
SNIF: Sensor Network Inspection Framework
Matthias Ringwald, Kay Römer
Institute for Pervasive Computing

ETH Zurich, Switzerland
Email: {mringwal,roemer}@inf.ethz.ch

Andrea Vitaletti
Department of Informatics

University of Rome “La Sapienza”, Italy
Email: andrea.vitaletti@dis.uniroma1.it

Abstract— Recent experience with the deployment of
sensor networks demonstrates that it is far from trivial
to setup a working larger-scale sensor network in the field.
Even though simulations and experiments with lab testbeds
confirmed a working system, subtle real-world influences
lead to frequent failures in the field. Identifying and fixing
these problems in the field is currently a difficult and
cumbersome task due to the lack of appropriate concepts
and tools. In this paper we address this issue by, firstly,
classifying common problems that have been encountered
during deployment. We then show that many of these
problems can be detected by overhearing and analyzing
sensor network traffic without need for an instrumentation
of sensor nodes. Based on this observation, we develop
a tool to inspect a deployed sensor network, consisting
of a distributed network sniffer and a data-stream-based
framework for online traffic analysis. We demonstrate and
evaluate how this tool can be used to debug a typical data
gathering application. 1

I. INTRODUCTION

Deploying large-scale sensor networks in real-world
settings is a challenging issue [5], [11], [17], [18], [19],
[20], [26], [28], [31]. After putting sensor nodes in
place in the field, the network usually does not perform
as expected or refuses to work altogether. Then, the
behavior of the network and individual nodes must be
inspected and understood to identify and fix the problem.
Since this has to be performed in situ in the field,
deployment is currently a costly and cumbersome task
and may be considered as an important obstacle towards
the wide-spread adoption of sensor networks for real-
world applications. Even though tools for simulation and
emulation as well as lab testbeds are available today,
structured approaches and tools to support deployment
in the field are largely missing. The reasons that make
deployment of sensor networks difficult can be summa-
rized in the following way.

What works in the lab fails in the field w.h.p.:
Sensor networks are deeply embedded into the physical
world. Therefore, their function heavily depends on the
physical environment, which can only very rudimentarily

1The work presented in this paper was partially supported by the
National Competence Center in Research on Mobile Information and
Communication Systems (NCCR-MICS), a center supported by the
Swiss National Science Foundation under grant number 5005-67322.

be captured in simulators, emulators, or lab testbeds.
Not only does the physical world control the output of
sensors, but it influences the behavior of wireless links
and sensor nodes in significant ways. In addition, lab
testbeds are often limited in scale due to the required
cabling infrastructure. Hence, even though simulations or
experiments with lab testbeds ran successfully, the larger
scale of real-world deployments and the impact of the
real world are likely to break the sensor network. There-
fore, deployment typically involves significant work in
the field.

Monitoring the network state is difficult: Once
things go wrong, the sensor network needs to be in-
spected in the field in order to understand the cause of
the problem. Current practice requires instrumentation of
sensor nodes with monitoring software and monitoring
traffic is sent in-band with the sensor network traffic to
the sink (e.g., [20], [22], [30]). This approach has three
major drawbacks. Firstly, problems in the sensor network
(e.g., partitions, message loss) also affect the monitoring
mechanism, thus reducing the desired benefit. Secondly,
since the nature of problems is often unknown prior to
deployment, sensor nodes may need code updates in the
field in order to capture data relevant to find a problem.
Thirdly, sensor network resources (cpu cycles, memory,
network bandwidth) are used for inspection. Due to
the scarcity of these resources, it is highly desirable to
remove the instrumentation as soon as the network works
as expected. This, however, may lead to significant probe
effects [10], where the behavior of a sensor network is al-
tered by adding/removing instrumentation mechanisms.
In the Sympathy debugging system [20], for example, up
to 30% of the network bandwidth is used for monitoring
traffic.

The aim of this paper is two-fold. Firstly, we con-
tribute to a more systematic understanding and treatment
of deployment issues. For this purpose, we studied the
existing literature on deployment experience and present
a classification of common problems encountered during
deployment of sensor networks in Sect. II along with a
set of indicators in Sect. III that – when observed – hint
the existence of a specific problem.

Secondly, we present and evaluate an extensible

framework for inspection of deployed sensor networks
in the field that does not require an instrumentation of
sensor nodes. Our approach uses a so-called deployment
support network (DSN) [4]: a wireless network that is
temporarily installed alongside the actual sensor network
during the deployment process. Each DSN node provides
two different radio front-ends. The first radio is used
to overhear the traffic of the sensor network, while
the second radio is used to form a robust and high-
bandwidth ad hoc network among the DSN nodes to
deliver overheard packets to an observer. The overheard
sensor network traffic is then fed to a data-stream-based
framework in order to find indicators for the existence of
problems. The framework provides an extensible set of
parameterizable data stream operators for online analysis
of network traffic. In Section VI we demonstrate how
this framework can be used to debug a typical data
gathering application. An evaluation of this approach in
Sect. VII shows that our approach can detect problems
accurately and timely and can deal well with incomplete
information.

II. PROBLEMS

This section contains a classification of the problems
typically found during deployment according to our own
experience and as reported in the literature. Here, a
problem is essentially defined as a behavior of a set of
nodes that is not compliant with the specification.

We classify problems according to the number of
nodes involved into four classes: node problems that
involve only a single node, link problems that involve
two neighboring nodes and the wireless link between
them, path problems that involve three or more nodes and
a multi-hop path formed by them, and global problems
that are properties of the network as a whole.

A. Node Problems
A common node problem is node death due to energy

depletion either caused by “normal” battery discharge
or due to short circuits. In [27], a low-resistance path
between the power supply terminals was created by
water permeating a capacitive humidity sensor, resulting
in early battery depletion and abnormally small or large
sensor readings.

Low batteries often do not cause a fail-stop behavior
of the sensor nodes. Rather, nodes may show Byzantine
behavior at certain low battery voltages. As reported in
[31], for example, strange sensor readings (temperature
values > 100◦C) have been observed at low battery
voltage.

Software bugs often result in node reboots, for exam-
ple, due to failure to restart the watchdog timer of the
micro controller [15]. We also observed software bugs
resulting in hanging or killed threads, such that only part
of the sensor node software continued to operate.

Many sensor applications are periodic (e.g., sample,
receive, send, sleep) with a fixed cycle length. Relative
drift of the phases of these cycles among nodes may
result in failure to deliver data as nodes are not ready to
receive when others are sending, or increased congestion
as many nodes send concurrently. In [17], excessive
phase skew has been observed (about two orders of
magnitude larger than the drift of the oscillator).

B. Link Problems

Field experiments (e.g., [8], [33]) demonstrated a very
high variability of link quality both across time and space
resulting in temporary link failures and variable amounts
of message loss. Network congestion caused by collisions
is another source of message loss. In [26], for example,
a median message loss of 30% is reported for a single-
hop network. Excessive levels of congestion have been
caused by accidental synchronization of transmissions
by multiple senders, for example, due to inappropriate
design of the MAC layer [21] or by repeated network
floods [15]. If message loss is compensated for by
retransmissions, a high latency may be observed until
a message eventually arrives at the destination. Most
sensor network protocols require each node in the sensor
network to discover and maintain a set of network
neighbors (often implemented by broadcasting HELLO
messages containing the sender address). A node with no
neighbors presents a problem as it is isolated and cannot
communicate. Also, neighbor oscillation is problematic
[21], where a node experiences frequent changes of its
set of neighbors.

A common issue in wireless communication are asym-
metric links, where communication between a pair of
nodes is only possible in one direction. In a field experi-
ment [8] between 5-15% of all links have been observed
to be asymmetric, with lower transmission power and
longer node distance resulting in more asymmetric links.
If not properly considered, asymmetric links may result
in fake neighbors (received HELLO from a neighbor but
cannot send any data to it) and broken data communi-
cation (can send data to neighbor, but cannot receive
acknowledgements).

Another issue is the length of a link. Even though two
nodes are very close together, they may not be able to
establish a link (missing short links). On the other hand,
two nodes that are very far away from each other (well
beyond the nominal communication range of a node),
may be able to communicate (unexpected long links).
Experiments in [8] show that at low transmit power
about 1% of all links are twice as long as the nominal
communication range. These link characteristics make
node placement highly non-trivial.

C. Path Problems

Many sensor network applications rely on the ability
to relay information across multiple nodes along a multi-
hop path. In particular, most sensor applications include
one or more sink nodes that disseminate queries or other
tasking information to sensor nodes and sensor nodes
deliver results back to the sink. Here, it is important
that a path exists from a sink to each sensor node, and
from each sensor node to a sink. Note that information
may be changed as it is traversing such a path, for
example due to data aggregation. Two common problems
in such applications are hence bad path to sink and bad
path to node. In [15], for example, selfish nodes have
been observed that did not forward received traffic, but
succeeded in sending locally generated messages.

Since a path consists of a sequence of links, the former
inherits many of the possible problems from the latter
such as asymmetric paths, high latency, path oscillations,
and high message loss. In [26], for example, a total
message loss of about 58% was observed across a multi-
hop network.

Finally, routing loops are a common problem, since
frequent node and communication failures can easily
lead to inconsistent paths if the software isn’t properly
prepared to deal with these cases. Directed Diffusion
[14], for example, uses a data cache to suppress pre-
viously seen data packets to prevent loops from taking
place. If a node reboots, the data cache is deleted and
loops may be created [23].

D. Global Problems

In addition to the above problems which can be
attributed to a certain subset of nodes, there are also
some problems which are global properties of a network.
Several of these are failures to meet certain application-
defined quality-of-service properties. These include low
data yield, high reporting latency, and short network
lifetime [29].

Low data yield means that the network delivers an in-
sufficient amount of information (e.g., incomplete sensor
time series). In [31], for example, a total data yield of
only about 20-30% is reported. This problem is related to
message loss as discussed above, but may be caused by
other problems such as a node crashing before buffered
information could be forwarded, buffer overflows, etc.
One specific reason for a low data yield is a partitioned
network, where a set of nodes is not connected to the
sink.

Reporting latency refers to the amount of time that
elapses between the occurrence of a physical event and
that event being reported by the sensor network to the
observer. This is obviously related to the path latency,
but as a report often involves the output of many sensor

nodes, the reporting latency results from a complex
interaction within a large portion of the network.

The lifetime of a sensor network typically ends when
the network fails to cover a given physical space suffi-
ciently with live nodes that are able to report observa-
tions to the observer. The network lifetime is obviously
related to the lifetime of individual nodes, but includes
also other aspects. For example, the death of certain
nodes may partition the network such that even though
coverage is still provided, nodes can no longer report
data to the observer.

III. INDICATORS

An indicator is an observable behavior of a sensor
network that hints (in the sense of a heuristic) the exis-
tence of one of the problems discussed in the previous
section. In the context of our work we are particularly
interested in indicators that can be observed purely by
overhearing the traffic of the sensor network as this does
not require any instrumentation of the sensor nodes.
We call such indicators passive. The structure of this
section mirrors that of the previous section, discussing
passive indicators for the problems outlined there. In
fact, passive indicators heavily depend on the protocols
used in the sensor network. However, as we will see
below there are a number of protocol elements that are
commonly found in sensor network applications that can
be exploited. For example, many protocols exchange
regular beacon messages, all packets need to contain
the per-hop destination MAC address, some packets also
contain the per-hop source MAC address to identify the
sender of the message, and some packets do contain a
monotonically increasing sequence number (cf. Sect. VI-
A).

A. Node Problems

Node death: Many commonly used MAC and rout-
ing protocols (e.g., [33], [12]) require every node to
transmit a beacon message at regular intervals, in par-
ticular for the purpose of synchronization and neighbor
management. Failure to transmit any such message for a
certain amount of time (typically a multiple of the inter-
beacon time) is an indicator for node death. Also, node
death can be assumed if a node is no longer considered
a neighbor by any other node (cf. Sect. III-B).

Node reboot: When a node reboots, its sequence
number counter will be reset to an initial value (typi-
cally zero). Hence, the sequence number contained in
messages sent by the node will jump to a smaller value
after a reboot w.h.p., which can serve as an indicator for
reboot. Note that a reboot cannot be detected this way
when the node crashes just before the sequence number
counter would wrap around to its initial value. However,
a simple fix would be to set the sequence counter to

some value other than the initial value at wrap-around,
such that a wrap-around could be distinguished from a
reboot.

Phase skew: Again we can exploit the existence of
beacon messages that are sent at regular time intervals.
Change of the time between two beacons over time
indicates phase drift. Averaging over multiple beacon
intervals can help eliminate variable delays introduced
by, e.g., medium access.

Strange sensor readings: These can only be pas-
sively observed when application messages contain raw
sensor readings.

B. Link Problems

Discovering neighbors: Unfortunately, the neighbor
table of a node cannot be passively observed directly.
However, there are two ways to learn about the neigh-
bors of a node. Firstly, by overhearing the destination
ids of messages a node sends we can learn a subset
of the neighbors. The second approach exploits link
advertisements sent by nodes to estimate link quality.
Since links are often asymmetric in sensor networks,
link quality estimation must consider both directions
of a link. Since a sensor node can only measure the
quality of one direction of a link directly (e.g., by means
of the fraction of beacon messages being received),
nodes broadcast link advertisement messages containing
the addresses and quality of the incoming links from
their neighbors (cf. Sect. VI-A). These messages can
be passively observed to obtain information about the
neighbors of a node and the quality of the associated
link.

Knowing the neighbors of a node, we can detect
neighbor oscillation and nodes with no neighbors. If
the locations of nodes are known, we can also discover
missing short links and unexpected long links.

Message loss: Again, it is not directly possible to
decide whether or not a node has received a message
by means of passive observation. However, in many
situations reception of a message by a node does trigger
the transmission on another message by that node (e.g.,
acknowledgment, forwarding a message to the next hop).
If such a property exists, failure to overhear the second
message within a certain amount of time after the first
message has been overheard is an indicator for message
loss. Note that with this approach, it is not possible to
tell apart message loss from selfish nodes.

Latency: To estimate the latency of a link, the same
approach as for detecting message loss is used. The
time elapsed between overhearing the causal and the
consequential message gives an estimate of the latency,
which includes processing delays in the node.

Congestion: The level of link congestion perceived
by a sensor node cannot be passively observed. The level

of congestion experienced by a deployment support node
overhearing the traffic that is being addressed to this
sensor node can be used as a rough approximation. Al-
ternatively, message loss and latency as discussed above
could be used as indicators for the level of congestion.

C. Path Problems

Discovering paths: In order to discover the path
between two sensor nodes (e.g., from node to sink and
from sink to node), we would need access to the routing
tables. As for the neighbor table, this is not directly
possible with passive observation. As for neighbor dis-
covery, there are two possible ways around. Firstly, we
can reconstruct a path by tracking a message as it travels
from source to destination. Using the receiver ids of
the overheard messages, we can reconstruct nodes on
the path. However, for this we must be able to decide
whether two overheard messages belong to the same
path. This is trivial if the message payload is relayed
unmodified along the path. However, it is highly non-
trivial if data is aggregated along the path. In such
cases one may resort to a temporal correlation among
the overheard messages. Secondly, we can overhear
routing messages if there exist any. While these messages
typically indicate that a node has established a route, it
is often impossible to reconstruct the route. To construct
a spanning tree, for example, it is sufficient that nodes
broadcast messages containing their address and distance
to the sink, but not their parent in the tree (cf. Sect.
VI-A). The latter would be necessary to reconstruct the
spanning tree from overheard traffic.

If paths can be discovered, we can also easily detect
path oscillations and find missing paths from nodes to
sink and vice versa. Using similar techniques as for links,
we can estimate message loss and latency along a path.

Loops: Duplicate messages being sent to the same
node are an indicator for loops. Care must be taken to
not confuse retransmissions and loops. Alternatively, the
discovered paths can be directly examined for loops.

D. Global Problems

As discussed in Section II, global problems such as
low data yield, high reporting latency, or insufficient
network lifetime are typically due to a combination
of different node, link, and path problems. Hence, the
indicators for the latter problems discussed above can
be considered as indicators for these global problems.

Partitions: Knowledge of the neighbors of each
node as discussed above allows to reconstruct the net-
work topology and the detection of network partitions.

E. Discussion

As we have shown throughout this section, for many
common problems that occur during deployment of

sensor networks, passive indicators exist that allow to
infer the existence of a problem from overheard network
traffic. However, in some situations we had to make as-
sumptions about the underlying sensor network protocols
that may not hold for all applications (e.g., indicators
for message loss). For other problems, passive indicators
provide only an approximate view of the ground truth
(e.g., indicators for network congestions).

In such situations, we can resort to semi-active ob-
servation or semi-passive observation. With semi-active
observation, the sensor nodes are instrumented with code
to emit messages containing additional information about
the state of the sensor node (e.g., level of congestion,
battery voltage, etc.). These messages are overheard by
the DSN and ignored by other sensor nodes. While this
approach requires instrumentation of sensor nodes and
transmission of additional messages, these messages do
not have to be routed through the sensor network. Semi-
active observation is also supported by SNIF.

With semi-passive observation, message can also be
injected into the sensor network. This approach may for
example be used to probe for the liveness and reactivity
of a sensor node, or to replay pre-recorded sequences of
messages to check the behavior of the sensor network
regarding global properties such as reporting latency.
We plan to support semi-passive observation with future
versions of SNIF.

IV. PASSIVE OBSERVATION

This section presents the hardware and software in-
frastructure needed to overhear the traffic of a sensor
network. Here, a sensor network is essentially a multi-
hop ad hoc wireless network of sensor nodes including
one or more sink nodes that act as gateways to the “user”.
To overhear the traffic of such a sensor network, we
essentially need a set of distributed radios to listen to the
traffic: the deployment support network. Each of these
radios must implement the receiver part of the sensor
network protocol stack, namely read-only physical layer
and media access, as well as a packet decoder to extract
the contents of overheard packets.

A. Deployment Support Network (DSN)

A deployment support network is a wireless ad hoc
network of deployment support nodes. Each deployment
support node provides two radios. The first radio (DSN
radio) is used to form a wireless network among the
deployment support nodes, while the second radio (WSN
radio) is used to overhear the traffic of the sensor net-
work. Both radios should be free of interference (e.g., by
operating in different frequency bands). Also, the DSN
radio should support the formation of a robust multi-hop
network with high bandwidth (compared to the WSN). In
particular, the deployment support network should have

negligible message loss. Messages overheard by a DSN
node are (pre)processed and routed to the DSN sink,
where they are analyzed to detect indicators (cf. Sect.
V).

The nodes of a deployment support network are
internally time-synchronized to time-stamp overheard
packets. Hence, the synchronization accuracy should be
less than the time needed to receive a packet with the
WSN radio (i.e., in the order of milli seconds for a
typical 19.2 kbps WSN radio).

The DSN is installed alongside the actual sensor
network and may be removed again as soon as the sensor
network works as expected. Thus, the lifetime of the
DSN is typically much shorter than the lifetime of the
sensor network and energy efficiency is not that much
of an issue.

Our current implementation of a DSN is based on the
BTnode [35], which provides two radio front-ends: a
Zeevo ZV 4002 Bluetooth 1.2 radio which is used as the
DSN radio, and a Chipcon CC 1000 which is used as
the WSN radio. The CC 1000 is, for example, also used
on the popular MICA2 motes [34] sold by Crossbow.

Using a scatternet formation algorithm, the DSN
nodes form a robust Bluetooth scatternet. A laptop
equipped with Bluetooth acts as DSN sink that forms
the root of an overlay tree spanning the whole DSN. The
sink can send data to DSN nodes down this tree, DSN
nodes report data (i.e., overheard packets) up the tree to
the sink. The implementation of the Bluetooth scatternet
and data routing are described elsewhere [4]. The focus
of this paper is on the use of this deployment support
network for passive observation of sensor networks, not
on networking aspects of the DSN.

Note that the above is only one example for a DSN.
Many other implementations are possible. For example,
one might simply implement a DSN node by connecting
a sensor node via USB to a PDA equipped with 802.11.
The WSN node is used to overhear the traffic of the
sensor network and 802.11 is used to form a robust, high-
bandwidth, and long-range deployment support network.

B. Physical Layer and Medium Access

DSN nodes need a receive-only implementation of the
physical (PHY) and MAC layers in order to overhear
sensor network traffic. Due to the lack of a standard
protocol stack, many variants of PHY and MAC are
in use in sensor networks. Hence, we need a flexible
implementation that can be easily configured for the
sensor network under inspection.

Regarding PHY, important configuration parameters
are the carrier frequency, baud rate, and checksumming
details. In particular, we require that the sensor network
uses a single frequency for communication (which is the

1 / / P h y s i c a l+MAC La ye r s
2 cc . f r e q = 868000000;
3 cc . baud =19200;
4 cc . sop = 0 x55aa ;
5 cc . c r c = 0xF1F1 ;
6 / / Encoding : e n d i a n n e s s + a l i g n m e n t
7 e n c o d i n g . e n d i a n n e s s = ” l i t t l e ” ;
8 e n c o d i n g . a l i g n m e n t = 1 ;
9 / / Used Types

10 t y p e d e f u i n t 1 6 t m o t e i d t ;
11 t y p e d e f u i n t 8 t q u a l i t y t ;
12 s t r u c t l i n k q u a l i t y t {
13 m o t e i d t i d ;
14 q u a l i t y t q u a l i t y ;
15 } ;
16 / / C o n s t a n t s
17 c o n s t i n t LINKESTADV = 2 ;
18 / / P ac ke t t y p e s
19 d e f a u l t . p a c k e t = ”TOS Msg” ;
20 s t r u c t TOS Msg {
21 u i n t 1 6 t add r ;
22 u i n t 8 t t y p e ;
23 u i n t 8 t group ;
24 u i n t 8 t l e n g t h ;
25 / / v a r i a b l e s i z e o f p a c k e t pay load
26 i n t 8 t d a t a [l e n g t h] ;
27 u i n t 1 6 t c r c ;
28 } ;
29 s t r u c t L i n k A d v e r t i s e m e n t :
30 TOS Msg . d a t a (t y p e == LINKESTADV) {
31 m o t e i d t i d ;
32 / / v a r i a b l e nr o f l i n k q u a l i t y e n t r i e s
33 s t r u c t l i n k q u a l i t y t l i n k s [] ;
34 } ;

Fig. 1. A SNIF configuration file.

case with current implementations) such that as single-
channel radio is sufficient to overhear WSN traffic.

Regarding MAC, every DSN node has its WSN radio
turned to receive mode all the time (note that DSN
lifetime is relatively short). In the arriving stream of
bits, the MAC layer implementation looks for a start-
of-packet (SOP) delimiter that must be sent before each
packet in order to synchronize sender and receiver. Once
an SOP has been found, payload data and a CRC follow.
In case of variable-sized packets, a length indicator must
be contained in the payload data, see Sect. IV-C for
details. This way, we can receive packets independent
of the actual MAC layer used.

Figure 1 shows an excerpt of a sample configuration
file for a TinyOS application running on the MICA2
mote. The first five lines set the carrier frequency of
the WSN radio to 868.000 Mhz and a data rate of
19200 baud, and instruct the packet sniffer to check
for a start-of-packet sequence of 0x55aa. The used CRC
polynomial is 0xF1F1.

C. Packet Decoder

Again, since no standard protocols exist for sensor
networks, we need a flexible mechanism to decode
overheard packets. Since most programming environ-
ments for sensor nodes are based on the C programming
language or a dialect of it (e.g., nesC for TinyOS), it
is common to specify message contents as a (nested) C

struct in the source code of the sensor network applica-
tion. The packet decoder uses an annotated version of
such C structs as a description of the packet contents.
This way, the user can copy and paste packet descriptions
from the source code.

The configuration consists of some global parameters
(such as byte order and alignment), type definitions, and
one or more C structs. One of these structs is indicated
as the default packet layout. Note that such a struct can
contain nested other structs, effectively implementing a
discriminated union.

Consider Fig. 1 for an example, which describes link
advertisement packets used by the Multihop routing
service implemented in ESS [12]. In line 7-8, the byte
order is defined as little endian and the alignment set to
be 1. Lines 10-15 contain a number of type definitions.
Line 19 defines the struct TOS Msg as the default packet
layout. The contents of this structure (i.e., a TinyOS mes-
sage) are given in lines 20-28. The LinkAdvertisement
PDU used by ESS, whose contents are specified in lines
31-33, is encapsulated in the field TOS Msg.data, but
only if the TOS Msg.type is equal to LINKESTADV.
Lines 29-30 specify the contents of TOS Msg.data
depending on the value of the field TOS Msg.type.
Note that an encapsulated structure can itself also contain
another encapsulated structure.

Our description language allows to specify variable
sized arrays. If an element of a message is used as array
size (e.g., TOS Msg.length), then the value of this
field in the overheard message denotes the number of
elements in the array to decode. If an array without a
size is given (e.g., LinkAdvertisement.links),
the size of the array is inferred from the total packet
size.

At startup of SNIF, the configuration file is parsed
and the default packet type is investigated. If the default
packet type is of fixed size, the packet size is computed.
Otherwise, size and position of the packet length indi-
cator (e.g., TOS Msg.length in the example) is com-
puted. This information, along with the parameters for
the physical layer are then broadcast to all DSN nodes,
allowing them to correctly receive WSN traffic. All over-
heard WSN packets are then annotated with reception
time and reception quality (i.e., signal strength) and
routed to the SNIF sink. The SNIF framework described
in Sect. V executing on the DSN sink is then able to
decode the packets and access the value of any message
field by its symbolic name (e.g., TOS Msg.addr).

D. Deploying a DSN

As mentioned before, a deployment support network
needs to be installed alongside the observed sensor
network. One might argue that the deployment of the
DSN may be as difficult and error-prone as deploying

the sensor network itself. However, the DSN is intended
as a tool that is reused unmodified for many deployments
and can thus be expected to be largely free of bugs. The
inspected sensor network, in contrast, contains newly
developed WSN protocols and application code, which
are likely to contain errors. Also, since energy constraints
are relaxed in the DSN due to its shorter lifetime, we
can rely on more robust networking technologies (such
as Bluetooth).

Nonetheless, deploying a DSN is a non-trivial issue
as we need to ensure connectivity and coverage. Here,
connectivity means that the DSN is not partitioned. A
DSN is said to cover a set of sensor nodes if messages
transmitted by the latter can be received by the DSN
(except for transient message loss). Which portion of a
WSN has to be covered depends on the nature of the
problems the DSN should be able to detect (cf. Sect.
III).

To support the user with the deployment of the DSN,
each DSN node provides indicators for coverage and
connectivity by means of flashing LEDs. The connec-
tivity indicator is activated as soon as the DSN node
can establish a connection to another, already deployed
DSN node. The coverage indicator flashes whenever a
message is received from the sensor network with a given
minimal average signal strength. If beacon messages
are sent at regular intervals, the flashing frequency is
proportional to the number of sensor nodes that can be
overheard with sufficient quality. More detailed infor-
mation (i.e., IDs of currently covered sensor nodes and
observation quality) are displayed at the DSN sink.

E. Discussion

Using a DSN, we are able to passively observe a
deployed sensor network without any instrumentation of
the sensor network. The resulting key advantages are that
WSN software does not have to be touched, inspection
does not use any resources in the sensor network, and
probe effects are avoided (or minimized when using
semi-active observation).

There are also some potential drawbacks involved
with using a DSN, however. Firstly, apart from the
actual sensor network, additional hardware is required
(which may be reused for different deployment projects).
Also, the DSN has to be installed and removed. We
believe, however, that these overheads are compensated
for by saving time and effort during deployment. In
this context, it should be noted that different sensor
node platforms use different radios, which the DSN has
to support. Here, modular platforms with “pluggable”
radios would be helpful. Secondly, using the passive ob-
servation approach requires a deep understanding of the
semantics of the protocols used in the sensor network.
Often, it may seem easier to use semi-active observation,

which, however requires understanding and modifying
the software executing on the sensor nodes.

V. DETECTION FRAMEWORK

Using a deployment support network, we can overhear
the traffic of a sensor network. To identify problems
in the sensor network, the traffic traces need to be
analyzed to detect indicators for possible problems. As
we want to identify problems as soon as possible after
their occurrence, we need to perform an online analysis.

While we have identified a set of common problems in
Sect. II and suggested passive indicators for them in Sect.
III, we want to emphasize that these are not exhaustive.
Rather, novel problems may occur or different indicators
for known problems may be needed. To support this open
problem space, we need an extensible framework with
reusable components that supports the implementation
of detectors for a wide variety of indicators.

The output of the DSN is essentially a stream of
overheard packets. Hence, it is natural to model the
detection framework around the data stream abstraction
known from database systems [2]. In the remainder of
this section we present the particular data stream model
we use, the representation of packets as elements of
a data stream, and specific operators provided by the
framework for analyzing packet traces.

A. Data Streams

A data stream is an unbounded sequence of records.
Various data stream management systems (DSMS) have
been proposed as generic frameworks to process data
streams. We based our framework on PIPES [6], an
efficient Java-based infrastructure for processing and
exploring data streams that is available under an open-
source license.

Three basic abstractions are provided: sources that
produce data streams, sinks that consume data streams,
and operators that modify data streams. An operator is
essentially both a source and a sink. Sinks and operators
can subscribe to sources and operators, such that a data
stream output by the subscribee acts as input for the
subscriber. That is, sources, operators, and sinks form
a directed operator graph with data streams flowing
from sources through operators towards sinks. In SNIF,
we model each DSN node as a data stream source.
An operator graph (being executed on the DSN sink)
processes these data streams to detect indicators for
problems, and sink nodes inform the user of detected
indicators.

B. Records

A data stream record (i.e., an element of the data
stream) is a typed and time-stamped list of attribute-value
pairs. The type of a record essentially indicates what

attributes can be found in that record. The time stamp
indicates when that record was generated according to a
global time scale.

In our implementation, an attribute is a string and
each value an object. Two built-in attributes holding
record type and time stamp are always available. The
DSN produces records of type Packet which contain
additional attributes holding the contents of an overheard
packet (cf. Sect. IV-C). The syntax of the latter attributes
follows C syntax for accessing the field of a structure
(e.g., TOS Msg.addr in Figure 1). The fields of the
encapsulated structures can be accessed recursively (e.g.,
TOS Msg.data.id). The length of an array can be
accessed by appending .length to the array field as
in TOS Msg.data.links.length.

All attributes referring to packet contents are imple-
mented as virtual attributes. Whenever an attribute refer-
ring to packet contents is accessed, the packet decoder
(cf. Sect. IV-C) is invoked to extract the requested field
from the raw packet as captured by the DSN.

C. Basic Operators

Our framework provides a number of basic data
stream operators that are sufficient to implement SQL
with time windows, but without joins. These operators
can be configured by parameters that are either attribute
names (prefixed by attr), predicates (prefixed by pred),
or functions over record(s) (prefixed by func).

Mapper(attr1Old, attr1New, attr2Old, attr2New,
...): Renames attribute attrXOld to attrXnew in each
record.

ArrayIterator(attrArray): Provides access to array
elements by iterating over the array contained in at-
tribute attrArray. The operator creates N copies of
each input record, where in the i-th copy the array
is replaced with array element i. When applied to
LinkAdvertisement.links in Figure 1, for exam-
ple, we obtain one record for each pair of neighbors.

Union: Merges the records of all subscribed data
streams into one, such that the output data stream has
non-decreasing time stamps.

Filter(pred): Drops all records from the data stream
for which the given predicate evaluates to false.

TimeWindowAggregator (window, funcAggr, fun-
cHash, attrGroup): Computes an aggregate value over a
time window of size window. Within the window, records
are grouped by the contents of the attribute attrGroup. In
each group, duplicate records are removed by applying
the collision-free hash function funcHash to records. If
records hash to the same value, only the one with the
latest time stamp is kept. Whenever window contents
change, the aggregation function funcAggr is applied to
the window contents. It creates an output record for each
group, containing at least an attribute holding the group

id and an attribute holding the aggregated value for that
group.

Besides common aggregation functions such as count-
ing the number of records as well as computing the
sum, average, variance, minimum, and maximum of
a given attribute, we provide an aggregation function
ratio(attr) = count / (max(attr) - min(attr) + 1) with two
notable applications. Firstly, when applied to a packet
sequence number attribute, ratio computes an indicator
of observation quality as the fraction of messages sent
by a sensor node that can be overheard by the DSN.
Secondly, when applied to the time stamp attribute, ratio
can also be used to estimate congestion (i.e., packets per
time unit).

D. Sources

DSNSource: This data stream source is SNIF’s
interface to the DSN. The individual streams from the
DSN nodes are merged into a single stream using the
Union operator. Also, duplicate packets (resulting from
two or more DSN nodes overhearing the same sensor
node) are removed, using a Filter operator with the
predDistinct(window) predicate that drops a packet if a
copy has been observed before within a time window of
size window.

EmSource: This source uses EmStar link dump files
[9] as input, but is otherwise identical to DSNSource.

E. Indicators

This section discusses some operators to support the
detection of passive indicators related to nodes, links,
and paths (cf. Sect. III). The primary challenge here
is to deal with incomplete information due to missing
packets the DSN failed to overhear and due to required
information required by indicators that is not included
in sensor network messages.

Due to space constraints we discuss only operators
that are used in later sections of this paper. In addition,
SNIF provides operators to measure loss, latency, and
congestion that implement the approaches described in
Sect. III.

SeqReset(attrSrc, attrSeq, maxSeq): This operator
detects a sequence number reset at a node. Parameters
are the attribute name holding the source address at-
trSrc and the sequence number attrSeq, as well as the
maximum sequence number value maxSeq before a wrap
around. Whenever the earlier of two messages from one
sender has a sequence number other than maxSeq that
is larger than the sequence number of the later message,
a record of type SeqReset is emitted containing the
address of the node.

PacketTracer(attrOrigin, attrDst, predSameFlow):
In sensor networks, messages are often not acknowl-
edged at the link layer. In these cases, the sender MAC

address is not included in the message. However, as
noted in Sect. III, some indicators require the per-hop
source address. The operator PacketTracer reconstructs
the per-hop source address for the case that a message
is relayed across multiple hops (e.g., a sensor reading
being transmitted from a node to the sink). We also
assume that all messages of such a flow contain the
address of the originator (attribute attrOrigin) (e.g., as
context information on where a sensor reading has been
generated). Also, it must be possible to decide whether
two given messages belong to the same flow (e.g., using
message contents or an end-to-end sequence number)
as implemented by the predicate predSameFlow. The
per-hop destination address (attribute attrDst) must be
included in any message to identify the receiver.

To recover the missing source MAC address, the fact
is exploited that the per-hop destination address of a
message will equal the per-hop source address of the
next message in the flow. The operator maintains a
table with the last message in each active flow. When
a message cannot be associated to a flow in the table
using predSameFlow, then a new flow is created and
the packet is stored. The per-hop source address equals
the originator address in this case. Otherwise, if the
flow already exists, the per-hop source address of the
message equals the per-hop destination address in the
packet stored for that flow in the table. A special case
are retransmitted packets, where the destination address
in the packet equals the destination address stored in the
table. The packet in the table is then replaced with the
new packet. The operator copies incoming records to the
output but appends an attribute holding the discovered
source address. Another attribute is added indicating
whether or not this packet is a retransmission.

Note that if the DSN fails to overhear one or more of
these messages in a row, the destination address of the
last overheard packet will be used as the source of the
next overheard packet. As a positive side effect of this,
we obtain a continuos message flow (i.e., a sequence
of messages where the destination address of a message
equals the source of the next message in the flow) even
if the DSN fails to overhear messages. The operators
PathAnalyzer and TopologyAnalyzer operators described
below rely on this feature to deal with missing messages.

PathAnalyzer(attrSrc, attrDst, sinkAddr): This op-
erator finds sensor nodes that have a routing path to
the sink with MAC address sinkAddr. We assume that
messages are routed from nodes to the sink along the
edges of a spanning tree. Here, a path between a node
and the sink exists if a sequence of packets p1, ..., pn

with increasing time stamps has been observed, such
that the source address of p1 equals the address of the
node, the destination address of pn equals sinkAddr, and
the destination address of pi equals the source address

of pi+1. The latency of this path is defined as the
difference of the time stamps of p1 and pn. The names
of the attributes holding the source and destination MAC
addresses must be given by attrSrc and attrDst. Note that
the above notion of path existence does not imply that
packets are actually successfully delivered, but packet
loss will result in increased path latency.

To implement this approach, a data structure is main-
tained that contains for each node A a set {(j, tj)},
where j is a node that has a path to A according to the
above definition and tj is the time stamp of the latest
message sent by j. We call these nodes j descendants of
A. When a message p is observed with source address
A, destination address B, and time stamp t, node B is
inserted into the data structure if it did not exist before.
If B is already listed as a descendant of A then a routing
loop exists and B is removed from the A’s descendants.
Then, the set of descendants of B is updated to include
(A, t) and all descendants (j, tj) of A. Whenever a new
descendant is added to the sink or the time stamp of
an existing descendant of the sink is updated with a
later value, a record with type GoodPath is emitted
containing the MAC address of the descendant and the
latency of the path from the descendant to the sink. In
case of a routing loop, a record of type RoutingLoop
is emitted holding the addresses of sender and receiver
of the message causing the loop.

TopologyAnalyzer(window, sinkAddr): This opera-
tor implements a heuristic to detect network partitions.
Note that partition detection is a non-trivial problem as
we do not know the exact set of neighbors of each node.
We assume that messages are sent from nodes to the sink
(with address sinkAddr) along the edges of a spanning
tree. Here, a partition is a special case of “no path to
sink”, where node failures lead to a separation of the
node from the sink. In fact, only after a “no path to sink”
error has been reported for a node, should the output of
TopologyAnalyzer be used to decide whether the reason
for this error is caused by a network partition.

To detect such partitions, we construct an approximate
view of the network topology. For each node, we main-
tain a list of recently used (in terms of a time window
with length window) tree parent nodes by extracting
sender and receiver addresses from overheard packets.
Also, when a node failure is observed, the respective
node is marked as failed in this data structure. A node is
considered partitioned if there is no path from that node
to the sink in this data structure that uses only nodes
that have not failed. In practice, a depth-first search is
performed whenever the data structure is modified.

The operator requires two input data streams: a stream
of overheard packets and a stream of “node failure”
events generated by another operator graph. The output
of the operator consists of Partition records indi-

cating whether or not a node is currently partitioned
from the sink. These records contain a node address,
a flag indicating if that node is partitioned or not, and
the addresses of any failed upstream nodes that caused
the partition.

F. Decision Making

While the above operators are used to detect a variety
of passive indicators, it is often not trivial to infer the
original problem from these indicators. For example, a
primary problem (e.g., node failure) may cause a large
number of secondary problems (e.g., routing problems),
and we want SNIF to report only the primary problem
so as to avoid overwhelming the user with a large set of
secondary problems. Below we present operators to help
with this.

StateDetector(attrGroup, funcEval): This operator
groups records by record type and by the value of
the attribute given by attrGroup. For each group, the
operator stores the latest record. Whenever a new record
is inserted into a group, the function funcEval is invoked
for that group, with the set of stored records as param-
eter. The evaluation function outputs a record of type
State, containing the value of the grouping attribute
as well as the current state of the group. A typical
application of this operator is to compute the current
state of each node (e.g., ok, crashed, no route, ...). Here,
records are grouped by node address. See Sect. VI for
an example.

predStateChange(attrGroup, attr1, attr2, ...): This
predicate is used with the Filter operator to remove du-
plicate records. Records are first grouped by attrGroup.
In each group, a record is dropped unless it differs
from the previous record in that group in at least one
of the attributes attrX. When applied to the output of
StateDetector, (node) state changes can be computed.

G. Discussion

Currently, using SNIF requires to write small amounts
of Java code to configure operators and to connect them
to form an operator graph. PIPES provides a simple
GUI to perform the latter interactively without writing
code. We plan on extending this tool to allow interactive
construction of “debuggers” based on SNIF.

We also considered the use of SQL dialects for data
streams (e.g., [7], [24]).2 However, SNIF mainly consists
of stateful operators which cannot be easily expressed
with these dialects. Also, typical operator graphs contain
long chains of these stateful operators, which would
require bulky, deeply nested SQL subqueries.

2In fact, the operators described in Sect. V-C are a minimalist
implementation of a streaming SQL.

VI. A SENSOR NETWORK DEBUGGER

In this section we show how SNIF can be used
to construct a debugger that can detect a variety of
common problems with a sensor network. The debugger
is intended for a typical data gathering application, where
nodes send sensor readings at regular intervals along
a spanning tree to a sink. Note, however, that this is
only one example use of SNIF (although a typical one),
rather than being the debugger for the sensor network
application. We first describe the chosen application in
more detail, before turning to the details of the debugger.

A. Sensor Network Model

Despite visions of sensor networks with complex in-
network data aggregation, most sensor networks de-
ployed to date are simple data gathering applications3

(e.g., [26], [31], [15]), where nodes send raw sensor
readings at regular intervals along a spanning tree across
multiple hops to a sink.

Two prominent implementations of this scheme are the
he beacon-based Multihop routing service of the Extensi-
ble Sensing System (ESS) [12] and applications based on
MintRoute [33]. They both implement a similar multi-
hop routing scheme as described below. Our example
debugger is tailored to ESS, but could be easily adopted
to work with MintRoute or other similar applications.

All nodes broadcast beacon messages at regular in-
tervals. To discover neighbors, nodes overhear these
messages and estimate the quality of incoming links to
the neighbors based on message loss. Nodes then broad-
cast link advertisement messages at regular intervals,
containing a list of neighbors and link quality estimates.
Overhearing these messages, nodes compute the bidirec-
tional link quality to decide on a good set of neighbors.
To construct a spanning tree of the network with the
sink at the root, nodes broadcast path advertisement
messages, containing the quality of their current path
to the sink. Nodes overhearing these messages can then
select the neighbor with the best path as their parent
and broadcast an according path advertisement message.
All this is executed continuously to adapt neighbors
and paths to changing network conditions. Finally, data
messages are sent from nodes to the sink along the edges
of the spanning tree across multiple hops.

In the ESS Multihop protocol, all messages except
data messages are broadcast messages and contain per-
hop source address. Data messages contain the address
of the originator of the sensor data and the per-hop
destination address, but not the per-hop source address.
In addition, beacon messages and data messages contain
a sequence number.

3One reason for this is that many deployments are scientific appli-
cations, and scientists typically want to see as much data as possible.

Covered ?

Is a neighbor ?

no

Heard any packets ?

yes

Has a route ?

yes

Node dead

no

Has neighbors ?

yesno

Has a parent ?

yes

No neighbours

no

yes

Network partition ?

no

Network partition ?

no

Node OK

yes

Loops ?

Routing failure

no

Routing loop

yes

no

Network partition (no route)

yes

No parent

no

Network partition (no parent)

yes

Fig. 2. Node state decision tree.

B. Debugger

Our example debugger can detect a set of pre-defined
problem events. Each such event identifies a problem and
refers to a node in the network. An event notification is
represented as a data stream record containing the ad-
dress of the affected node, the type of event, and possibly
event-specific additional information. In particular, the
following events are detected: node ok, node death, node
reboot, no neighbors, no parent, partitioned from sink,
path to sink loops, and no path to sink.

Node reboot events are detected by filtering
DSNSource for beacon packets and applying the SeqRe-
set operator. The detection of the remaining events is
based on the binary decision tree depicted in Figure 2.
The leaves of this tree represent possible states of a node.
Whenever the state of a node changes, a respective event
is generated for this node.

The binary decision tree is implemented using the
StateDetector operator. The output records describing
node states are filtered for state changes using the
predStateChange filter predicate. Each decision in the
tree requires an operator graph that extracts the required
information from the stream of observed packets. Below
we describe how each of these decisions is implemented
with an operator graph. Note that the individual operator
graphs described below partially overlap. These common
subgraphs are instantiated only once.

Covered?: This test examines whether a sensor
node can be observed with sufficient quality by the DSN
by examining the percentage of beacon messages that
have been received from this node. To implement this
test, DSNSource is filtered for beacon messages. The
stream of beacon messages is then fed to a TimeWin-

dowAggregator. Using the ratio aggregation function
applied to the sequence number of the beacon messages,
the fraction of received beacons per node is computed.
The test succeeds for a node if the fraction for this node
is above a given threshold.

Heard any packets?: This test succeeds if any
packet from a sensor node could be overheard. Since
data messages do not contain the per-hop source address,
DSNSource is filtered for data packets and Packet-
Tracer is applied to reconstruct the source address. Also,
DSNSource is filtered for the remaining packet types
(beacon, link and path advertisements) that do already
contain the per-hop source address. The resulting data
streams are merged with the Union operator to obtain
a stream of all packets containing source addresses.
This stream is then fed to a TimeWindowAggregator to
count the number of packets per node using the count
aggregation function. The test succeeds for a node if at
least one packet was heard from this node.

Is a neighbor?: This test checks whether a sensor
node is listed as a neighbor of any other node in the
network. DSNSource is filtered for link advertisement
packets. Since each link advertisement contains an array
of neighbors, the ArrayIterator operator is used to create
one record for each node being listed as a neighbor. Us-
ing TimeWindowAggregator with the count aggregation
function we obtain the number of times a node is listed
as a neighbor. The test succeeds for a node, it it was
listed as a neighbor at least once.

Has any neighbors?: This test examines whether a
node has any neighbors. DSNSource is filtered for link
advertisement packets containing at least one neighbor.
Using TimeWindowAggregator, the number of such ad-
vertisements per node is computed. The test succeeds for
a node if at least one non-empty link advertisement was
heard from this node.

Has a parent?: This test examines whether a node
has a parent in the tree. DSNSource is filtered for path
advertisement packets. Using TimeWindowAggregator,
the number of such advertisements per node is com-
puted. The test succeeds for a node if at least one path
advertisement was heard from this node.

Has a route?: This test checks whether a node
recently had a routing path to the sink. DSNSource is
filtered for data messages. PacketTracer is applied to
reconstruct the source address. PathAnalyzer is applied
and its output filtered for good route reports. Using
TimeWindowAggregator, the number of good route re-
ports per node is counted. The test succeeds for a node
if a good route was reported at least once for this node.

Loops?: This test checks whether the path from
a node to the sink recently had any loops. DSNSource
is filtered for data messages. PacketTracer is applied to
reconstruct the source address. PathAnalyzer is applied

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

meter

m
et

er

2
4
5
6

7
8
9

10
11

12
13
14

15
16

1718

21

2425

27

31
33

35

Sink

Network partition

Fig. 3. Experiment setup: WSN (2-27) and DSN (31-35).

and its output filtered for routing loop reports. Using
TimeWindowAggregator, the number of good route re-
ports per node is counted. The test succeeds for a node
if a routing loop was reported at least once for this node.

Network partition?: This test checks if a bad path
from a node to the sink was caused by a network
partition. DSNSource is filtered for data messages. Pack-
etTracer is applied to reconstruct the source address.
TopologyAnalyzer is applied to detect partitions. Topol-
ogyAnalyzer is also subscribed to the output of Stat-
eDetector in order to obtain node death events. The test
succeeds for a node if the last record received from
TopologyAnalyzer says that this node is partitioned.

VII. EVALUATION

To evaluate SNIF, we performed a series of exper-
iments with the debugger presented in Sect. VI. Even
though the debugger is only one example use of SNIF,
we consider it a representative application as it can
detect many of the problems described in Sect. II. We
used the experimental setup described in [20]. In this
setup, the Extensible Sensing System (ESS) [12], which
is also used in real-world deployments, is executed in
the EmStar emulator [9]. The Multihop routing protocol
of ESS is described in Sect. VI-A, with beacons and
link advertisements being sent every 10 seconds and
path advertisements every 80 seconds (resulting in a
tree update every 80 seconds). The network is time-
synchronized and each node sends sensor readings to the
sink every 30 seconds. A neighbor is considered gone if
no beacons have been received for 320 seconds.

As depicted in Fig. 3, we consider a network of 21
nodes forming a multi-hop topology with a diameter of
7 hops. Node 2 acts as the sink. We added three DSN
nodes (nodes 31, 33, and 35 marked with squares in
Fig. 3). The link dump files of the DSN nodes were
used as input to the debugger. Since some sensor nodes
could be overheard by more than one DSN node, the
DSN received 1.3 ± 0.5 copies of each sensor network
message during the experiments, while 4% of the beacon

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60

La
ten

cy
[in

 se
co

nd
s]

Packet Loss [in %]

Single Node Crash
Network Partition

No Data

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60

Fa
ls

e
Er

ro
r R

ep
or

ts

Packet Loss [in %]

Single Node Crash
Network Partition

No Data

Fig. 4. Reporting latency and number of false reports as a function
of packet loss.

messages were lost (i.e., not overheard by any DSN
node).

A. Accuracy and Latency

In order to evaluate the accuracy (number and type
of false error reports) and latency (time between failure
injection and report) of our debugging tool, we run
a set of experiments injecting three types of faults
into the network: node failure, network partition, and
no data. Furthermore, to evaluate the performance and
robustness of our tool under more realistic conditions,
we introduced additional loss into the DSN by randomly
discarding overheard messages. The duration of each
experiment was 30 minutes with faults being injected
randomly between 10 and 15 minutes after experiment
begin. We report averages and standard deviation over
multiple runs. Fig. 4 shows the results on the latency
(top) and the number of false error reports (bottom) for
each of the faults injected into the network with respect
to the percentage of introduced packet loss from 0% to
60%.

In the first experiment, we performed 40 runs and
injected a single node failure per run, such that all nodes
but the sink failed twice. All node crashes were correctly
detected and no false errors were reported. The latency
of the reports is mainly determined by the size of the
time window used to implement the Heard any packets?
test. We used 320 seconds (the same value used by ESS
to detect gone neighbors as noted above). As beacon
messages are sent every 10 seconds, we expected the
latency to be between 310 and 320 seconds. We then
introduced additional loss by uniformly dropping a given

percentage of packets from the DSN output. Observe
that latency is not significantly affected by the loss of
packets. The number of false positives is neglectable
until %30 of packet loss and and raises significantly
with more than 50% as depicted in Fig. 4 (bottom).
We analyzed the generated error reports and observed
that for up to 70% of packet loss, we only observed no
neighbor and no parent reports. These reports are caused
by missing link and path advertisements respectively
which are rarely sent. For higher packet loss, we found
node dead reports for working nodes. We never observed
any false negatives.

In the second experiment we made nodes 4-16 fail
at random times to partition nodes 17-27 from the
remainder of the network. We would expect a network
partition error for nodes 17-27 with some of the nodes
4-16 reported as the cause for the partition. We report the
latency until the first node was classified as partitioned.
The latency for the network partition detection is deter-
mined by the window sizes of the Has a parent? and
Has a route? tests which are set to 640 seconds (twice
as much as for Heard any packets?). As Has a route?
basically tracks multi-hop packets which are sent often,
it reacts with shortly before 640 seconds. The Has a par-
ent? tests fails, if no path announcements were observed
during the time window. As path announcements are only
sent every 80 seconds, missed packets cause a drop in the
average latency down to around 572 seconds. This also
explains the latency decrease with higher packet loss.

In the third experiment, we injected faults into the
Multihop routing component of single nodes such that
an affected node stops sending data messages (path
problem), while still broadcasting beacons and adver-
tisements (no link or node problems). We would expect
a no route error for the affected node and all other
nodes whose paths contain the former. We report the
time until the affected node is marked with no route. In
this experiment, the latency is determined by the window
size of the Has a route? test which is 640 seconds.
Again, missed packets cause a drop in the latency but
as most nodes in the network forward packets for other
nodes and data packets are at least sent every 30 seconds,
the average latency should be close to 640 seconds. The
average of 633 ± 24 seconds confirms this.

B. SNIF Performance

We also studied the performance overhead of SNIF
itself. During one 30 minute experiment run without
any fault injections, the DSN collected 261 kB of data,
resulting in an average data rate of 1.2 kbps including
duplicate packets. Note that this equals about 0.3% of the
effective Bluetooth 1.2 bandwidth of 400 kbps. SNIF was
executing on a 2 GHz PC using Java 1.5. The total cpu
time for processing the above amount of data was about

13 seconds, which equals about 0.7% of the experiment
duration of 30 minutes.

C. A Real Bug

In the course of our experiments, we encountered
a bug in ESS Multihop. At one point we decided to
upgrade to a new version of EmStar that fixed a bug
with collision handling. After the upgrade, we suddenly
observed a large number of no parent error reports
without injecting any faults. By examining the source
code of Multihop, we learned that nodes react to receipt
of a path advertisement message by updating their parent
selection and broadcasting their updated path advertise-
ment immediately without any delay. Here, the origi-
nal path advertisement broadcast results in an implicit
synchronization of all receivers, such that the secondary
path advertisements collide with high probability without
being retransmitted. By adding a random jitter, we were
able to fix this problem.

VIII. RELATED WORK

Most closely related to SNIF is work on active de-
bugging of sensor networks, notably Sympathy [20] and
Memento [22]. However, both systems require instru-
mentation of sensor nodes and introduce monitoring
protocols in-band with the actual sensor network traffic.
Also, both tools only support a fixed set of problems,
while SNIF provides an extensible framework.

Tools for sensor network management such as NU-
CLEUS [30] provide read/write access to various pa-
rameters of a sensor node that may be helpful to detect
problems. However, this approach also requires active
instrumentation of the sensor network.

Complementary to SNIF is work on simulators (e.g.,
SENS [25]), emulators (e.g., TOSSIM [16]), and testbeds
(e.g., MoteLab [32]) as they support development and
test of sensor networks before deployment in the field. In
particular, testbeds typically provide a wired backchan-
nel from each node, such that sensor nodes can be
instrumented to send status information to an observer.
EmStar [9] integrates simulation, emulation, and testbed
concepts into a common framework where some nodes
physically exist in a testbed or in the real world,
while the majority of nodes is being emulated or simu-
lated. Physical nodes need instrumentation and a wired
backchannel.

Passive observation by means of packet sniffing has
also been applied to wireless (and wired) LANs [13].
However, sensor networks differ substantially from wire-
less LANs. While typical wireless LANs are single-hop
networks that can be observed with one or few sniffers,
sensor networks are typically multi-hop networks. Also,
many of the problems encountered during deployment
of sensor networks are not present in WLANs. Also,

most applications of sniffing to (W)LANs log overheard
traffic for offline analysis, while SNIF performs online
analysis.

In the more general context of management and de-
bugging of distributed systems, a large body of related
work exists. Due to space constraints, we limit our
discussion to very closely rated work. One such class
of closely related work is performance debugging of
distributed systems (e.g., [1], [3]) where message traces
are used to reconstruct causality paths and their latencies.
While in principle applicable to sensor networks, these
approaches are narrowly focused on a very specific
problem and analysis is performed offline. In contrast,
we provide a framework for online traffic analysis. A
number of data stream management systems have been
specifically developed for network traffic analysis (e.g.,
[7], [24]). However, as mentioned earlier, we found
it difficult if not impossible to express stateful SNIF
operators using the SQL variants of these systems.

IX. CONCLUSIONS

We showed that many problems commonly encoun-
tered during the deployment of a sensor network can be
detected without instrumentation of the sensor network
by overhearing and analyzing sensor network traffic. We
implemented this approach by providing a distributed
network sniffer and a framework for online analysis of
the resulting streams of overheard network messages.
Both, the sniffer and the framework can be used with any
WSN that uses a compatible radio. We also demonstrated
an application of this framework to debug an existing
data gathering application. It could be shown that our
tool supports accurate and timely detection of problems
with this application even if the sniffer fails to overhear
a large fraction of the sensor network traffic. Using this
debugger we found an actual bug in the application.

Future work includes the development of user inter-
face that allows easier construction of debuggers for
specific applications. Currently, small amounts of Java
code must be written to form an operator graph. Another
worthwhile direction would be the execution of data
streams operators (e.g., to detect node and link problems)
on DSN nodes to reduce the bandwidth usage of the
DSN. Currently, DSN nodes deliver all overheard mes-
sages to the DSN sink, where analysis is also performed.
Finally, we plan to support semi-passive observation in
future versions of our framework. SNIF code will be
released at [36].

REFERENCES

[1] M. K. Aguilera et al. Performance debugging for distributed
systems of black boxes. In SOSP 2003.

[2] B. Babcock et al. Models and issues in data stream systems. In
PODS 2002.

[3] P. T. Barham et al. Using magpie for request extraction and
workload modelling. In ODSI 2004.

[4] J. Beutel et al. Scalable topology control for deployment-sensor
networks. In IPSN ’05.

[5] P. Buonadonna et al. Task: Sensor network in a box. In EWSN
2005.

[6] M. Cammert et al. Pipes: A multi-threaded publish-subscribe
architecture for continuous queries over streaming data sources.
Technical report, University of Marburg, 2003.

[7] C. Cranor et al. Gigascope: A Stream Database for Network
Applications. In SIGMOD 2003.

[8] D. Ganesan et al. Complex Behavior at Scale: An Experimental
Study of Low-Power Wireless Sensor Networks. Technical
Report CSD-TR 02-0013, UCLA, 2002.

[9] L. Girod et al. EmStar: A software environment for developing
and deploying wireless sensor networks. In USENIX 2004.

[10] J. Gray. Why do Computers Stop and What Can be Done About
it? In 5th Symp. on Reliability in Distributed Software and
Database Systems, 1986.

[11] B. Greenstein et al. A sensor network application construction
kit (snack). In Sensys 2004.

[12] R. Guy et al. Experiences with the extensible sensing system
ess. Technical Report 61, CENS, 2006.

[13] T. Henderson et al. Measuring wireless LANs. In R. Shorey, A. L.
Ananda, M. C. Chan, and W. T. Ooi, editors, Mobile, Wireless,
and Sensor Networks. Wiley, 2006.

[14] Chalermek Intanagonwiwat et al. Directed diffusion for wireless
sensor networking. IEEE/ACM Trans. Netw., 11(1), 2003.

[15] K. Langendoen et al. Murphy loves potatoes: Experiences from
a pilot sensor network deployment in precision agriculture. In
WPDRTS 2006.

[16] P. Levis et al. TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Applications. In Sensys 2003.

[17] A. Mainwaring et al. Wireless sensor networks for habitat
monitoring. In WSNA ’02.

[18] P. Padhy et al. Glacial environment monitoring using sensor
networks. In REALWSN’ 05.

[19] J. Polastre et al. Analysis of wireless sensor networks for habitat
monitoring. In Wireless Sensor Networks, chapter 18. 2004.

[20] N. Ramanathan et al. Sympathy for the sensor network debugger.
In SenSys ’05.

[21] N. Ramanathan et al. Towards a Debugging Systems for Sensor
Networks. Int. J. Network Management, 15:223–234, 2005.

[22] S. Rost et al. Memento: A Health Monitoring System for Wireless
Sensor Networks. In SECON 2006.

[23] A. Sobeih et al. Finding bugs in network protocols using
simulation code and protocol-specific heuristics. volume 3785
of LNCS, 2005.

[24] M. Sullivan et al. Tribeca: A System for Managing Large
Databases of Network Traffic. In USENIX 1998.

[25] S. Sundresh et al. SENS: A Sensor, Environment and Network
Simulator. In Annual Simulation Symposium 2004.

[26] R. Szewcyk et al. An analysis of a large scale habitat monitoring
application. In Sensys 2004.

[27] R. Szewczyk et al. Lessons from a Sensor Network Expedition.
In EWSN 2004.

[28] J. Tateson et al. Real world issues in deploying a wireless
sensor network for oceanography network for oceanography. In
REALWSN’05.

[29] S. Tilak et al. A Taxonomy of Wireless Micro-Sensor Network
Models. MC2R, 6(2):28–36, April 2002.

[30] G. Tolle et al. Design of an application-cooperative management
system for wireless sensor networks. In EWSN 2005.

[31] G. Tolle et al. A macroscope in the redwoods. In SenSys ’05.
[32] G. Werner-Allen et al. Motelab: a wireless sensor network

testbed. In IPSN 2005.
[33] A. Woo et al. Taming the underlying challenges if reliable

multihop routing in sensor networks. In Sensys 2003.
[34] Berkeley Motes. www.xbow.com/Products/Wireless Sensor -

Networks.htm.
[35] BTnodes. www.btnode.ethz.ch.
[36] SNIF. www.vs.inf.ethz.ch/res/show.html?what=snif.

