented Reality,
ISMAR’13, pp. 143–152, Oct 2013.

[21] T. Oskam, A. Hornung, R. W. Sumner, and M. Gross. Fast and stable
color balancing for images and augmented reality. In 2nd Interna-
tional Conference on 3D Imaging, Modeling, Processing, Visualization
Transmission, 3DIMPVT’12, pp. 49–56, Oct 2012.

[22] Y. Park, V. Lepetit, and W. Woo. ESM-Blur: Handling & rendering
blur in 3D tracking and augmentation. In Proceedings of the 8th IEEE
International Symposium on Mixed and Augmented Reality, ISMAR’09,
pp. 163–166, 2009.

[23] F. Pitié and A. Kokaram. The linear Monge-Kantorovitch linear colour
mapping for example-based colour transfer. In 4th European Confer-
ence on Visual Media Production, pp. 1–9, Nov 2007.

[24] E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley. Color transfer
between images. IEEE Computer Graphics and Applications, 21(5):34–
41, 2001.

[25] T. Rhee, L. Petikam, B. Allen, and A. Chalmers. MR360: Mixed
reality rendering for 360 panoramic videos. IEEE Transactions on
Visualization and Computer Graphics, 23(4):1379–1388, April 2017.

[26] K. Rohmer, W. Buschel, R. Dachselt, and T. Grosch. Interactive near-
field illumination for photorealistic augmented reality with varying
materials on mobile devices. IEEE Transactions on Visualization and
Computer Graphics, 21(12):1349–1362, Dec. 2015.

[27] K. Rohmer, J. Jendersie, and T. Grosch. Natural environment illumina-
tion: Coherent interactive augmented reality for mobile and non-mobile
devices. IEEE Transactions on Visualization and Computer Graphics,
23(11):2474–2484, Nov 2017.

[28] M. Ruder, A. Dosovitskiy, and T. Brox. Artistic style transfer for
videos. In German Conference on Pattern Recognition, GCPR’16, pp.
26–36. Springer, 2016.

[29] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mo-
bileNetV2: Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
CVPR’18, pp. 4510–4520, 2018.

[30] K. Simonyan and A. Zisserman. ery deep convolutional networks for
large-scale image recognition. In International Conference on Learning
Representations, ICLR’15, 2015.

[31] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Instance normalization:
The missing ingredient for fast stylization. CoRR, abs/1607.08022,
2016.

[32] M. Weier, M. Stengel, T. Roth, P. Didyk, E. Eisemann, M. Eisemann,
S. Grogorick, A. Hinkenjann, E. Kruijff, M. Magnor, K. Myszkowski,
and P. Slusallek. Perception-driven accelerated rendering. Computer
Graphics Forum, 36(2):611–643, May 2017.

[33] E. Zakharov, A. Shysheya, E. Burkov, and V. S. Lempitsky. Few-shot
adversarial learning of realistic neural talking head models. arXiv
preprint arXiv:1905.08233, 2019.

[34] F. Zhan, H. Zhu, and S. Lu. Spatial fusion GAN for image synthesis. In
International Conference on Computer Vision and Pattern Recognition,
CVPR’19, 2019.

	Introduction
	Motivation
	Contributions

	Related work
	Coherent rendering with fast style transfer
	Overview
	General structure
	Stylization component
	Architectural variations
	Temporal consistency
	Discussion

	Evaluation
	Quality
	Temporal consistency
	Defocus blur and masking
	Qualitative user study
	Speed
	Unsuccesful architectures

	Conclusions

