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Abstract. We consider configuration of wireless sensor networks,
where certain functions must be automatically assigned to sensor
nodes, such that the properties of a sensor node (e.g., remaining
energy, network neighbors) match the requirements of the assigned
function. Essentially, sensor nodes take on certain roles in the net-
work as a result of configuration. To help developers with such con-
figuration tasks for a variety of applications, we propose generic
role assignment as a programming abstraction, where roles and
rules for their assignment can be easily specified using a configu-
ration language. We present such a role specification language and
distributed algorithms for role assignment according to such spec-
ifications. We evaluate our approach and show that efficient and
robust generic role assignment is practically feasible for wireless
sensor networks.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and Design;
D.1.m [Programming Techniques]: Miscellaneous

General Terms: Algorithms, Languages, Performance

Keywords: Sensor Networks, Programming, Configuration

1. INTRODUCTION
Wireless sensor networks consist of so-called sensor nodes –

small untethered computing devices equipped with sensors, a wire-
less radio, a processor, and autonomous power supply. Large and
dense networks of these devices can be deployed unobtrusively in
the physical environment in order to monitor a wide variety of real-
world phenomena with unprecedented quality and scale while only
marginally disturbing the observed physical processes [9].

Many sensor-network applications require some form of self-
configuration, where sensor nodes take on specific functions in the
network. Configuration of a sensor network is particularly chal-
lenging, as the anticipated large number of sensor nodes participat-
ing in a network typically precludes manual configuration of indi-
vidual nodes. Additionally, pre-deployment configuration is often
infeasible because some configuration parameters such as node lo-
cation and network neighborhood are typically unknown prior to
deployment. Also, node parameters may change over time, neces-
sitating dynamic re-configuration.

When sensor nodes join the network, they are in an initial, homo-
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geneous software state. However, nodes may differ in their hard-
ware capabilities and parameters such as their location or their net-
work neighborhood. The goal of configuration is to break the initial
symmetry and assign specific roles to individual sensor nodes based
on their properties. As the network and node properties change over
time, role assignments must be updated to reflect these changes.
Based on the assigned roles, sensor nodes may adapt their behavior
accordingly, establish cooperation with other nodes, or may even
download specific code for the selected role.

A number of research projects related to sensor networks have
stated the need for such role assignment (e.g., [6, 13, 20]) as a
basic service to assign functions to sensor nodes. In addition, a
number of “classical” network configuration problems can also be
considered instances of role assignment, for example, coverage,
clustering, and in-network data aggregation.

Coverage. A certain area is said to be covered if every physi-
cal spot falls within the observation range of at least one sensor
node. In dense networks, each physical spot may be covered by
many equivalent nodes. The lifetime of the sensor network can
be extended by turning off these redundant nodes and by switch-
ing them on again when previously active nodes run out of battery
power [27]. Essentially, this requires proper assignment of the roles
ON and OFF to sensor nodes. �

Clustering. Clustering is a common technique to improve the effi-
ciency of data delivery (e.g., flooding, routing) [11]. With cluster-
ing, one of the three roles CLUSTERHEAD, GATEWAY, SLAVE
is assigned to each node. A clusterhead acts as a hub for slaves in
its neighborhood such that slaves directly communicate with their
clusterhead only. Gateways are slaves of more than one cluster
and interconnect multiple clusters by forwarding messages between
them. �

In-Network Aggregation. Due to the scarcity of energy and the
high energy cost of wireless communication, reducing data com-
munication is an important design goal in sensor networks. One
common form of data reduction is in-network data aggregation,
where certain nodes in the network aggregate sensory data from
many sources [8]. For this, sensor nodes must be assigned the roles
SOURCE (generate sensory data), AGGREGATOR (aggregate data),
and SINK (consume aggregated data) roles. In order to achieve
a significant network traffic reduction, aggregator nodes should be
located close to the data sources they aggregate. �

While a number of specialized algorithms for these problems have
been developed, these are typically hard to adapt to different appli-
cations, where varying criteria for assigning the above roles may
have to be applied.

Driven by these observations, our aim is the provision of spec-
ification techniques, algorithms, and tools to support generic role



assignment that is applicable to a wide variety of role-assignment
problems. Such a framework could make the use of the above net-
work configuration techniques more flexible. Moreover, the results
of our work may be integrated as a fundamental service into pro-
gramming frameworks such as [6, 13, 20].

From another point of view, generic role assignment can be con-
sidered a programming abstraction that partially shields applica-
tion developers from the complexity of programming sensor net-
works at the system level. Rather than implementing low-level
protocols and node functions, the developer can now specify parts
of the system behavior using a high-level configuration language.
Such programming abstractions have recently gained significant at-
tention (e.g., [1, 22]) and can be interpreted as a step towards mak-
ing sensor networks more accessible for users that are not experi-
enced system-level programmers (e.g., typical application-domain
experts).

We have motivated the need for generic role assignment in an
earlier position paper [15], where we also sketched possible di-
rections for its realization – leaving open the question whether
generic role assignment could be actually realized in practice. In
the present work, we propose and evaluate concrete instances of
a configuration language, a distributed role-assignment algorithm,
and a role compiler. We also present a simulation-based tool that
implements all these functions, allowing for large-scale planning
and evaluation of role-assignment tasks in realistic network setups.
We thereby support our earlier claim that generic role assignment
is practically feasible both in terms of efficiency and robustness.

The remainder of this paper is structured as follows. In Section 2
we give an overview of the various components involved in generic
role assignment. In Section 3 we introduce a language for specify-
ing roles. Sections 4 and 5 present distributed algorithms for role
assignment. A prototype implementation of these algorithms is dis-
cussed in Section 6, which was also used to perform the evaluation
presented in Section 7. We discuss related work in Section 8 and
application-specific role-assignment implementations in Section 9
before concluding the paper with Section 10.

2. OVERVIEW
Figure 1 gives a sketch of the envisioned use case and its

core elements. To setup or reconfigure the sensor-network, the
user/developer provides a role specification that defines possible
roles and rules for how to assign roles to nodes. This specification
is distributed to the whole network via a gateway – alternatively it
could have already been pre-installed on the nodes. On the nodes,
a property directory provides transparent access to node proper-
ties and capabilities. A distributed role assignment algorithm as-
signs roles to sensor nodes, taking into account role specifications
and node properties. Finally, applications on the node access node
properties (including the node’s role), which may trigger execution
of role-specific code, e.g., when the node has become a clusterhead
an according routing component could be enabled.

Role 
Specification

Property 
Directory

RA Algorithm

Gateway

App.
Network

Sensor Node

Figure 1: Core elements for generic role assignment

Property Directory. Properties of individual sensor nodes are
available sensors (e.g., temperature) and their characteristics (e.g.,
resolution); other hardware features (e.g., memory size, processing
power, communication bandwidth); remaining battery power; or
physical location and orientation. Some properties are static, some
may change over the lifetime of the network. However, we assume
that properties are not subject to frequent significant changes. This
reflects the understanding that a particular configuration is valid
for a certain minimum amount of time. Depending on their nature,
properties may be defined at production time, by hardware intro-
spection, or by sensors. The property directory provides a unified
interface for accessing property values. There is one such direc-
tory on each sensor node, which is independent of the directories
on other nodes.

In our implementation, the property directory exports property
values as a list of name-value pairs. Moreover, it can provide an
asynchronous notification when a property value changes.

Sample contents of the property Property Value
battery 50%
pos (12.3, 3.4)
temp-sensor true
neighbors 7
role ON

directory are shown on the right.
The current role of the node, and
other information acquired during
the role-assignment process (e.g.,
topology information such as num-
ber of neighbors) are also treated as node properties. Applications
can subscribe to role changes or to other properties of interest and
react accordingly. Inversely, applications may update entries in the
property directory, which would notify the role-assignment algo-
rithm to adapt assigned roles accordingly.

As described, the property directory is not specific to the role as-
signment task, but a general component facilitating cross-layer in-
teraction among software components. For our purposes, the prop-
erty directory supports numeric and Boolean types, node positions,
and sets of node IDs.

Role Specification. In its basic form, a role is an identifier (e.g.,
CH for clusterhead, GW for gateway). The role specification is a
list of role-rule pairs. For each possible role, the associated rule
specifies the conditions for assigning this role. Rules are Boolean
expressions that may contain predicates over the local properties
of a sensor node and predicates over the properties of well-defined
sets of nodes in the neighborhood of a sensor node. All nodes in
the network have a copy of the same role specification. This re-
flects the understanding that all sensor nodes are in the same initial
software state. Detailed role specification examples will be given
in Section 3.

Role-Assignment Algorithm. The task of this component is to
assign roles to sensor nodes, taking into account role specifications
and sensor node properties. Depending on the specific problem
instance, it might be useful to allow the assignment of multiple
roles to one node. For example, a single sensor node might act
both as a data source and as an aggregator. Property changes and
node failures may necessitate re-assignment of roles.

A separate instance of the role-assignment algorithm is execut-
ing on each sensor node. Triggered by property and role changes
on nodes in the neighborhood, the algorithm evaluates the rules
contained in the role specification. If a rule evaluates to true, the
associated role is assigned. We discuss such algorithms in Sections
4 and 5.

Role Compiler. The above algorithm can be considered a template
that must be properly parameterized for a specific role assignment
task. This parameterization is carried out by a compiler at the gate-
way, which reads a role specification and outputs appropriate pa-
rameters for the role-assignment algorithm. These parameters are



then encoded in a role specification message that is sent to all nodes
in the network.

Basic Services. A number of basic services such as node local-
ization, neighbor/topology discovery, or time synchronization may
add valuable information to the property directory. The availability
of such services could also be a node property. These services are
decoupled from the rest of the system through the property direc-
tory.

In the next sections we focus on the role specification and the
role-assignment algorithm.

3. ROLE SPECIFICATIONS
In this section we introduce the notation for role specifications.

We first show how this approach can be used for a number of appli-
cations, later we will review the essential specification components
in more detail.

3.1 Application Examples
Let us revise the examples sketched in the introduction into more

formal specifications. Note that these role specifications will typi-
cally result in approximate solutions of the respective configuration
problems.

Coverage. As mentioned earlier, nodes must be assigned ON and
OFF roles. Requirements for the assignment of these roles are that
the area of interest is covered by the sensors of ON nodes, and that
ON nodes have sufficient remaining battery power. Assuming one
is interested in coverage with temperature readings, one possible
formulation could be:

1 ON :: {
2 temp-sensor == true &&
3 battery >= threshold &&
4 count(2 hops) {
5 role == ON &&
6 dist(super.pos, pos) <= sensing-range
7 } <= 1 }
8 OFF :: else

The rule in lines 1-7 specifies the conditions for a node to have ON
status: it must have a temperature sensor and enough battery power
(lines 2 and 3). As a third condition, we require that at most one
other ON node should exist within this node’s sensing range. This
is specified by the count operator in line 4. It expects a hop-range
as its first parameter and returns the number of nodes within this
range for which the expression in curly braces evaluates to true.
Here we request to evaluate nodes within 2 network hops. Note
that the used property names (e.g., role in line 5, pos in line 6)
in the nested expression refer to properties of the specified neighbor
nodes. To access properties of the current node instead, the prefix
super is used (e.g., super.pos in line 6). The dist operator
used in line 6 returns the metric distance between two positions. In
the example, it specifies that only nodes located within this node’s
sensing range should be counted.

In other settings it would be useful to retain state on network
neighbors instead of just counting them. Clustering is such an ex-
ample.

Clustering. A clustering approach needs to define assignment rules
for clusterhead (CH), gateway (GW) and SLAVE roles. The assign-
ment of these roles depends on a variety of parameters. Cluster-
heads should be more powerful devices (in terms of processing,
memory, communication, and energy supply), because they act as
hubs for many slaves. This may be easily formulated in terms of the
property directory and is neglected here. For a role specification,
consider the following basic scheme:

1 CH :: {
2 count(1 hop) {
3 role == CH
4 } == 0 }
5 GW :: {
6 clusterheads == retrieve(1 hop, 2) {
7 role == CH
8 } &&
9 count(2 hops) {

10 role == GW &&
11 clusterheads == super.clusterheads
12 } == 0 }
13 SLAVE :: else

A node that does not have any clusterhead among its neighbors
declares itself clusterhead (CH, lines 1-4).

Nodes should be assigned the role gateway (GW) if they are
neighbors to at least two clusterheads but are not aware of any other
gateway nodes interconnecting the same two clusterheads.

To achieve this, we introduce the retrieve operator (line 6),
which is similar to count, but returns a set of node identifiers
instead of only counting the nodes. In this example, the retrieve
operator is used to identify clusterheads in the 1-hop neighborhood
of the node and to bind them to the local property clusterheads
in line 6 (similar to binding of variables in declarative programming
languages). Using the clusterheads property, we require in
lines 9-12 that within 2 hops no other gateways should interconnect
the same set of clusterheads.

The second parameter to retrieve in line 6 requests any
two matching nodes. If not enough matching nodes exist, the
retrieve expression evaluates to false. In this case, the GW role
is not assigned, the property clusterheads remains undefined,
and the evaluation of lines 9-12 can be omitted.

In-Network Aggregation. Similar rules can be designed for an
exemplary application requiring in-network aggregation.

1 AGG2 :: { analogous to AGG1 }
2 AGG1 :: {
3 count(2 hops) {
4 role == SOURCE &&
5 dist(pos, sink-pos) >
6 dist(super.pos, sink-pos)
7 } >= 2 &&
8 count(2 hops) {
9 role == AGG1

10 } == 0 }
11 SOURCE :: { temp-sensor == true }

In this example, sensor nodes equipped with temperature sensors
act as data sources (line 11). A single sink node with known po-
sition sink-pos consumes aggregated data. Aggregator nodes
(AGG1) should be placed in the close neighborhood of many
sources (line 4) compared to which the aggregator is closer to the
sink (lines 5-6) because data flows from sources to the sink. We fur-
thermore require that no other nodes with role AGG1 should exist
within two hops.

Note that we used a second role AGG2 for aggregators of higher
level which aggregate information from nodes with role AGG1 in-
stead of sources. AGG2 nodes should be similarly placed between
the AGG1 nodes and the sink and no other AGG2 nodes should exist
in their 2-hop neighborhood.

3.2 Syntax and Semantics
Let us review the specification techniques introduced in the ex-

amples. A role specification consists of a list of roles and associated
conditions involving the values of local properties of a sensor node
or the properties of well-defined sets of nodes in the neighborhood
of the node. The conditions for a role k are determined by an as-



sociated role predicate ck. We assume ck has been preprocessed by
the role compiler and rearranged into its disjunctive normal form:

ck = (ck
11 ∧·· ·∧ ck

1n1
)∨ (ck

21 ∧·· ·∧ ck
2n2

)∨ . . . (1)

Three types of atomic predicates ck
i j are supported:

Simple predicates are essentially Boolean expressions formulated
in terms of properties and constants, possibly involving basic
arithmetic operations.

Count predicates of the form

count(scope) { pred } rel const

can be used to count nodes that match a nested predicate
predwithin a given number of hops scope around the cur-
rent node and compare the result to a constant expression
const using a given relation rel.

Retrieve predicates are similar, these have the form

p == retrieve(scope,size) { pred }
and can be used to bind the IDs of a set of nodes matching
pred to a local property p. A parameter size specifies that
at least sizematching nodes must exist, otherwise the pred-
icate evaluates to false. After evaluation, p contains the IDs
of the matching nodes and can be used as a local property.

Within count and retrieve operators, the nested predicate pred
specifies the conditions under which a remote node is counted or
retrieved, respectively. These conditions are arranged in a disjunc-
tive normal form in which, essentially, only simple predicates are
allowed. Because the properties used in pred generally refer-
ence property values of remote nodes, it is furthermore possible
to prepend super to property names to reference properties of the
current node instead.

As mentioned earlier, the property directory supports numeric
and Boolean types, node positions, sets of node IDs, and the enu-
meration role. When comparing node property values, equality is
supported for all properties, while the usual ordering relations (such
as <, ≤ etc.) are additionally available for all numeric properties.

Note that because retrieve predicates bind local properties which
can be referenced by other count and retrieve statements, the for-
mer must be evaluated before predicates referencing the bound
value. Moreover, the specification must not contain circular de-
pendencies between any two retrieve statements that are part of the
conditions of any role. This is checked by a compiler before send-
ing the specification to the nodes. In Sections 4 and 5 we describe
distributed algorithms that can be used to implement the semantics
described above.

The presented specification language obviously cannot capture
all thinkable role-assignment problems (see also Section 9 for this
issue). However, from our experience it can be used to implement
practical approximations of many configuration tasks. Moreover,
our approach can be extended in two ways to be more powerful:
Firstly, custom predicates (such as the dist operator mentioned
earlier) can be implemented by the programmer to support com-
plex role-assignment tasks. Secondly, applications may subscribe
to certain role changes and changes of other properties. When no-
tified of such a change, the application may perform any compu-
tations that cannot be expressed directly with the role specification
language. In addition, the application may set values in the prop-
erty directory, triggering the role-assignment algorithm to revise
role assignments to take into account the modified properties.

Generally, the role-assignment abstraction enables the program-
mer to address configuration problems based on rather stable net-
work properties (there is a limit on the frequency of changes of

properties on which the configuration decisions are based). In or-
der to perform configuration, any algorithm that implements role
assignment will have to reach consensus on the current state of
the network within local network neighborhoods around each node.
The implementation of the abstraction is particularly optimized for
symmetric problems where any two nodes within a local neighbor-
hood both benefit from knowing each other’s properties.

Crucial for the locality of any role-assignment algorithm is the
given scope that is used in count and retrieve statements because it
governs the degree of interdependence between nodes. We there-
fore define the maximum scope of a specification:

DEFINITION 3.1 (MAXIMUM SCOPE). The maximum scope
of a given specification is the highest hop-number used as a scope
for count and retrieve statements.

Similarly we introduce a term for the set of nodes that can influence
the role selection of a given node:

DEFINITION 3.2 (CRITICAL AREA). The critical area of a
node u is the set of nodes v with

0 < d(u,v) ≤ maximum scope

where d(u,v) is the hop-length of the shortest path between u and
v.

4. ROLE-ASSIGNMENT ALGORITHM
In a previous position paper [15] we motivated generic role as-

signment and sketched a possible distributed algorithm that could
be used to implement role assignment. This algorithm is based on
a fixpoint iteration, where each node would repeatedly fetch the
current values of all relevant remote properties in order to evaluate
the role predicates, eventually deciding on a (preliminary) role for
itself. These evaluation cycles would have to be properly sequen-
tialized among neighboring nodes in order to ensure consistent role
assignments. Assuming that there is a fixpoint configuration, each
node would end up with a role that does not change in subsequent
evaluation cycles.

While this approach works in principle, it turns out that the over-
head for locking and unlocking neighbors for sequentialization is
prohibitively high. Therefore, we have examined more efficient al-
gorithms that proactively distribute property values to neighbors.
This is based on the observation that a node can decide which of its
property values are relevant to what neighbors, because each node
uses the same role specification.

This proactive approach eliminates much of the overhead for
“locking” nodes and concurrently introduces some redundancy that
makes it more robust in the face of message loss. We present the
basic algorithm below. Later in Section 5 we introduce two proba-
bilistic initialization schemes that make it more efficient.

It must be emphasized that the algorithms are heuristics which
may result in temporary inconsistencies due to the lack of sequen-
tialization. We will employ randomized delays in order to avoid
these inconsistencies. These temporary inconsistencies will be re-
moved in subsequent evaluations at one of the affected nodes.

The algorithm operates on a given role specification that needs
to be distributed to the nodes. Role specifications are encoded into
byte-optimized messages at the sink using a syntax tree that is con-
structed from the given specification. We do not focus on the (re-
liable) distribution of the role specification in this paper. While we
have implemented a flooding-based approach, several well-studied
algorithms for code distribution exist [12]. In some contexts, the
specification may also be loaded into the node offline before de-
ployment.



4.1 Overview
The basic algorithm is built around local cache tables maintained

at each node, which contain a collection of (local and remote) prop-
erties that are relevant for role assignment. Eventually, the node
will refer to its cache table to assign its own role, based on the in-
formation it has learned about its neighbors up to that time. We will
refer to this as local rule evaluation as the node does not involve
any additional remote data apart from its own cache.

In the upcoming subsections we will discuss how to initialize
the node’s cache table after the specification is received, how to
propagate node properties that have changed, how to perform the
above-mentioned local rule evaluation, how to adapt to changing
network properties, and finally, how to detect termination of the
algorithm.

4.2 Initialization
The initialization of the local cache table is performed upon re-

ceiving a new role specification. As all nodes share the same spec-
ification, they will essentially setup their tables in the same way.

In a first step, the node extracts the set of relevant properties from
the specification. For each property it infers from the specification
the farthest distance (in hops) each property needs to be propagated
at most, which we will refer to as the property’s max value.

If a property is only used in simple predicates formulated from
local properties, its max value is 0 and the property will never be
propagated to other nodes. The node’s role is also a property and
must be propagated as far away as the maximum scope of all count
and retrieve operators it occurs in. Note that the information on
property max values is constant for a given specification and their
maximum corresponds to the specification’s maximum scope.

Using the above information, a given node A initializes its cache
table as shown in Figure 2. To illustrate the algorithm, we use a
simplified coverage specification – as depicted – where we assume
that the node’s sensing range is equal to its transmission range and
we specify that no two neighbors are allowed to be ON concurrently.
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Figure 2: Node A after initialization

The table is initialized with a row for each property used in the
specification. Each row contains a field denoting the source node
(which is A in this case as information stems from A’s local prop-
erties), the property key, and its current value. Furthermore, a dist
field denotes the hop-distance between the source node and A. At
initialization this value is always 0 because all information is local.
The table also holds the max value described earlier to indicate how
far a property must be propagated.

Each row also contains a sequence number, which every node
maintains for its local entries. It is initialized with 1 and increased
every time a local property (with dist=0) is updated. Finally, a
dirty bit specifies whether this information was already propagated
to neighbors (false) or not (true). Initially, this value is true.

The cache table – initialized with local properties as described
here – contains redundant information that is already present in
the property directory. When optimizing for memory, these entries

could be generated just-in-time from the local property directory
instead. Similarly, the max values could be stored only once for
each property and dist values once for each node.

Once the cache table has been initialized, a node will schedule
the execution of three procedures that we will describe in the fol-
lowing subsections (note that all random delays are uniformly dis-
tributed in the given intervals).

Property Propagation after a random delay tprop ∼ (0,Tprop). The
delay helps aggregating newly arriving information into a
single message and at the same time spreads traffic over a
longer time interval. See Section 4.3 for details.

Local Rule Evaluation is scheduled after an initial delay tinit.
This delay is chosen to allow adequate property propagation
from all nodes in the current node’s critical area. It is com-
puted from the maximum scope s using an additional random
offset teval ∼ (0,Teval) to reduce the chance of simultaneous
role evaluations:

tinit = sTprop + teval

Failure Detection at regular intervals Theartbeat.

4.3 Property Propagation
To transmit properties to its neighbors, a node creates an update

message, essentially containing a list of cache table rows.
The message is composed from all rows with dirty = true and

dist < max. Entries with dist = max have reached the their max-
imal scope and need not be propagated any further (e.g., the local
properties battery and temp-sensor in the coverage example). Es-
sentially, the message contains a copy of these rows with the dist
field increased by 1 and max and dirty fields left out (dirty is true
anyway and max values can be derived from the specification). Fur-
thermore, the node resets all dirty bits of its table to false. The
resulting update message is broadcast to all neighbors. Note that
property keys can be efficiently encoded as an integer index, be-
cause all nodes use the same specification.

The receivers of such update messages enter the contained infor-
mation into their local tables. If entries of the incoming message
and the local table refer to the same property of the same source
node, the information with the larger sequence number is retained
(note that sequence numbers are increased by the source node only,
while other nodes forward them unmodified). If the information has
taken a shorter path (source and sequence number are the same, but
dist field is smaller) the dist field is set to the smaller value.

On the first incoming update message, receivers schedule

Property Propagation after a random delay tprop ∼ (0,Tprop) in
order to forward new information with dist < max.

Local Rule Evaluation after a random delay teval ∼ (0,Teval).
Generally, Teval is chosen to be larger than Tprop, see Sec-
tion 4.4 for details.

The property propagation delay tprop fulfills two functions at differ-
ent layers: Firstly, it is used to smooth out traffic bursts that would
occur after a property change that is forwarded over multiple hops.
When using a contention-based MAC layer, this would addition-
ally reduce collisions, as transmit attempts are spread over a longer
period of time. Secondly, it reduces the number of update mes-
sages by collecting many “dirty” table rows into a single message
as shown in Figure 3.

Our propagation procedure adds some redundancy when infor-
mation is forwarded over multiple hops because one bit of infor-
mation is typically forwarded over multiple paths. Yet this redun-
dancy adds significantly to the robustness of the algorithm in face
of packet loss. We will examine robustness in Section 7.
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Figure 3: Property propagation and local rule evaluation

When the algorithm is used with low-duty-cycle MAC layers,
one must ensure that the symmetry-breaking nature of the random-
ized timers is preserved. This can be achieved either by making
active periods sufficiently long or by suspending algorithm timers
in sleep periods (and thus stretch the algorithm execution time).
What is essential is that the MAC layer does not synchronize prop-
erty propagation to such an extent that it forces neighboring nodes
to propagate past role changes simultaneously.

In our example from Figure 2, assume node A has recently up-
dated its role property to ON and thus also increased the row’s se-
quence number. In A’s table, the only row with dist < max and
dirty = true is the role property. A therefore broadcasts an update
message to its neighbors containing its role property entry only.
Assume that, similarly, node C has sent an update message, after it
had picked the role OFF. Node B’s cache table, after receiving up-
date messages from A and C, is shown in Figure 4. In the example,
no information needs to be forwarded further: All rows either have
dist = max or dirty = false.
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Figure 4: Sample cache table at node B

4.4 Local Rule Evaluation
As mentioned, local rule evaluation is either triggered by a new

role specification, in this case delayed by tinit, or by the first update
message following a previous local rule evaluation, in this case de-
layed by teval ∼ (0,Teval). The timer teval has two functions: Firstly,
it helps avoid simultaneous role evaluations, for which we chose
Teval to be relatively large compared to Tprop (see Section 6 for
timer settings). Secondly, it also helps avoid unnecessary transient
roles by making a late but informed decision rather than performing
many re-evaluations (e.g., after each incoming update message). A
typical outcome where teval turns out larger than tprop is shown in
Figure 3.

On expiration of teval (or initially tinit), a node evaluates the role
specification using its local cache table only. For this, it evaluates
the role predicates of its specification sequentially and will assume
the first role, for which the corresponding predicate matches. Each
role predicate ck is assumed to be in disjunctive normal form given
in (1). Its atomic predicates ck

i j can be evaluated sequentially.

Simple predicates are evaluated using property values from the
local cache table.

Count predicates of the form
count(scope) { pred } rel const

consider cache table rows with 1 ≤ dist ≤ scope. The
nested predicate pred is then applied to the source nodes

of all these rows. The number of matching nodes is then
compared to const using the given relation rel.

Retrieve predicates of the form

p == retrieve(scope,size) { pred }
are evaluated similarly. However, instead of only counting
matching nodes, a set S of matching nodes is computed. Note
that a retrieve statement c binds p only while evaluating its
enclosing conjunction ck

x = (c1 ∧ ·· · ∧ cnx). If |S| < size,
ck

x evaluates to false. Otherwise, the remainder of ck
x is evalu-

ated for all p ⊂ S with |p| = size until the enclosing pred-
icate ck

x becomes true. If no such p exists, the evaluation of
ck

x returns false.

If the node’s role has changed, property propagation is triggered
without delay.

In our example, node B performs local rule evaluation. B’s cache
table is shown in Figure 4. In the given example, B first checks
the conditions for ON. Assuming that the node is equipped with a
temperature sensor and a full battery, the first two conditions of
the coverage specification evaluate to true. Evaluating the count
statement requires counting table rows with property role and dist
= 1. As the result of the count expression is 1, the predicate for role
ON does not match. Node B continues by checking the conditions
for OFF. As the “else” statement imposes no constraints, node B is
assigned the role OFF.

4.5 Property and Network Dynamics
So far, we have described role assignment in a static network. In

this section we consider the implications of changes in the network
and of node configuration. For this, we distinguish three classes of
changes.

The first class are property changes, e.g., the battery level has
changed. The property directory is configured to notify the role as-
signment system of such changes. If a change occurred, the node
updates the cache table and re-examines its chosen role via the lo-
cal rule evaluation procedure. Only if the changed property value
affects other (local or remote) properties by changing the evalua-
tion result of a predicate in the specification, an update message
is composed and broadcast to all neighbors. Note that the number
of update messages generated through property changes is limited
by the minimal interval Tmin between two update messages that are
induced by property changes. The programmer may also specify a
tolerance interval Δp for a property p, such that reconfiguration is
only triggered if p’s value changes by more than Δp.

A second class of changes is when nodes join the network. For
example, it is imaginable that additional nodes are deployed into
a given area. When such a new node overhears any protocol mes-
sage, it first requests a copy of the role specification from its net-
work neighbors. After it received a reply, it uses the specification
to initialize as described earlier and broadcast an update message
to inform neighbors of its relevant properties.

The third class are node failures. To detect such failures, nodes
send heartbeats every Theartbeat. A heartbeat is essentially an update
message, containing the key of the property that needs to be prop-
agated farthest in the specification (e.g., the role property in our
examples) with an empty property value. The sequence number is
incremented at each heartbeat. At receiving nodes, the heartbeat
message will update the sequence number field of the correspond-
ing row in the cache table and set it to dirty. Forwarding nodes will
thus include heartbeats in their update messages, provided the max-
imum scope has not been reached yet and that no other properties
of the originating node where already forwarded within the node’s
critical area within the last Theartbeat seconds.



After sending (or suppressing) its own heartbeat, a node verifies
whether all nodes contained in its cache table have sent informa-
tion during the last Nheartbeat ×Theartbeat seconds. We use the factor
Nheartbeat to allow lost heartbeat messages before node failure is as-
sumed and thus accomodate unstable links. Nheartbeat is currently
set to 3. Entries referring to nodes that have not sent any informa-
tion by that time are deleted, followed by local rule evaluation and
subsequent propagation if a role or property has changed.

4.6 Termination
Role assignment is continuously executed during the lifetime of

a sensor network to adapt role assignments to changes in the net-
work. Hence, role assignment itself does not terminate.

However, role assignment is typically executed in phases which
start either after receiving a new role specification or on a prop-
erty or neighborhood change (cf. above Section 4.5). In a role-
assignment phase, the above algorithm will perform a fixpoint it-
eration, in which a node typically iterates through a sequence of
different roles.

If a fixpoint configuration exists, each node will eventually as-
sume a stable role. Termination refers to detecting when such a
stable role has been assumed. In our approach we assume a role
stable if it did not change for Ttermination seconds. Note that appli-
cations are notified of such stable roles, only. Changes of local or
neighborhood properties may later trigger re-assignment of roles.
If such changes occur within a role-assignment phase, these will be
incorporated in the result of the current phase. However, changes
must be infrequent enough to let such role-assignment phases ter-
minate. Therefore, properties that change very fast (e.g., a light
sensor) are typically not useful as input for network configuration.

In our experiments stable configurations are reached after only
very few role-changes at each node (see Section 7 for details).
However, there are role specifications where no such fixpoint con-
figuration exists and no stable roles can be assumed, for example:

1 RED :: { count(1) { role == GREEN } > 1 }
2 GREEN :: { count(1) { role == RED } == 0 }

Here, a node requires the absence of RED neighbors to become
GREEN, yet its neighbors become RED as a direct consequence of
its own role having become GREEN.

We consider such specifications erroneous and provide two ap-
proaches to help a developer detect such faulty specifications.
Firstly, we provide a comprehensive simulation tool to evaluate role
specifications in realistic network setups which will be described
in Section 7. Secondly, we use heuristics to detect potentially non-
terminating specifications in a real network. If a node goes through
the same cycle of roles over and over again, non-termination is as-
sumed. Another, simpler heuristic is to assume non-termination if
a node exceeds a given number of role changes without reaching a
stable phase. Further analysis of the class of non-terminating spec-
ifications (as the example above) is part of current work.

5. PROBABILISTIC INITIALIZATION
In the above algorithm, all nodes start with the initial role

undefined. In this section, we examine two approaches to ini-
tialize nodes probabilistically. The above role-assignment algo-
rithm would then only repair inconsistencies of an initial config-
uration.

5.1 Drawing Roles
A first approach is to use a given specification together with an

estimated average network density to compute a probability for the

selection of each role. Assume the role specification contains spec-
ifications for roles {1, . . . ,q}. We will compute a set of probabil-
ities {p1, . . . , pq} such that each node will initially assume role k
with probability pk. Note that we will use these probabilities for
initializing every node in the network, not incorporating any addi-
tional information about a given node or its neighborhood. Thus,
{p1, . . . , pq} could even be pre-computed offline by a role compiler
and disseminated to the nodes together with the role specification.

We will map the role specification to a system of q equations
with q unknowns, namely the probabilities p1, . . . , pq. We will now
delineate how we translate different parts of the specification into
this equation system.

For this transformation, let us assume the role specification con-
tains role predicates of the general form of Equation (1):

ck = (ck
11 ∧·· · ∧ ck

1n1
)∨ (ck

21 ∧·· ·∧ ck
2n2

)∨ . . .

Let us assume that the values of ck
i j are independent of each other.

Let P(ck
i j) denote the probability that ck

i j is true. Assuming that

probabilities P(ck
i j) are known for all atomic predicates, we can

derive the probability pk of the role k:

pk = P(ck) = ∑
i

∏
j

P(ck
i j) (2)

while we set the probability of a possible else role to

pelse = 1−∑
i

pi (3)

We will now show how the probabilities P(ck
i j) can be obtained for

all types of atomic predicates c.
Let us first consider the case, where c is a simple predicate. If

c is of the form role==r then P(c) = pr. In all other cases, we
require the programmer to explicitly specify P(c). This is often
possible, as we are only interested in the probabilities at startup.
For example, the probability for the predicate battery>10% can
be approximated with 1 at deployment time. Otherwise, an edu-
cated guess may be applied. The respective programmer-specified
P(ck

i j) are distributed along with the specification.
For count and retrieve predicates, we assume that the network

density is known and that a function E(h) for the expected num-
ber of nodes within h hops (the so-called h-neighborhood) can be
estimated from deployment parameters1.

Now consider a count predicate c of the form:

count(scope) { pred } rel lim

where the nested predicate pred is in disjunctive normal form and
contains only simple sub-predicates ck

i j . That is, we can compute
ppred = P(pred) according to Equation 2. Let us now consider the
case where rel is “<=”, the other cases can be solved in similar
ways.

Estimating the number of nodes n to be expected within scope
by n = E(scope), we can now formulate the probability that x out
of n nodes match pred using the binomial distribution:

P(x of n nodes match) =
(

n
x

)
px

pred(1− ppred)n−x (4)

Thus, the probability that less or equal lim nodes match pred
(and thus the above count predicate c is true) corresponds to the
sum the above probabilities for all x ≤ lim :

P(count = true) =
lim

∑
x=0

(
n
x

)
px

pred(1− ppred)n−x (5)

1In our implementation, we estimated E(h) for unit disk graphs and
random uniform node deployment on a plane. By fitting results of
simulations we found that for any fixed node density E(h) ∼ h2.



Finally, a retrieve predicate c of the form

p == retrieve(scope,size) { pred }
requires that at least size nodes exist within scope that match
the given nested predicate pred. For calculating role probabilities,
we therefore consider an equivalent count statement:

count(scope) { pred } >= size

So far, we have derived q equations with q unknowns by sub-
stituting P(ck

i j) in Equation (2) for 1 ≤ k ≤ q. We use a fixpoint
iteration to solve this equation system. Assume a set of probabil-
ities for each role pk(t) are known at a given step t. Substituting
these into the right side of equation (2), we can compute a set of
new probabilities p̂k(t +1). To avoid oscillations in this series, we
add a memory term pk(t) that averages the old values into the newly
chosen ones:

pk(t +1) :=
1
2

p̂k(t +1)+
1
2

pk(t) (6)

Note that at each step, we also normalize the pk(t + 1) such that
∑k pk(t + 1) = 1. We initialize this series with equal probabilities
for each role pk(0) := 1/q and iterate until the series converges to a
fixpoint. We would like to emphasize that this computation is done
offline by the role compiler as all information needed is the specifi-
cation and the mentioned estimation of the neighborhood size E(h).
The resulting probabilities are then flooded along with the specifi-
cation upon which each node draws role k with probability pk and
then starts initialization as described in Section 4.2.

We will show in Section 7 how the probabilistic initialization
can provide significant improvements over the baseline algorithm
where all nodes start with the role undefined.

5.2 One Wave
In the above approach we approximate retrieve statements with

count operators ignoring the fact that retrieved node IDs affect other
predicates. Hence, sub-predicates are not independent of each other
(as we assumed). Furthermore, other nodes depend on retrieved
node IDs. The initialization of retrieved node IDs cannot be per-
formed probabilistically (at least it is highly improbable that the
initialization is done correctly), and therefore additional interaction
to adequately initialize the local properties is required.

In this regard, partial (deterministic) information is helpful and
can be used to properly initialize the bound properties, while other
decisions can still be performed probabilistically. In this section
we describe how we can use conditional probabilities to improve
the stability of probabilistic decisions.

The basic idea for this approach is to leverage an existing net-
work flood (e.g., for delivering the role specification) and exe-
cute the algorithm of Section 4 while forwarding this “propagation
wave”.

We generate such a propagation wave by scheduling the prop-
erty propagation procedure of Section 4.3 differently: The sink is
the only node that initially sends an update message (other nodes
refrain from sending update messages before they received one). A
node that received an update message, awaits a random propagation
delay twaveprop ∼ (0,Twaveprop), then choses its role (see below) and
includes its own chosen role into the forwarded update message.
Note that all information of these update messages can be piggy-
backed onto flooded role specification messages.

Let us consider the evaluation of the count predicate used as an
example in the previous Section 5.1:

count(scope) { pred } <= lim

Figure 5 depicts the situation, where the propagation wave

reaches a given node A. Let us assume that A expects n nodes
in scope and m of these are behind the wave front (to the left
of A). These have already chosen their roles and included all rel-
evant information (including the selected role) in previous update
messages. That is, A has received update messages from all nodes
behind the wave (on the left). A will now decide probabilistically
what it expects from the n−m nodes on the right.

information on m nodes
available

n-m more nodes
expected

A

out of m nodes, m‘
nodes match pred

total of n nodes
expected in scope

wave front

Figure 5: Propagation wave

For this, let us assume that out of the m known nodes on the
left, m′ match the nested predicate pred. We can now reformulate
the probability that the count predicate is satisfied as the probability
that lim−m′ “more” nodes match (out of the n−m expected nodes
on the right). The conditional probability that the count predicate c
is true can be expressed as follows:

P′(c) =
lim−m′

∑
x=0

(
n−m

x

)
px

pred(1− ppred)n−m−x (7)

Note that count statements using other relations (greater or equal
to a constant) can be treated analogously, and also the aspect that
retrieve statements require a minimum number of matching nodes.

When evaluating a retrieve predicate, the node additionally binds
the local properties to a set of nodes that are known to match the
nested predicate, if such a set of the required size exists. If such a
set exists, we consistently reflect the dependency between the local
node and remote nodes (in our case the remote nodes behind/left of
the wave).

For sub-predicates c in pred of the form role==r we still
assign the corresponding pre-computed probability P(c) = pr of
Section 5.1 as no additional information is available on the n−m
remote nodes that are in front of the wave.

This way, we derive q equations for the conditional probabilities
p′k, one for each role similar to Equation (2), but formulated in
terms of the previously computed pk.

p′k = P′(ck) = ∑
i

∏
j

P′(ck
i j) (8)

What we changed is the way we obtain probabilities P′ for the
atomic predicates ck

i j of the equation. On the nodes, we compute
the values of p′k in one step (without the need for fixpoint iteration)
using the {pk} sent along with the specification and chose role k
with the respective probability p′k.

The advantage of the above algorithm is that role assignment can
be performed almost entirely within one network-wide flood and
that only few role assignments have to be “fixed” later on (using
the baseline algorithm). Moreover, this approach is able to cap-
ture interdependencies between atomic predicates better. We will
analyze the performance of this algorithm in Section 7.



6. IMPLEMENTATION
Generic role assignment is implemented within a simulation tool

that enables the programmer to test various specifications in differ-
ent kinds of network environments. It consists of a compiler for
role specifications, a network setup and configuration component,
a visualization tool for introspecting algorithm execution and re-
sults, and finally a discrete event simulator back-end that executes
the distributed algorithms in a network environment using additive
interference models and realistic wireless parameters.

Figure 6: Role-assignment simulation tool

The user interface is shown in Figure 6. It enables the user to
set up a network topology, define property directory contents (i.e.,
the actual node parameters) and select the algorithms for execution
on the nodes. The role compiler then translates a given specifica-
tion – in this case the clustering specification of Section 3.1 – into
the corresponding syntax tree, performs necessary pre-processing
and context checking (i.e., ensures that there are no circular depen-
dencies and rearranges the role predicates into disjunctive normal
form) and computes a number of additional parameters (such as
role probabilities). Syntax tree and parameters are then encoded
into a role specification message, which is then interpreted on the
simulated nodes. Finally, the user can trigger delivery of the role
specification message through a flood initiated at the sink, upon
which the network nodes initialize and execute the role-assignment
algorithm.

The visualization tool enables qualitative assessment of the al-
gorithm execution and of role-assignment results. Figure 6 shows
exemplary results when using the one-wave variant of the cache ta-
ble algorithm to implement the clustering specification introduced
in Section 3.1. The highlighted edges are drawn between a gateway
and the clusterheads it interconnects. Note that in the shown simu-
lation, apart from messages lost due to collisions, an additional per-
packet loss of 10% was enabled, which might have caused some –
but only few – inconsistent role assignments. We will discuss quan-
titative results in Section 7.

We use the discrete event simulator JiST/SWANS [3] as a simu-
lation back-end. We adopted wireless parameters from the CC1000
radio [5] that is in use on the BTnode [29] platform, on Mica motes
and on many other platforms, please consider Figure 7(a) for de-
tails. The physical layer supports additive interference and two-ray
fading. Using these parameters we obtain a maximal transmission
range of about 33m.

We use a variant of the CSMA MAC described in [26] with
timers and delays adapted for 38.4 kbit/s. Only the broadcast ser-
vice is used (i.e., no channel reservations are performed). The MAC

Parameter Value
bandwidth 38.4 kbit/s
transmit power 5 dBm
sensitivity −96 dBm
rcv. threshold −84 dBm
interference limit −96 dBm
frequency 868 Mhz
antenna gain 0 dB
node height 5 cm
max. xmit range 33.5 m

(a) Wireless parameters

Parameter Value
Tprop 3s
Teval 10s
Theartbeat 60s
Nheartbeat 3
Ttermination 60s
Twaveprop 5s
Tmin 1s

(b) Algorithm timers

Figure 7: Simulation parameters

does not perform collision detection, or any other means to improve
robustness. We deliberately chose such a simplistic MAC to study
the robustness of our algorithm separately from “tricks” performed
by more advanced MAC layers. The obtained robustness results
can be considered “worst case” and better values can be expected
when using more sophisticated MAC layers (e.g., [14, 21, 28]).

For further analysis we have developed a second “back-end” for
role assignment which derives an integer program (IP) formulation
from a role specification and a given network topology. The IP can
provide insights into whether a specification is infeasible, that is,
whether a valid assignment of roles to nodes exists at all. Further-
more, it helps assess the quality of distributed heuristics (part of
current work) that aim at assigning certain roles “optimally” (e.g.,
in the coverage example chose fewer ON nodes but still cover the
respective area).

7. EVALUATION
An important requirement on programming abstractions is that

the induced overhead should be proportional to the complexity of
the specified problem. To gain an insight into whether our algo-
rithms are adaptive in the above sense, we evaluated three spec-
ifications of increasing difficulty: The coverage example that we
used to illustrate the caching algorithm in Section 4 can be consid-
ered a baseline case. We will later use this example to measure the
effect of increasing the scope of the count statement on algorithm
overhead in the corresponding Section Scalability below. We fur-
thermore examine aggregation and clustering as described in Sec-
tion 3.1. These both require propagation of additional properties
over two hops. The clustering specification is especially challeng-
ing through use of the retrieve operator that makes role-assignment
decisions dependent on the identities of nodes in the neighborhood.

We will evaluate all three presented algorithms, the baseline
cache table algorithm from Section 4 and its combination with the
two probabilistic initialization schemes described in Sections 5.1
and 5.2, to which we will refer as cachetable, probabilistic and
wave, respectively. We set algorithm parameters according to Fig-
ure 7(b). To evaluate the protocols, we let the three algorithms
assign roles to a previously uninitialized network and stop the sim-
ulation if all nodes were stable for Ttermination seconds (each node
decides termination locally).

We performed experiments on connected (w.h.p.) random
topologies. If there is no multi-hop path from the sink to a node,
this node simply does not participate in the experiment. In our eval-
uations we place a variable number of nodes in a 300x300m square
field.

For measuring overhead, we consider the total number of mes-
sages that are sent by each node and – as messages can be of vari-
able size – the total payload sent by each node in Section 7. Note
that the number of messages includes (one) specification message
per node, which is the initial flood.



To quantify correctness of the outcome, we consider the (theo-
retical) network topology where two nodes have a direct network
link if their distance is less than the maximum transmission range
of 33.5m. An assigned role is considered correct if the respective
role predicate matches for the set of neighbors obtained from the
above theoretical topology.

Later on we will consider the number of role changes that occur
after initialization to study convergence of our algorithms . For the
probabilistic and wave algorithms, we do not count the initial role
change that is induced by the probabilistic decision, as we are in-
terested in the remaining inconsistency that has to be repaired. For
each data point, we indicate 95% confidence levels obtained from
repeated simulations on independently drawn random topologies.

Overhead. We study the communication effort spent by the three
presented algorithms. We vary the number of nodes in the confined
area to see how increasing node density affects the performance of
our algorithms. The average number of messages sent per node
using each specification are shown in Figure 8.

The results of Figure 8(a) show that the simplified coverage spec-
ification can be implemented effortlessly by all three algorithms.
The maximum of three messages includes the specification flood,
the later propagation wave for the wave algorithm (we implemented
propagation and role specification waves separately), and finally at
most one more message that is used to check whether repairs are
needed.

In the aggregation example of Figure 8(b), the probabilistic and
wave variants outperform the baseline algorithm. Note that the
wave algorithm does not perform better than probabilistic. This is
due to the aggregation specification (cf. Section 3.1): The wave al-
gorithm can improve performance only if it can exploit knowledge
about nodes behind the wave front. For the first count statement
of role AGG1, this would require that SOURCE nodes are behind
the wave front. However, the specification further requires that
SOURCE nodes are farther away from the sink than aggregators.
This is unlikely to happen, because the wave propagates from the
sink outwards. Therefore, no aggregator roles are assigned during
the first wave.

For clustering in Figure 8(c), probabilistic performs slightly
worse than caching. This can be explained by the fact that the
choice of roles here depends very strongly on the identities of nodes
in the neighborhood and not only on their roles. Hence it is very
unlikely that a probabilistic decision “guesses” the right node iden-
tities, this has been one motivation for the design of the wave vari-
ant, which exhibits better performance. Nevertheless, it is notable
that probabilistic still performs comparably to caching.

The relative performance of the algorithms with respect to pay-
load size per node is similar. With the wave algorithm, the total
payload size per node in the clustering example is 179 bytes for
200 nodes and 388 bytes for 600 nodes, resulting in avg. message
sizes of 26 to 39 bytes, respectively. Results are similar in the ag-
gregation case, while coverage only requires transmitting at most
40 bytes per node as a maximum over all algorithms and node den-
sities. Note that the maximal node degree we use is quite high: 600
nodes in the given area yield an average degree of around 20.

Correctness. We show the results when measuring the ratio of
nodes with an incorrect role assignment to the total number of
nodes in the network in Figure 9. The baseline coverage case does
not exhibit any significant incorrectness. This is due to the sim-
plicity of the specification, where the count operator considers the
1-hop neighborhood only. Essentially, all nodes send one message
to announce their role. If inconsistencies occur, these are repaired
with the second message.

For aggregation and clustering specifications, the caching and
wave algorithms perform best, while the probabilistic variant suf-
fers from its deficiencies when used with retrieve operators. Note
that even though we omitted any means for reliable message trans-
fer, the wave algorithm achieves very low incorrectness numbers.

Note that shown incorrectness is due to unreliable message deliv-
ery, only. If message delivery were reliable, improbable yet possi-
ble simultaneous role evaluations would not contribute to incorrect-
ness, as these would be repaired in subsequent algorithm iterations.
Nodes that end up with incorrect roles have not learned from each
other’s properties properly (i.e., at least one message must have
been lost). A reliable MAC layer would theoretically incur zero
incorrectness but (possibly) worse convergence results.

Robustness. To examine robustness in the face of message loss,
we introduced an additional packet-loss probability. We measured
again the ratio of incorrect role assignments to the total number of
nodes for our three examples. Results are shown in Figure 10. The
x-axis denotes the probability used for dropping a message.

On this scale, the algorithms do not exhibit significant differ-
ences. Note that clustering is less robust than coverage and aggre-
gation. This is due to the fact that the dependency of the predicates
on neighbor nodes is much stronger in clustering as explained in
overhead considerations above: If, caused by a lost message from
a clusterhead neighbor, a node inconsistently becomes clusterhead,
many neighbors of the two will (incorrectly) become gateways,
which they will have to correct later, through additional commu-
nication effort. Therefore, errors tend to amplify. Nevertheless,
with all three specifications, high packet loss still yields acceptable
correctness levels.

Note that message loss causes a dynamic neighborhood relation.
Hence, the results depicted in Figure 10 can be interpreted as how
well the algorithms can deal with dynamic neighborhoods. We plan
further evaluation using bursts of lost messages that affect the per-
ceived neighborhood more severely.

Convergence. In Figure 11, we quantify the number of role
changes required after initialization until a node assumes a sta-
ble role. It shows the total number of role changes per node af-
ter initialization. Note that the initial role change for probability
and wave is not counted here as we were interested in the repairs
needed after initialization and whether initialization could improve
convergence. The avg. number of role changes per node is less
than 2 for all three specifications. That is, all communication effort
is invested into property propagation, and almost no “undesired”
repair iterations occur.

Note that the values shown for the wave algorithm are very low.
After the initial wave, only few repairs are needed. The number of
repairs needed in the coverage case is effectively zero, while with
other specifications, at most one role change for every two nodes is
required.

Scalability. A parameter that is crucial for the required algorithm
overhead is the maximum scope that the programmer specified. To
assess how the maximum scope affects overhead, we measured data
exchanges for the simplified coverage example when varying the
scope of its count operator from 1 to 4 in a setting with a constant
number of 200 nodes.

The results depicted in Figure 12 demonstrate that information is
indeed combined into few update messages. With an average node
degree of about 7 and a maximum scope of 4 hops, the employed
number of messages still remains low. However, the total payload
increases, e.g., from 21 bytes (for scope 1) to 400 bytes per node
(scope 4) for the best performing probabilistic algorithm. The av-
erage message size is at most 48 bytes with a scope of 4.



 0

 2

 4

 6

 8

 10

 12

 14

 100  200  300  400  500  600

A
vg

. n
um

be
r 

of
 m

es
sa

ge
s 

se
nt

Number of nodes

Caching
Probabilistic

Wave

(a) Coverage

 0

 2

 4

 6

 8

 10

 12

 14

 100  200  300  400  500  600

A
vg

. n
um

be
r 

of
 m

es
sa

ge
s 

se
nt

Number of nodes

Caching
Probabilistic

Wave

(b) Aggregation

 0

 2

 4

 6

 8

 10

 12

 14

 100  200  300  400  500  600

A
vg

. n
um

be
r 

of
 m

es
sa

ge
s 

se
nt

Number of nodes

Caching
Probabilistic

Wave

(c) Clustering

Figure 8: Sent messages per node with increasing density
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Figure 9: Percentage of incorrect assignments from total nodes with increasing density

Summing up, the evaluation results indicate that the role initial-
izations of probabilistic and wave can provide improvements over
the baseline algorithm. However, we have also seen that there is no
single best algorithm, although wave outperforms the other algo-
rithms in most settings. With aggregation we found a case, where
the wave algorithm is “tricked” by the specification. Apart from
such special cases, a rule of thumb is that wave performs better
than probabilistic for specifications that make use of retrieve.
An interesting direction for future work would be the development
of further heuristics to automatically derive from a given specifica-
tion which algorithm can be expected to give the best results.

8. RELATED WORK
Self-configuration in ad hoc and sensor networks has been an

active research topic in the recent past. Various other approaches
for solving specific self-configuration problems have been devised.
Examples include coverage [16]; aggregator placement [4]; clus-
tering, routing and addressing [10, 17, 18]. [10] uses a fixed set of
roles to build a network-wide backbone infrastructure. However,
none of these approaches are generic frameworks that support the
assignment of user-defined roles in an application-specific manner.
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Figure 12: Coverage application with increasing scope

The concept of role assignment has been mentioned in various
research projects related to wireless sensor networks. In [6], a mid-
dleware called MiLAN is outlined that controls the allocation of
functions to sensor nodes in order to meet certain quality-of-service
requirements specified by the user. In [13], a cross-layer framework
called TinyCubus is presented that uses the notion of roles to im-
plement efficient code deployment. In [20], a high-level program-
ming approach for sensor networks is presented, where a high-level
task specification is compiled into a set of node-level programs that
must be properly allocated to sensor nodes taking into account the
node capabilities.

Recently, neighborhood programming abstractions [22, 24] have
been proposed, where network neighbors can easily share variables
among each other. These abstractions pose an interesting opportu-
nity for implementing our role assignment approach. In particular,
each node in the network could set up a “sharing region” that equals
its critical area in order to exchange property values among nodes.

Inspired by cellular cooperation in biological organisms, Amor-
phous Computing [2] explores ways to program smart matter – very
densely deployed collections of indistinguishable smart particles.
In contrast, our approach is based on the observation that sensor
nodes may significantly differ in their properties, may rely on a
number of basic services (e.g., localization), and are less densely
deployed. Also, we focus on the configuration of sensor networks,
the actual “programming” (i.e., distributed data processing etc.) is
not part of our work, although roles and other property values de-
rived during role assignment may provide valuable input.

Our scheme for role assignment is somewhat similar to cellular
automata [25], where the state of a particle in a regular arrangement
is completely defined by the previous values of a neighborhood of
particles around it. Note that a classification of a subclass of cellu-
lar automata in [25] indicates that a large group of automata con-
verges to well-defined states. Major differences of our approach
are that state updates are not synchronous, sensor nodes are not in
a regular arrangement, and sensor nodes differ in their properties.
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Figure 10: Robustness in face of dropped packets
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Figure 11: Total role changes per node with increasing density

9. QUALITATIVE COMPARISON
Throughout the paper, we used specific instances of coverage,

clustering, and aggregation problems to illustrate and evaluate
generic role assignment. In the literature, numerous specialized al-
gorithms for solving various instances of these problems have been
proposed. In this section we want to convey an idea of how these al-
gorithms compare to our implementations that are based on generic
role assignment. A more extensive, quantitative comparison is part
of future work.

For each of the problems, we selected a representative instance
and algorithm from literature and discuss differences to our imple-
mentation with respect to semantics and efficiency.

Coverage. A common semantic for coverage is that all of a node’s
sensing range should be covered by other sensors before the node
can turn off [19]. In our version of coverage we approximate this
semantic by turning a node off if there are at least N (we use N = 1
in the example) other on nodes within sensing range. For a more
direct implementation of the semantics in [19], a node would first
retrieve all neighbors with overlapping sensing ranges (i.e.,
which are at most twice the sensing range away) and then use a
custom predicate to decide whether all of the node’s sensing range
is covered by these neighbors. This specification would require
the role-assignment algorithm to first propagate position and role
properties across the required number of hops and then perform
local rule evaluation after random delays. Chosen roles would
be immediately propagated to affected neighbors. Our algorithm
would (quite closely) match the implementation of [19] in the vari-
ant where sensing ranges are assumed equal at all nodes. �

Clustering. Our version of clustering was inspired by (but is not
identical to) passive clustering (PC) [11]. With PC, a node declares
itself clusterhead if none of its neighbors have done so before. A
node becomes a gateway if αCH +β > GW where CH and GW are
the numbers of clusterhead and gateway neighbors, resepctively,

and α,β > 0 are algorithm parameters that control the desired num-
ber of gateways in the system. This approach could be directly
implemented by generic role assignment with an overhead compa-
rable to the implementation in [11], where only the role property
is shared among neighbors.

With PC, protocol information is piggybacked on existing net-
work traffic. In contrast, generic role assignment uses a sepa-
rate protocol, resulting in some traffic overhead when compared
to PC. An interesting direction for future work would be passive
generic role assignment, where protocol information would be pig-
gybacked as with PC. �

Aggregation. A common optimization criterion for aggregator
placement is to minimize the total network traffic, which is identi-
cal to solving the Steiner-tree problem. Various heuristics are used
in the literature to approximate this NP-hard problem. One com-
monly used heuristic is called center at nearest source [7], where
among a number of neighboring source nodes, the one closest to
the sink is selected to act as an aggregator. This approach can be
implemented with generic role assignment, where a node would
use count to decide if there is another source in the neighborhood
that is closer to the sink. The scope of count (i.e., size of the
considered neighborhood) would be tuned to achieve a reasonable
tradeoff between algorithm overhead and optimality of aggregator
selection.

If geographic positions are used, the implementation of closer
is straightforward by propagating the position property of a node
within the scope. In the original algorithm in [7], this is done by
a network-wide flood. If hop-distance to the sink is used instead
of geographic positions, an additional role specification would be
needed to obtain the hop-distance of each node from the sink. For
this, each node would have a property dist that specifies its dis-
tance from the sink. A node would then retrieve among its
neigbors the node with the smallest dist value and set its dist
property to the retrieved value plus one. This would require a



simple extension of the retrieve operator to sort the retrieved
nodes according to some user-specified criterion (e.g., minimum of
a property value). Note that other, custom-implemented, compo-
nents that determine the dist property could be integrated with
role-assignment via the property directory. �

Apart from the above specific examples, we can make some more
general observations about the efficiency of generic role assign-
ment when compared to specialized algorithms. With generic role
assignment, the value of a property is always propagated to all
nodes in the scope of this property. In some cases, however, it
may not be necessary to propagate certain property values. In other
cases, certain nodes may not need to propagate a property at all or
only to certain nodes within a scope. As part of future work we
will investigate whether such optimizations can also be supported
by generic role assignment.

10. CONCLUSION AND OUTLOOK
In this paper we have investigated a novel programming abstrac-

tion called generic role assignment, which allows the automatic as-
signment of roles to sensor nodes based on properties of sensor
nodes and their respective network neighborhood. We have pre-
sented a distributed algorithm for role assignment and two varia-
tions that perform probabilistic initialization. Through an extensive
quantitative evaluation we have shown that role assignment is not
only a powerful tool, but can also be implemented in an efficient
and robust way.

Generic role assignment can be regarded as a versatile tool for
sensor-network configuration. Previous work on (self-)configu-
ration mainly focused on rather specific problems – generic frame-
works were missing so far.

A particularly noteworthy application of our approach is rapid
prototyping for sensor networks. Currently, the deployment of sen-
sor networks often involves a trial-and-error phase, where algo-
rithms and protocols are tested in different configurations in real-
world settings (e.g., [23]). With generic role assignment, these dif-
ferent configurations could be easily generated and changed. While
all components under test could be loaded onto the nodes before
deployment, these could be started and stopped through the assign-
ment of certain roles and initialize their respective configuration
parameters from the property directory.

Currently, we are implementing the proposed approach on the
BTnode platform [29]. Future work includes the application of
role assignment to more heterogeneous types of sensor networks
which are interconnected with various kinds of smart appliances.
We also plan to increase the expressiveness of generic role assign-
ment by introducing more powerful data types (sets, enumerations,
etc.), by providing more general ways to specify scopes of count
and retrieve, and by supporting the assignment of multiple roles to
a single node.
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and André Bayer on algorithm design and implementation. We
would like to thank our shepherd and our anonymous reviewers,
and as well Holger Karl and Pedro José Marron for valuable com-
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