
Deployment of Sensor Networks: Problems and
Passive Inspection∗

Matthias Ringwald, Kay Römer

1Institute for Pervasive Computing
ETH Zurich, Switzerland

{mringwal, roemer}@inf.ethz.ch

Abstract — Deployment of sensor networks is concerned with setting up an oper-
ational wireless sensor network in a real-world setting. Unfortunately, deployment
is a labor-intensive and cumbersome task as environmental influences often degrade
performance or trigger bugs in the sensor network that could not be observed dur-
ing lab tests. In this paper, we, firstly, study existing sensor networks to identify and
classify typical problems that have been encountered during deployment. Secondly,
we investigate whether and how the existence of these problems can be detected by
means of passive inspection, where messages exchanged in the sensor network are
overheard and analyzed such that modification of the sensor network is not required.
We, thirdly, show how passive inspection can be implemented in a practical tool.

1 Introduction
Sensor networks offer the ability to monitor real-world phenomena in detail and at large
scale by embedding a wireless network of sensor nodes into the real world. Here, deploy-
ment is concerned with setting up an operational sensor network in a real-world environ-
ment. In many cases, deployment is a labor-intensive and cumbersome task as real-world
influences trigger bugs or degrade performance in a way that has not been observed dur-
ing pre-deployment testing in the lab [1, 2, 3, 4, 5, 6, 7, 8, 9]. The reason for this is that
the real world has a strong influence on the function of a sensor network by controlling
the output of sensors, by influencing the existence and quality of wireless communication
links, and by putting physical strain on sensor nodes. These influences can only be very
rudimentarily modeled in simulators and lab testbeds.

To track down problems that occur during deployment, the state of the sensor network
and of individual nodes must be inspected to identify and eventually fix the cause of the
problem. Lab testbeds typically provide a wired back-channel from each node (i.e., every
sensor node is connected to a PC by cable) to support such inspection. However, such a

∗The work presented in this paper was partially supported by the National Competence Center in Re-
search on Mobile Information and Communication Systems (NCCR-MICS), a center supported by the
Swiss National Science Foundation under grant number 5005-67322.

Figure 1: A deployment-support network (rectangular nodes) is a physical overlay net-
work that overhears sensor network (round nodes) traffic and delivers it to a sink using a
second radio.

wired back-channel from each node is generally not available in the field. Hence, current
practice to inspect a deployed sensor network requires active instrumentation of sensor
nodes with monitoring software and monitoring traffic is sent in-band with the sensor
network traffic to the sink (e.g., [6, 10, 11]). Unfortunately, this approach has several lim-
itations. Firstly, problems in the sensor network (e.g., partitions, message loss) also affect
the monitoring mechanism, thus reducing the desired benefit. Secondly, scarce sensor
network resources (energy, CPU cycles, memory, network bandwidth) are used for in-
spection. In Sympathy [6], for example, up to 30% of the network bandwidth is used for
monitoring traffic. Thirdly, the monitoring infrastructure is tightly interwoven with the ap-
plication. Hence, adding/removing instrumentation may change the application behavior
in subtle ways, causing probe effects. Also, it is non-trivial to adopt the instrumentation
mechanism to different applications. For example, [6, 10] assume a certain tree routing
protocol being used by the application and reuse that protocol for delivering monitoring
traffic.

To remove these limitations, we propose a passive approach for sensor network in-
spection by overhearing and analyzing sensor network traffic to infer the existence and
location of typical problems encountered during deployment. To overhear network traf-
fic, a so-called deployment support network (DSN) [12] is used: a wireless network that is
temporarily installed alongside the actual sensor network during the deployment process
as depicted in Fig. 1. Each DSN node provides two different radio front-ends. The first
radio is used to overhear the traffic of the sensor network, while the second radio is used
to form a robust and high-bandwidth network among the DSN nodes to reliably collect
overheard packets1. The overheard stream of packets is then analyzed to infer and report
problems soon after their occurrence. This approach removes the above limitations of ac-
tive inspection: no instrumentation of sensor nodes is required, sensor network resources

1The DSN is temporarily installed alongside the actual sensor network and removed again as soon as the
sensor network works as expected. Hence, the lifetime of the DSN is short and energy consumption is not
a primary issue. Therefor, we can use Bluetooth to collect overheared messages, which has been designed
as a cable replacement and uses techniques such as frequency hopping to minimize packet loss.

are not used. The inspection mechanism is completely separated from the application,
can thus be more easily adopted to different applications, and can be added and removed
without altering sensor network behavior.

We are developing a framework called SNIF (Sensor Network Inspection Framework)
to support such passive inspection of sensor networks. The framework consists of a de-
ployment support network, a flexible packet capturer and decoder that can be configured
to support a wide variety of sensor network radio configurations and MAC protocols,
a data stream framework to analyze packet streams for problems, and a graphical user
interface to display found problems. Details can be found in a technical report [13].

As SNIF is a generic framework, customization is needed to inspect a specific sensor
network application and to detect specific problems. For this, we first need to understand
which problems can occur during deployment and how they can be detected by means of
passive inspection. To this end, we have studied existing installations of sensor networks
to identify and classify typical problems that occurred during deployment. We report our
findings in Sect. 2. In Sect. 3 we discuss how these problems can be detected by means of
passive inspection2. Finally, in Sect. 4 we show how passive detection of these problems
is implemented in SNIF.

With this paper, we hope to contribute to a more systematic understanding and treatment
of deployment problems, which is an important prerequisite for the development of tools
that support a more efficient deployment process.

2 Deployment Problems
This section contains a classification of the problems typically found during deployment
according to our own experience and as reported in the literature. Here, a problem is
essentially defined as a behavior of a set of nodes that is not compliant with the specifica-
tion.

We classify problems according to the number of nodes involved into four classes:
node problems that involve only a single node, link problems that involve two neighboring
nodes and the wireless link between them, path problems that involve three or more nodes
and a multi-hop path formed by them, and global problems that are properties of the
network as a whole.

2.1 Node Problems

A common node problem is node death due to energy depletion either caused by “normal”
battery discharge or due to short circuits. In [14], a low-resistance path between the power
supply terminals was created by water permeating a capacitive humidity sensor, resulting
in early battery depletion and abnormally small or large sensor readings.

Low batteries often do not cause a fail-stop behavior of the sensor nodes. Rather, nodes
may show Byzantine behavior at certain low battery voltages. As reported in [9], for
example, wrong sensor readings have been observed at low battery voltage.

Software bugs often result in node reboots, for example, due to failure to restart the
watchdog timer of the micro controller [15]. We also observed software bugs resulting
in hanging or killed threads, such that only part of the sensor node software continued to

2Material in Sects. 2 and 3 is based on an earlier technical report [13] by the same authors.

operate.

Sink nodes act as gateways between a sensor network and the Internet. In many ap-
plications they store and forward data collected by the sensor network to a background
infrastructure. Hence, problems affecting sink nodes must be promptly detected to limit
the impact of data loss [4, 7, 9].

2.2 Link Problems

Field experiments (e.g., [16, 17]) demonstrated a very high variability of link quality both
across time and space resulting in temporary link failures and variable amounts of mes-
sage loss. Network congestion due to many concurrent transmission attempts is another
source of message loss. In [7], for example, a median message loss of 30% is reported
for a single-hop network. Excessive levels of congestion have been caused by accidental
synchronization of transmissions by multiple senders, for example, due to inappropri-
ate design of the MAC layer [18] or by repeated network floods [15]. If message loss
is compensated for by retransmissions, a high latency may be observed until a message
eventually arrives at the destination.

Most sensor network protocols require each node in the sensor network to discover
and maintain a set of network neighbors (often implemented by broadcasting HELLO
messages containing the sender address). A node with no neighbors presents a problem
as it is isolated and cannot communicate. Also, neighbor oscillation is problematic [18],
where a node experiences frequent changes of its set of neighbors.

A common issue in wireless communication are asymmetric links, where communica-
tion between a pair of nodes is only possible in one direction. In a field experiment [16]
between 5-15% of all links have been observed to be asymmetric, with lower transmission
power and longer node distance resulting in more asymmetric links. If not properly con-
sidered, asymmetric links may result in fake neighbors (received HELLO from a neighbor
but cannot send any data to it) and broken data communication (can send data to neighbor,
but cannot receive acknowledgments).

Another issue is the physical length of a link. Even though two nodes are very close
together, they may not be able to establish a link (missing short links). On the other hand,
two nodes that are very far away from each other (well beyond the nominal communica-
tion range of a node), may be able to communicate (unexpected long links). Experiments
in [16] show that at low transmit power about 1% of all links are twice as long as the
nominal communication range. These link characteristics make node placement highly
non-trivial as the signal propagation characteristics of the real-world setting have to be
considered [19] to obtain a well-connected network.

Most sensor network MAC protocol achieve energy efficiency by scheduling communi-
cation times and turning the radio module off in-between. Clock drift or repeated failures
to re-synchronize the communication phase may result in failures to deliver data as nodes
are not ready to receive when others are sending. In [3], for example, excessive phase
skew has been observed (about two orders of magnitude larger than the drift of the oscil-
lator).

2.3 Path Problems

Many sensor network applications rely on the ability to relay information across multiple
nodes along a multi-hop path. In particular, most sensor applications include one or more
sink nodes that disseminate queries or other tasking information to sensor nodes and sen-
sor nodes deliver results back to the sink. Here, it is important that a path exists from a
sink to each sensor node, and from each sensor node to a sink. Note that information may
be changed as it is traversing such a path, for example due to data aggregation. Two com-
mon problems in such applications are hence bad path to sink and bad path to node. In
[15], for example, selfish nodes have been observed that did not forward received traffic,
but succeeded in sending locally generated messages.

Since a path consists of a sequence of links, the former inherits many of the possible
problems from the latter such as asymmetric paths, high latency, path oscillations, and
high message loss. In [7], for example, a total message loss of about 58% was observed
across a multi-hop network.

Finally, routing loops are a common problem, since frequent node and communication
failures can easily lead to inconsistent paths if the software isn’t properly prepared to deal
with these cases. Directed Diffusion [20], for example, uses a data cache to suppress
previously seen data packets to prevent routing loops. If a node reboots, the data cache is
deleted and loops may be created [21].

2.4 Global Problems

In addition to the above problems which can be attributed to a certain subset of nodes,
there are also some problems which are global properties of a network. Several of these
are failures to meet certain application-defined quality-of-service properties. These in-
clude low data yield, high reporting latency, and short network lifetime [22].

Low data yield means that the network delivers an insufficient amount of information
(e.g., incomplete sensor time series). In [9], for example, a total data yield of only about
20-30% is reported. This problem is related to message loss as discussed above, but may
be caused by other problems such as a node crashing before buffered information could be
forwarded, buffer overflows, etc. One specific reason for a low data yield is a partitioned
network, where a set of nodes is not connected to the sink.

Reporting latency refers to the amount of time that elapses between the occurrence of
a physical event and that event being reported by the sensor network to the observer.
This is obviously related to the path latency, but as a report often involves the output of
many sensor nodes, the reporting latency results from a complex interaction within a large
portion of the network.

The lifetime of a sensor network typically ends when the network fails to cover a given
physical space sufficiently with live nodes that are able to report observations to the ob-
server. The network lifetime is obviously related to the lifetime of individual nodes, but
includes also other aspects. For example, the death of certain nodes may partition the
network such that even though coverage is still provided, nodes can no longer report data
to the observer.

3 Passive Indicators
An indicator is an observable behavior of a sensor network that hints (in the sense of
a heuristic) the existence of one of the problems discussed in the previous section. In
the context of our work we are particularly interested in indicators that can be observed
purely by overhearing the traffic of the sensor network as this does not require any in-
strumentation of the sensor nodes. We call such indicators passive. The structure of this
section mirrors that of the previous section, discussing passive indicators for the problems
outlined there.

In fact, passive indicators heavily depend on the protocols used in the sensor network.
However, there are a number of protocol elements that are commonly found in sensor
network applications that can be exploited. For example, many protocols exchange reg-
ular beacon messages, all packets need to contain the per-hop destination MAC address,
some packets also contain the per-hop source MAC address to identify the sender of the
message, and some packets do contain a monotonically increasing sequence number.

3.1 Node Problems

Node death Many commonly used MAC and routing protocols (e.g., [17, 23]) require
every node to transmit a beacon message at regular intervals, in particular for the purpose
of synchronization and neighbor management. Failure to transmit any such message for
a certain amount of time (typically a multiple of the inter-beacon time) is an indicator for
node death. Also, node death can be assumed if a node is no longer considered a neighbor
by any other node (see Sect. 3.2).

Node reboot When a node reboots, its sequence number counter will be reset to an
initial value (typically zero). Hence, the sequence number contained in messages sent by
the node will jump to a smaller value after a reboot with high probability even in case of
lost messages, which can serve as an indicator for reboot. Note that a reboot cannot be
detected this way when the node crashes just before the sequence number counter would
wrap around to its initial value. However, a simple fix would be to set the sequence
counter to some value other than the initial value at wrap-around, such that a wrap-around
could be distinguished from a reboot.

Wrong sensor readings These can only be passively observed when application mes-
sages contain raw sensor readings. The way how the decision whether a certain sensor
reading is wrong or not is implemented strongly depends on the application. One could
for example exploit the fact that sensor values of nearby nodes are correlated in many
applications. For other applications, the range of valid sensor values might be known a
priori.

3.2 Link Problems

Discovering neighbors Depending on node density, a node in a sensor network may
have a large number of other nodes within communication range with largely varying link
quality. Most multi-hop routing protocols maintain a small set of neighbors with good
link quality. Unfortunately, the set of neighbors chosen by a node cannot be passively

observed directly. However, there are two ways to learn about the neighbors of a node.
Firstly, by overhearing the destination addresses of messages a node sends we can learn a
subset of the neighbors. The second approach exploits link advertisements sent by nodes
to estimate link quality. Since links are often asymmetric in sensor networks, link quality
estimation must consider both directions of a link. Since a sensor node can only measure
the quality of one direction of a link directly (e.g., by means of the fraction of beacon
messages being received), nodes broadcast link advertisement messages containing the
addresses and quality of the incoming links from their neighbors. These messages can be
passively observed to obtain information about the neighbors of a node and the quality of
the associated link.

Knowing the neighbors of a node, we can detect neighbor oscillation and isolated nodes.
If the locations of nodes are known, we can also discover missing short links and unex-
pected long links.

Message loss Again, it is not directly possible to decide whether or not a node has
received a message by means of passive observation. However, in many situations re-
ception of a message by a node does trigger the transmission of another message by that
node (e.g., acknowledgment, forwarding a message to the next hop). If such a property
exists, failure to overhear the second message within a certain amount of time after the
first message has been overheard is an indicator for message loss. Note that with this
approach, it is not possible to tell apart message loss from selfish nodes that receive but
fail to forward messages. Another issue with this approach is that the DSN may fail to
overhear the second message although it has actually been sent. In this case, one would
take the wrong conclusion that message loss occurred.

Latency To estimate the latency of a link, the same approach as for detecting message
loss is used. The time elapsed between overhearing the causal and the consequential
message gives an estimate of the latency, which includes processing delays in the node.

Congestion The level of link congestion (i.e., frequency of collisions) perceived by a
sensor node cannot be passively observed. The level of congestion experienced by a
deployment support node overhearing the traffic that is being addressed to this sensor
node can be used as a rough approximation.

Phase skew Again we can exploit the existence of beacon messages that are sent at
regular time intervals. A change of the time difference between receipt of beacons of
neighboring nodes indicates phase drift. Averaging over multiple beacon intervals can
help eliminate variable delays introduced by, e.g., medium access.

3.3 Path Problems

Discovering paths In order to discover the path between two sensor nodes (e.g., from
node to sink and from sink to node), we would need access to the routing information
maintained by sensor nodes. As for the neighbor table, this is not directly possible with
passive observation. There are two possible ways around. Firstly, we can reconstruct a

path by tracking a multi-hop message as it travels from source to destination. Using the
per-hop sender and receiver addresses of overheard messages, we can reconstruct multi-
hop paths. However, for this we need a way to decide whether two messages belong to the
same multi-hop transmission. This is easily possible if the message payload contains a
unique identifier such as an end-to-end sequence number. Also, if the message payload is
relayed unmodified along the path, we can compare packet contents to decide (with some
probability) whether two packets belong to the same multi-hop message transmission.
Things get more difficult if message contents are changed along the path, for example
due to in-network data aggregation. In this case, one might be able to exploit temporal
correlations between messages, assuming that a node will forward a (modified) message
soon after it has received the original message.

Another issue is that some protocols due not include the per-hop source address in
messages as it is not needed due to the lack of acknowledgments. For example, TinyOS
1.x does not provide a field for per-hop source address in the standard packet header. One
possible heuristic to infer the missing per-hop source address nonetheless exploits the
fact that the per-hop source address of a forwarded packet equals the per-hop destination
address of the original packet.

Secondly, we can overhear routing messages (if there exist any) to discover paths. While
these messages typically indicate that a node has established a route, it is often impossible
to reconstruct the route. To construct a spanning tree, for example, it is sufficient that
nodes broadcast messages containing their address and distance to the sink, but not their
parent in the tree. The latter would be necessary to reconstruct the spanning tree from
overheard traffic.

If paths can be discovered, we can also easily detect path oscillations and find missing
paths from nodes to sink and vice versa. Using similar techniques as for links, we can
estimate message loss and latency along a path.

Loops Like for path discovery, we need a mechanism to decide whether or not two
packets belong to the same multi-hop message exchange. If such a mechanism exists,
a message that is addressed to a node that previously sent the same message indicates a
routing loop. Alternatively, discovered paths can be directly examined for loops.

3.4 Global Problems

As discussed in Section 2, global problems such as low data yield, high reporting latency,
or insufficient network lifetime are typically due to a combination of different node, link,
and path problems. Hence, the indicators for the latter problems discussed above can be
considered as indicators for these global problems.

Partitions Knowledge of the routing paths as discussed above allows to obtain an ap-
proximate view on the routing topology and to detect network partitions.

3.5 Discussion

As we have shown throughout this section, for many common problems that occur during
deployment of sensor networks, passive indicators exist that allow to infer the existence

of a problem from overheard network traffic. However, in some situations we had to
make assumptions about the underlying sensor network protocols that may not hold for
all applications (e.g., indicators for message loss). For other problems, passive indica-
tors provide only an approximate view of the ground truth (e.g., indicators for network
congestion).

In such situations, we can resort to semi-active observation, where sensor nodes are
instrumented with code to emit messages containing additional information about the state
of the sensor node (e.g., level of congestion, battery voltage, etc.). These messages are
overheard by the DSN and ignored by other sensor nodes. While this approach requires
instrumentation of sensor nodes and transmission of additional messages, these messages
do not have to be routed through the sensor network.

Another alternative is to modify existing or to develop new protocols that support pas-
sive inspection by design by including small amounts of additional information into pro-
tocol messages. Summarizing our observations in this section, we make the following
recommendations for the design of such protocols:

– Include the per-hop source address in all messages to identify communication part-
ners.

– Include a sequence number in all messages so that the DSN can detect when it failed
to overhear a message.

– Include information in multi-hop messages that allows to decide whether or not two
packets belong to the same multi-hop message exchange.

– Include information in routing messages that allows to reconstruct the routing graph.

4 Passive Inspection with SNIF

In this section we outline how passive indicators discussed in the previous section can
be implemented in SNIF. For this, consider the architecture of SNIF as depicted in Fig.
2, which consists of a deployment support network to overhear sensor network traffic, a
packet decoder to access the contents of overheard packets, a data stream processor to
analyze packet streams for problems, a decision tree to infer the state of each sensor node,
and a user interface to display these states. The key design goal for SNIF is generality
that is, it should support passive inspection of a wide variety of sensor network protocols
and applications.

4.1 DSN

Using a deployment support network of BTnode Rev3 nodes [24], sensor network traffic
is overheard as illustrated in Fig. 1. Each DSN node provides two radios which oper-
ate in different frequency bands and are thus free of interference: A ChipCon CC1000
(also used on MICA2 nodes) to overhear sensor network traffic, and a Zeevo Bluetooth
1.2 radio to deliver overheard packets to the DSN sink. Bluetooth has been chosen due
to its robustness: originally, it has been designed as a cable replacement and employs
techniques such as frequency hopping and forward error correction to minimize packet
loss.

DSN

Radio
Configuration

cc.freq = 868000000;

cc.bitrate = 19200;

cc.sop = 0x55aa;

cc.crc = 0xA001;

Packet Decoder

Packet
Description

struct TOS_Msg {

 uint16_t addr;

 uint8_t type, group, length;

 int8_t data [length];

 uint16_t crc;

};

struct Beacon : Tos_Msg.data (type==1){

 uint16_t node_id;

 uint16_t seq;

};

Data Stream
Processing

Root Cause
Analysis

GUI

filter seqReset

Decision Tree

Operator
Graph

Figure 2: Architecture of SNIF.

As illustrated in Fig. 2, the ChipCon radio and the radio driver can be configured to
support different radio frequencies (cc.freq), bit rate (cc.bitrate), start-of-packet
delimiters (cc.sop), and checksum polynomials (cc.crc). The SOP is a special bit
sequence that precedes every radio packet. In the received stream of bits, a DSN node
looks for the radio preamble (a bit sequence to synchronize sender and receiver) that is
succeeded by the SOP and captures the following packet. This way, the DSN can receive
packets regardless of the specific MAC protocol used by the sensor network. Overheard
packets are time-stamped and routed to the DSN sink (a laptop computer with Bluetooth
networking), where duplicate packets (resulting from multiple DSN nodes overhearing
the same sensor node) are removed and packets are sorted by increasing time stamps.

4.2 Packet Decoder

The next step is to decode the contents of overheard packets. As there are no standard pro-
tocols for sensor networks, SNIF provides a flexible packet description language, which
is an annotated version of C structures. Fig. 2 shows an example of a TinyOS message
(TOS Msg) holding a beacon data unit if the message type of the TinyOS message equals
1. The result of packet decoding is a record consisting of a list of name-value pairs, where
each pair holds the name and value of a data field in the packet.

4.3 Data Stream Processor

The resulting stream of packets (i.e., records holding name-value pairs) is then fed to a
data stream processor to detect any problems with the sensor network. The data stream

processor executes operators that take a stream of records as input and produce a differ-
ent stream of records as output. The output of an operator can be connected to the input
of other operators, resulting in a directed operator graph. SNIF provides a set of stan-
dard operators, e.g., for filtering, aggregation over time windows, or merging of multiple
streams into one. In addition, application-specific operators to detect specific problems in
the sensor network may be required. Fig. 2 shows an simple operator graph that is used
to detect node reboots as described in Sect. 3. The first operator (filter) reads the
packet stream generated by the DSN and removes all packets that are not beacon packets.
Recall that beacon packets are regularly transmitted by each node to support neighbor
discovery and contain the sender address and a sequence number. The second operator
(seqReset) remembers the last sequence number received from each node and checks
if a newly received sequence number is smaller than the previous one for this node, in
which case the node has rebooted unless there was a sequence number wrap-around (i.e.,
maximum sequence number has been reached and sequence counter wraps to zero). If a
reboot is detected, the seqReset operator outputs a record holding the address of the
node that rebooted. In this example, filter is a standard operator provided by SNIF,
while seqReset is an application-specific operator.

Development of such application-specific operators is the core task to customize SNIF
for detection of a specific deployment problem. In practice, each such operator imple-
ments a passive indicator as described in Sect. 3. The key challenge in implementing
such operators is dealing with incomplete information, as the DSN may fail to overhear
some sensor network messages. For example, the seqReset operator mentioned above im-
plements heuristics to tell apart reboots from sequence number wrap-around even in case
of lost messages.

For each possible problem discussed in Sect. 2, an operator graph must be defined to
detect this problem. In some cases, standard operators are sufficient, but in many cases
application-specific operators are required.

4.4 Root Cause Analysis

The next step is to derive the state of each sensor node, which can be either “node ok” or
“node has problem X”. Note that the operator graphs mentioned above may concurrently
report multiple problems for a single node. In many cases, one of the problems is a
consequence of another problem. For example, a node that is dead also has a routing
problem. In such cases, we want to report only the primary problem and not secondary
problems. For this, we use a decision tree, where each internal node is a decision that
refers to the output of an operator graph, and each leaf is a node state. In the example
tree depicted in Fig. 2, we first check (using the output of an operator graph that counts
packets received during a time window) if any messages have been received from a node.
If not, then the state of this node is set to “node dead”. Otherwise, if we received packets
from this node, we next check if this node has any neighbors (using an operator graph that
counts the number of neighbors contained in link advertisement packets received from this
node). If there are no neighbors, then the node state is set to “node isolated”. Here, the
check for node death is above the check for isolation in the decision tree, because a dead
node (primary problem) is also isolated (secondary problem).

Figure 3: SNIF user interface.

4.5 GUI

Finally, node states and additional information are displayed in the graphical user inter-
face. The core abstraction implemented by the user interface is a network graph, where
nodes and links can be annotated with arbitrary information. The user interface also sup-
ports recording and playback of executions. A snapshot of an instance of the user interface
is shown in Fig. 3. Here, node color indicates state (green: ok, gray: not covered by DSN,
yellow: warning, red: severe problem), detailed node state can be displayed by selecting
nodes. Thin arcs indicate what a node believes are its neighbors, thick arcs indicate the
paths of multi-hop data messages.

4.6 Discussion

In summary, to inspect a specific type of sensor network application, radio configuration
and packet descriptions must be provided, operator graphs to detect problems (possibly
including application-specific operators) and a decision tree to infer node states must be
developed, and the user interface must be configured to display relevant information. The
key challenge here is to deal with incomplete information due to missing packets. In [25]
we show that it is possible to implement loss-tolerant operators to detect many of the
problems discussed in this paper. The use of SNIF to inspect a real sensor network has
been demonstrated [26].

5 Related Work
Due to space constraints, we limit our discussion to the literature on wireless sensor net-
works. To our knowledge, all existing approaches to inspection of deployed sensor net-
works are active, that is, they require an instrumentation of the sensor network. This in-
cludes work on active debugging of sensor networks, notably Sympathy [6] and Memento
[10]. Both systems require active instrumentation of sensor nodes and introduce moni-
toring protocols in-band with the actual sensor network traffic. Tools for sensor network
management such as NUCLEUS [11] provide read/write access to various parameters of a
sensor node that may be helpful to detect problems. However, this approach also requires

active instrumentation of the sensor network.
Complementary to our approach is work on simulators (e.g., SENS [27]), emulators

(e.g., TOSSIM [28]), and testbeds (e.g., MoteLab [29]) as they support development and
test of sensor networks before deployment in the field. In particular, testbeds typically
provide a wired back-channel from each node, such that sensor nodes can be instrumented
to send status information to an observer. EmStar [30] integrates simulation, emulation,
and testbed concepts into a common framework where some nodes physically exist in a
testbed or in the real world, while the majority of nodes is being emulated or simulated.
Physical nodes need instrumentation and a wired back-channel. In [31], a deployment
support network is used to provide a wireless back-channel to deployed sensor nodes.
However, sensor nodes need to be physically wired to DSN nodes (requiring as many
DSN nodes as there are sensor nodes) and sensor node software must be instrumented.

6 Conclusions
In this paper we identified problems commonly encountered during the deployment of
sensor networks in real-world settings. We found four classes of problems: node prob-
lems that affect only individual nodes, link problems that affect two nodes and the wireless
link formed between them, path problems that affect three or more nodes and the multi-
hop path formed by them, and global problems that are properties of the sensor network as
a whole. In addition, we discussed how the above problems can be detected by overhear-
ing and analyzing sensor network traffic. We found that many problems can indeed be
detected by exploiting common elements of sensor network protocols. We also outlined,
how such passive indicators can be implemented in a practical tool called SNIF [13].

References
[1] P. Buonadonna, D. Gay, J. M. Hellerstein, W. Hong, and S. Madden. TASK: Sensor Network in a

Box. In EWSN 2005.

[2] B. Greenstein, E. Kohler, and D. Estrin. A Sensor Network Application Construction Kit (SNACK).
In SenSys 2004.

[3] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless Sensor Networks for
Habitat Monitoring. In WSNA 2002.

[4] P. Padhy, K. Martinez, A. Riddoch, H. L. R. Ong, and J. K. Hart. Glacial Environment Monitoring
using Sensor Networks. In REALWSN 2005.

[5] J. Polastre, R. Szewczyk, A. Mainwaring, D. Culler, and J. Anderson. Analysis of Wireless Sensor
Networks for Habitat Monitoring. In C. S. Raghavendra, K. M. Sivalingam, and T. Znati, editors,
Wireless Sensor Networks, chapter 18. Kluwer Academic Publishers, 2004.

[6] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin. Sympathy for the Sensor
Network Debugger. In SenSys 2005.

[7] R. Szewcyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. An Analysis of a Large Scale
Habitat Monitoring Application. In SenSys 2004.

[8] J. Tateson, C. Roadknight, A. Gonzalez, S. Fitz, N. Boyd, C. Vincent, and I. Marshall. Real World
Issues in Deploying a Wireless Sensor Network for Oceanography. In REALWSN 2005.

[9] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess, T. Dawson, P. Buon-
adonna, D. Gay, and W. Hong. A Macroscope in the Redwoods. In SenSys 2005.

[10] S. Rost and H. Balakrishnan. Memento: A Health Monitoring System for Wireless Sensor Networks.
In SECON 2006.

[11] G. Tolle and D. Culler. Design of an Application-Cooperative Management System for Wireless
Sensor Networks. In EWSN 2005.

[12] J. Beutel, M. Dyer, L. Meier, and L. Thiele. Scalable Topology Control for Deployment-Sensor
Networks. In IPSN 2005.

[13] M. Ringwald, K. Römer, and A. Vialetti. SNIF: Sensor Network Inspection Framework. Technical
Report 535, Departement of Computer Science, ETH Zurich, 2006.

[14] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. Lessons from a Sensor Network Expedition.
In EWSN 2004.

[15] O. Visser K. Langendoen, A. Baggio. Murphy Loves Potatoes: Experiences from a Pilot Sensor
Network Deployment in Precision Agriculture. In WPDRTS 2006.

[16] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker. Complex Behavior at
Scale: An Experimental Study of Low-Power Wireless Sensor Networks. Technical Report CSD-TR
02-0013, UCLA, 2002.

[17] A. Woo, T. Tong, and D. Culler. Taming the Underlying Challenges of Reliable Multihop Routing in
Sensor Networks. In SenSys 2003.

[18] N. Ramanathan, E. Kohler, and D. Estrin. Towards a Debugging Systems for Sensor Networks. Int.
J. Network Management, 15, 2005.

[19] A. Terzis, R. Burns, and M. Franklin. Design Tools for Sensor-Based Science. In EmNets 2006.

[20] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed Diffusion for
Wireless Sensor Networking. IEEE/ACM Trans. Netw., 11(1), 2003.

[21] A. Sobeih, M. Viswanathan, D. Marinov, and J. C. Hou. Finding Bugs in Network Protocols Using
Simulation Code and Protocol-Specific Heuristics. In LNCS, volume 3785. Springer, 2005.

[22] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman. A Taxonomy of Wireless Micro-Sensor Network
Models. ACM MC2R, 6(2), 2002.

[23] R. Guy, B. Greenstein, J. Hicks, R. Kapur, N. Ramanathan, T. Schoellhammer, T. Stathopoulos,
K. Weeks, K. Chang, L. Girod, and D. Estrin. Experiences with the Extensible Sensing System ESS.
Technical Report 61, CENS, 2006.

[24] BTnodes. A Distributed Environment for Prototyping Ad Hoc Networks. www.btnode.ethz.ch.

[25] M. Ringwald, K. Römer, and A. Vialetti. Passive Inspection of Sensor Networks. In DCOSS 2007.

[26] M. Ringwald, M. Cortesi, K. Römer, and A. Vialetti. Demo Abstract: Passive Inspection of Deployed
Sensor Networks with SNIF. In EWSN 2007.

[27] S. Sundresh, W. Kim, and G. Agha. SENS: A Sensor, Environment and Network Simulator. In
Annual Simulation Symposium 2004.

[28] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and Scalable Simulation of Entire
TinyOS Applications. In SenSys 2003.

[29] G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: a wireless sensor network testbed. In
IPSN 2005.

[30] L. Girod, J. Elson, A. Cerpa, T. Stathapopoulos, N. Ramananthan, and D. Estrin. EmStar: A Software
Environment for Developing and Deploying Wireless Sensor Networks. In USENIX 2004.

[31] M. Dyer, J. Beutel, T. Kalt, P. Oehen, L. Thiele, K. Martin, and P. Blum. Deployment Support
Network - A Toolkit for the Development of WSNs. In EWSN 2007.

