
Diss. ETH No. 16106

Time Synchronization and Localization
in Sensor Networks

A dissertation submitted to the
Swiss Federal Institute of Technology Zurich (ETH Zurich)

for the degree of
Dr. sc. ETH Zurich

presented by
Kay Römer

Diplom-Informatiker, University of Frankfurt/Main, Germany
born June 16, 1972
citizen of Germany

accepted on the recommendation of
Prof. Dr. Friedemann Mattern, examiner
Prof. Dr. Paul J. M. Havinga, co-examiner

2005

Abstract

So-called sensor nodes combine means for sensing environmental parameters, pro-
cessors, wireless communication capabilities, and autonomous power supply in a
single compact device. Networks of these untethered devices can be deployed
unobtrusively in the physical environment in order to monitor a wide variety of
real-world phenomena with unprecedented quality and scale while only marginally
disturbing the observed physical processes.

Due to the close integration of sensor networks with the real world, the cate-
gories time and location are fundamental for many applications of sensor networks,
for example to interpret sensing results (e.g., where and when did an event occur)
or for coordination among sensor nodes (e.g., which nodes can when be switched
to idle mode). Hence, time synchronization and sensor node localization are fun-
damental and closely related services in sensor networks.

Existing solutions for these two basic services have been based on a rather
narrow notion of a sensor network as a large-scale, ad hoc, multi-hop, unpartitioned
network of largely homogeneous, tiny, resource-constrained, mostly immobile sensor
nodes that would be randomly deployed in the area of interest. However, recently
developed prototypical applications indicate that this narrow definition does not
cover a significant portion of the application domain of wireless sensor networks.

Our thesis is that applications of sensor networks span a whole design space
with many important dimensions. Existing solutions for time synchronization and
node localization do not cover important parts of this design space. Substantially
different approaches are required to support these regions adequately. Such solutions
can actually be provided.

We support this thesis by proposing a design space of wireless sensor networks
where concrete applications can be located at different points of the space. We
identify two important regions in the design space that are not appropriately sup-
ported by existing methods for time synchronization and node localization. We
also propose, implement, and evaluate new solutions that cover these regions. The
practical feasibility of our approaches is demonstrated by means of a typical sensor
network application which requires time synchronization and node localization.

Our approach to time synchronization supports applications where network
connectivity is intermittent. The idea underlying our Time-Stamp Synchronization
method is to avoid proactive synchronization of the clocks of all nodes in a network.
Instead, the clocks of the sensor nodes run unsynchronized, each defining its own
local time scale. Only if clock readings are exchanged among nodes as time stamps

i

ii

contained in network messages, these time stamps are transformed from the time
scale of the sender to the time scale of the receiver. This approach is scalable, since
time is only synchronized on demand where and when needed by the application.
The approach is also resource efficient, since it piggybacks on existing message
exchanges.

Our approach to node localization supports tiny sensor nodes known as Smart
Dust. The Lighthouse Location System is based on a single beacon device that
emits particular optical signal patterns. Sensor nodes can autonomously infer their
location by passively observing these signals. This approach is scalable, since each
node infers its location independent of other nodes. A single beacon device emits
long-range signals in broadcast mode and can support arbitrary network densities.
The approach is resource efficient, since the sensor nodes do not actively emit any
signals. Only a tiny, energy-efficient optical receiver is needed to infer locations.

Zusammenfassung

Sensoren zur Erfassung von Umweltparametern, Prozessoren, drahtlose Kommu-
nikationseinheiten sowie autarke Energiequellen sind in sogenannten Sensorknoten
auf kleinstem Raum integriert. Netze aus vielen solchen Knoten können unauf-
dringlich in die Alltagswelt ausgebracht werden, um eine Reihe verschiedener Um-
weltphänomene grossräuming und mit hoher Genauigkeit zu erfassen, ohne die
beobachteten Vorgänge wesentlich zu beeinflussen.

Aufgrund der Einbettung von Sensornetzen in die reale Welt spielen die Katego-
rien Raum und Zeit eine fundamentale Rolle für viele Anwendungen, beispielsweise
zur Interpretation von Beobachtungen (z.B. wo und wann wurde ein Ereignis fest-
gestellt) oder für die Koordination der Sensorknoten untereinander (z.B. welche
Knoten können wann in einen energiesparenden Schlafzustand geschaltet werden).
Daher sind Zeitsynchronisation und Lokalisierung von Sensorknoten grundlegende
und eng verwandte Dienste in Sensornetzen.

Bestehende Ansätze zur Realisierung dieser Dienste gehen von einer vergleichs-
weise engen Definition eines Sensornetzes aus, derzufolge ein Sensornetz aus ei-
ner sehr grossen Zahl von homogenen, winzigen und daher ressourcenbeschränkten
Knoten besteht, die vorwiegend immobil sind, nachdem sie zufällig im Zielge-
biet verteilt wurden. Ferner geht man davon aus, das Sensornetze unpartitionierte
Multi-Hop-Ad-Hoc-Netze sind. In jüngerer Zeit wurde jedoch eine Vielzahl proto-
typischer Anwendungen von Sensornetzen vorgestellt, denen eine solche enge Defi-
nition nicht gerecht wird.

Unsere These ist daher, dass Applikationen von Sensornetzen einen umfangrei-
chen Entwurfsraum aufspannen, der eine Vielzahl wichtiger Dimensionen umfasst.
Bisher existierende Methoden zur Zeitsynchronisation und Lokalisierung decken
wichtige Bereiche dieses Entwurfsraums nicht ab. Vielmehr benötigt man neuarti-
ge Herangehensweisen, um diese Bereiche adäquat zu unterstützen. Entsprechende
Techniken können tatsächlich bereitgestellt werden.

Wir untermauern diese These, indem wir den Entwurfsraum von Sensornetzen
explizit machen und zeigen, dass konkrete Applikationen tatsächlich verschiede-
nen Punkten in diesem Raum zugeordnet werden können. Wir identifizieren zwei
spezifische Bereiche im Entwurfsraum, welche nicht hinreichend durch bestehende
Ansätze zur Zeitsynchronisation und Lokalisierung unterstützt werden. Um diese
Bereiche abzudecken, schlagen wir neue Lösungsansätze vor, zeigen prototypische
Realisierungen auf und evaluieren diese. Die praktische Umsetzbarkeit dieser Me-
thoden zeigen wir anhand einer konkreten Applikation, die Synchronisation und

iii

iv

Lokalisierung voraussetzt.
Unser Ansatz zur Zeitsynchronisation unterstützt Anwendungsszenarien, in de-

nen Netzverbindungen nur sporadisch bestehen. Die grundlegende Idee für das
Verfahren der Zeitstempelsynchronisation besteht darin, die Uhren der Sensorkno-
ten nicht zu synchronisieren, so dass die lokale Uhr eines jeden Knotens eine un-
abhängige Zeitskala definiert. Zeitstempel, die durch Auslesen der lokalen Uhr ent-
stehen, haben daher zunächst nur lokale Gültigkeit. Wird ein solcher Zeitstempel
jedoch als Teil einer Nachricht im Netz verschickt, so wird dabei der Zeitstempel
von der Zeitskala des Senders in die Zeitskala des Empfängers transformiert. Dieser
Ansatz ist skalierbar, da Synchronisation nur dann stattfindet, wenn sie tatsächlich
von der Applikation benötigt wird. Ferner kann diese Methode effizient implemen-
tiert werden, da die für die Zeitstempeltransformation notwendige Kommunikation
in vielen Fällen Huckepack auf bereits existierenden Nachrichten realisiert werden
kann.

Unser Ansatz zur Lokalisierung unterstützt winzige, sehr ressourcenarme Sen-
sorknoten, die unter dem Namen “Smart Dust” bekannt sind. Unser Verfahren mit
dem Namen Leuchtturmlokalisierung verwendet eine spezielle Basisstation, die spe-
zifische optische Signale aussendet. Sensorknoten können allein durch passive Be-
obachtung dieser Signale autonom ihre Position mit hoher Genauigkeit bestimmen.
Dieser Ansatz ist skalierbar, da jeder Knoten völlig unabhängig von anderen Kno-
ten seine Position bestimmt. Eine einzige Basistation kann daher beliebig dichten
Netzen zur Lokalisierung dienen. Da die Sensorknoten für die Lokalisierung selbst
keinerlei Signale aussenden müssen, ist das Verfahren auf der Seite der Sensorkno-
ten sehr ressourceneffizient. Sensorknoten benötigen nur einen einfachen optischen
Empfänger, der auf kleinstem Raum realisiert werden kann.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Structure . 3

2 Wireless Sensor Networks 5
2.1 Characterization . 6

2.1.1 Distributed Systems . 7
2.1.2 Ubiquitous Computing . 8
2.1.3 Peer-to-Peer Systems . 9
2.1.4 Embedded Systems . 9
2.1.5 Remote and Wired Sensing 10
2.1.6 Wireless, Mobile, and Ad Hoc Networks 11
2.1.7 Digital Signal Processing . 11

2.2 The Sensor Network Design Space 12
2.2.1 Deployment . 13
2.2.2 Mobility . 13
2.2.3 Cost, Size, Resources, and Energy 13
2.2.4 Heterogeneity . 14
2.2.5 Communication Modality 14
2.2.6 Infrastructure . 15
2.2.7 Network Topology . 16
2.2.8 Coverage . 16
2.2.9 Connectivity . 16
2.2.10 Network Size . 17
2.2.11 Lifetime . 17
2.2.12 Other QoS Requirements . 17

2.3 Implications of the Design Space . 17
2.4 Applications . 18

2.4.1 Species Monitoring . 19
2.4.2 Environmental Monitoring 21
2.4.3 Agriculture . 23
2.4.4 Production and Delivery . 25
2.4.5 Disaster Relief . 26

v

CONTENTS vi

2.4.6 Building Management and Automation 27
2.4.7 Traffic and Infrastructure 28
2.4.8 Home and Office . 29
2.4.9 Military and Homeland Security 30
2.4.10 Surveillance and Law Enforcement 32
2.4.11 Health Care . 33

2.5 Sensor Node Prototypes . 34
2.5.1 Motes . 34
2.5.2 Egrains . 36
2.5.3 Smart Dust . 37
2.5.4 Commodity Devices . 39

2.6 Technical Challenges . 39
2.6.1 Resource and Energy Constraints 39
2.6.2 Network Dynamics . 40
2.6.3 Network Size and Density 42
2.6.4 Unattended and Untethered Operation 42

2.7 Design Principles . 42
2.7.1 Adaptive Tradeoffs . 42
2.7.2 Multi-Modality . 43
2.7.3 Local Interaction . 43
2.7.4 Data Centricity . 43
2.7.5 In-Network Data Processing 44
2.7.6 Cross-Layer Interaction . 44

2.8 Summary . 44

3 Space and Time in Sensor Networks 46
3.1 Uses of Space and Time . 46

3.1.1 Sensor Network – Observer 47
3.1.2 Sensor Network – Real World 47
3.1.3 Within a Sensor Network . 48

3.2 Locating Nodes in Spacetime . 49
3.2.1 Internal vs. External . 50
3.2.2 Global vs. Local . 51
3.2.3 Point Estimates vs. Bounds 52
3.2.4 Points vs. Distances . 53
3.2.5 Scope and Lifetime . 53
3.2.6 Precision . 54
3.2.7 Other Quality-of-Service Aspects 54

3.3 Distributed Algorithms for Localization in Spacetime 55
3.3.1 Bootstrapping . 57
3.3.2 Obtaining Constraints . 58
3.3.3 Combining Constraints . 58
3.3.4 Selecting Constraints . 59
3.3.5 Maintaining Localization over Time 60

CONTENTS vii

3.4 Limitations and Trade-offs . 61
3.4.1 Anchor Infrastructure . 61
3.4.2 Energy and Other Resources 63
3.4.3 Network Dynamics . 64
3.4.4 Configuration . 64

3.5 Summary . 65

4 Time Synchronization 66
4.1 Background . 66

4.1.1 Clock and Communication Models 66
4.1.2 Obtaining Constraints . 68
4.1.3 Combining Constraints . 70
4.1.4 Maintaining Synchronization 71
4.1.5 Selecting Constraints . 73

4.2 Related Work . 74
4.2.1 Logical Time . 74
4.2.2 Offline Time Synchronization 74
4.2.3 Network Time Protocol (NTP) 75
4.2.4 Time Synchronization for Sensor Networks 76

4.3 Problem Statement . 81
4.3.1 Intermittent Connectivity 81
4.3.2 Resource Efficiency . 82
4.3.3 Precision for Collocated Nodes 82
4.3.4 Correctness . 82

4.4 Time-Stamp Synchronization . 82
4.4.1 Algorithm Overview . 83
4.4.2 Assumptions . 84
4.4.3 Time Transformation . 84
4.4.4 Message Delay Estimation 85
4.4.5 Time-Stamp Calculation . 86
4.4.6 Interval Arithmetic . 88
4.4.7 Implementation . 89
4.4.8 Evaluation . 92
4.4.9 Potential Improvements . 94

4.5 Summary . 96

5 Sensor Node Localization 97
5.1 Background . 97

5.1.1 Signal Propagation and Mobility Models 97
5.1.2 Obtaining Constraints . 100
5.1.3 Combining Constraints . 102
5.1.4 Maintaining Localization . 105
5.1.5 Selecting Constraints . 106

5.2 Related Work . 107
5.2.1 Traditional Localization Approaches 107

CONTENTS viii

5.2.2 Centralized Localization for Sensor Networks 108
5.2.3 Distributed Localization for Sensor Networks 110

5.3 Problem Statement . 114
5.3.1 Device Challenges . 114
5.3.2 Resource Efficiency . 114
5.3.3 Minimal Infrastructure . 115
5.3.4 Scalability . 115

5.4 The Lighthouse Location System 115
5.4.1 An Idealistic System . 115
5.4.2 A Realistic System . 118
5.4.3 Prototype Implementation 125
5.4.4 Evaluation . 129

5.5 Summary . 137

6 Application Experience 138
6.1 Object Tracking with Smart Dust 138
6.2 Object Detection . 139
6.3 Data Fusion . 141
6.4 Node Localization . 142
6.5 Time Synchronization . 143
6.6 Message Ordering . 143
6.7 Evaluation . 144
6.8 Discussion . 146
6.9 Summary . 147

7 Conclusions and Future Work 148
7.1 Contributions . 148
7.2 Limitations . 149

7.2.1 Time-Stamp Synchronization 149
7.2.2 Lighthouse Location System 149

7.3 Future Work . 150
7.3.1 Time-Stamp Synchronization 150
7.3.2 Lighthouse Location System 150
7.3.3 Service Interfaces . 151
7.3.4 Service Selection and Adaptation 151
7.3.5 Calibration . 152

7.4 Concluding Remarks . 152

Chapter 1

Introduction

Enabled by technological advancements in wireless communications and embedded
computing, wireless sensor networks were first considered for military applications
in the 1980-ies, where large-scale wireless networks of autonomous sensor nodes
would enable the unobtrusive observation of events in the real-world. Since then,
the use of sensor networks has also been considered for various civil application
domains. This thesis is devoted to two fundamental services required by sensor
networks: time synchronization and node localization.

In this inaugural chapter, we introduce the research area of wireless sensor
networks, motivate the need for time synchronization and localization in sensor
networks, and give a brief overview of the main contributions of our work. We
conclude this chapter with an overview of the remainder of this thesis.

1.1 Motivation

In the late 1980-ies, technology advanced to a stage where it became possible to
build relatively small, battery-powered computing devices equipped with sensors
and wireless communication with manageable effort and cost by leveraging off-
the-shelf hardware components. While systems with similar functionality had been
built earlier, these required costly custom hardware design processes or exhibited a
power consumption that did not allow battery operation for longer periods of time.

Having observed the speed of technological advancements over the past, one
could envision at that time that in the near future it would be possible to build even
smaller untethered computing, communicating, and sensing devices with marginal
cost per device. While the low per-device cost would allow mass production, small
size and untetheredness would enable an unobtrusive deployment.

This prospect triggered researchers to think of implications and applications of
this emerging new technology. Perhaps one of the first individuals to articulate this
trend, to envision possible applications, and to speculate about societal impacts
was Mark Weiser, who coined the term Ubiquitous Computing in his seminal article
[106]. From then on, this vision was further refined and substantiated by a number
of visionaries and research projects. This development was evidenced by several

1

CHAPTER 1. INTRODUCTION 2

new terms such as Pervasive Computing, Ambient Intelligence, and also Wireless
Sensor Networks (WSN).

Common to these slightly different terms and underlying visions is the goal of
bridging the long-standing gap between the physical world where we live in and the
traditional virtual world of computers and other information-technology artifacts.
The key to realization of these visions is the use of large collections of these unobtru-
sive networked computers that could perceive and control aspects of the real world
via sensors and actuators on the one hand, and that would provide an intuitive in-
terface to human users on the other hand. While projects classified as Ubiquitous
Computing, Pervasive Computing, and Ambient Intelligence are somewhat focused
on issues related to interfacing these unobtrusive networked computing devices to
human users, this component is of lesser significance in projects that examine sen-
sor networks. Rather, research on wireless sensor networks focuses on the technical
aspects of observing the real world with best possible quality, using as few as pos-
sible resources, and minimizing the impact of the observation tool on the observed
physical processes. We examine the subtle differences of the above research areas
in more detail in Chapter 2. Our work, however, is focused on wireless sensor
networks.

WSN have been initially considered for military applications, where real-world
events (e.g., vehicles and troops passing) must be unobtrusively observed in inac-
cessible or hostile environments. For example, DARPA initiated the Distributed
Sensor Networks program in the 1980-ies. For these military tasks, large numbers
of sensor nodes would be deployed in the area of interest and form a wireless net-
work to observe events in the physical environment. These long-lived, unattended
networks would be unobtrusive due to the small size and untetheredness of indi-
vidual nodes, could operate without the use of additional hardware infrastructure,
and would be robust due to the redundant deployment of nodes. Later on, it was
suggested that these features would render sensor networks a useful tool also in
a number of civil application domains [35], for example as a scientific tool for en-
vironmental monitoring or in building automation. In Chapter 2 we examine a
number of concrete civil applications of WSN.

Time and space are fundamental categories in the physical world. Since wireless
sensor networks are a tool for observing, influencing, and reasoning about phenom-
ena of the physical word, time and space are also of utmost importance in WSN.
They are essential elements for obtaining and interpreting real-world observations
(e.g., where and when did an event occur, how large and fast was an observed
object), for tasking a sensor network (e.g., where and when to look for events), for
interfacing wireless sensor networks with the real-world (e.g., what node density
and sampling frequency is needed to observe a certain object), and for coordination
among sensor nodes (e.g., which nodes can when be switched to idle mode).

There are two basic services to enable these functions: time synchronization
and localization of sensor nodes. Time synchronization allows a sensor node to
estimate current time with respect to a common time scale. Localization allows a
node to estimate its current location with respect to a common coordinate system.

CHAPTER 1. INTRODUCTION 3

1.2 Contributions

This thesis is devoted to time synchronization and node localization in the context
of wireless sensor networks. What makes the provision of these services challeng-
ing are the specific technical characteristics and requirements of wireless sensor
networks and their applications. A number of earlier research projects and com-
monly used hardware prototypes of sensor nodes led to a rather narrow view on
these characteristics and requirements, which resulted in a de facto definition of a
wireless sensor network that is adopted by most research projects. Consequently,
existing work on time synchronization and node localization is mostly based on
this narrow view.

One of the contributions of this thesis is to show that such a narrow view
on the characteristics and requirements of WSN does not meet the diversity of
concrete applications of wireless sensor networks. Motivated by a study of concrete
applications of WSN, we propose to replace this narrow definition with a multi-
dimensional design space that captures influential and significant dimensions of
wireless sensor networks and their applications. We substantiate the relevance of
such a design space by showing that concrete prototypical applications of wireless
sensor networks can indeed be located at a diverse set of points in the design space.

We show that existing approaches to time synchronization and node localization
fail to cover important parts of this design space. In particular, we identify two
regions in the design space which are not sufficiently supported by existing solu-
tions. The main contribution of this thesis is to propose novel approaches to node
localization and time synchronization to support these regions. We present and
evaluate prototypical implementations of our solutions. In addition, we support
the practical feasibility of our algorithms by incorporating them into a concrete
application for tracking mobile objects with a wireless sensor network.

One further contribution of this thesis is the provision of a unified view on time
synchronization and node localization in the context of wireless sensor networks.
While research in these two domains has been largely separated in the past, we
show that models, requirements, techniques, and algorithms of the two domains
are rather similar and in some respects closely related. In particular, we point
out a number of structural elements that are shared by many existing distributed
algorithms for time synchronization and node localization.

The major contributions of this thesis have also been published in scientific
conferences, journals, and books, most notably in [34, 80, 82, 83, 84, 85, 86].

1.3 Structure

This thesis first discusses general aspects of wireless sensor networks, before pre-
senting a unified framework for the discussion of time and space. Based on this
framework, we discuss time synchronization and node localization separately. We
then rejoin our discussion on time and space by showing how our solutions are

CHAPTER 1. INTRODUCTION 4

employed in a common prototypical application. In more detail, the thesis is struc-
tured as follows:

Chapter 2 is devoted to general aspects of wireless sensor networks. We char-
acterize wireless sensor networks by showing how they draw from other research
domains and point out important differences with respect to these domains. We
then propose the design space of wireless sensor networks and justify it by showing
that existing applications do indeed cover different regions in this space. We dis-
cuss different classes of sensor-node prototypes and show how they cover various
regions of the design space. We then discuss how different regions in the design
space are associated with different technical challenges and conclude the chapter
with design principles that are helpful in dealing with these challenges.

Chapter 3 presents a unified framework for the discussion of aspects related to
space and time in sensor networks. We first present applications of space and time
in sensor networks, before developing a common model for time synchronization
and node localization. Based on this common model, we present requirements
and possible conceptual approaches for time synchronization and node localization.
Then we examine the structure of distributed algorithms for time synchronization
and node localization, pointing out five important structural elements that can
be found in most distributed algorithms of both domains. Finally, we discuss
various limitations and trade-offs of these distributed algorithms with respect to
the technical challenges presented in Chapter 2.

Chapters 4 and 5 are devoted to in-detail examinations of time synchronization
and node localization, respectively. The structure of these two chapters is very
similar. Following the framework developed in Chapter 3, we first review funda-
mental concepts and techniques. Based on these concepts, we present and discuss
concrete existing algorithms. We then show how these approaches fail to meet the
requirements of certain important regions in the design space that was developed in
Chapter 2. Finally, we present and evaluate our solutions for these specific regions
in the design space.

In Chapter 6 we show the practical feasibility of our solutions for time synchro-
nization and node localization by means of a concrete prototypical application.

Chapter 7 concludes this thesis by summarizing the results, by discussing limi-
tations, and by providing an outlook on future work.

Chapter 2

Wireless Sensor Networks

Research on wireless sensor networks goes back to a number of US-based research
projects, where the use of large networks of tiny wireless sensor devices was ex-
plored in a military domain. Initial work mainly focused on the development of
hardware prototypes and energy-efficient networking protocols. These early ef-
forts established a de facto definition of a wireless sensor network as a large-scale,
wireless, ad hoc, multi-hop, unpartitioned network of homogeneous, tiny, mostly
immobile sensor nodes that would be randomly deployed in the area of interest.

Since then, the use of wireless sensor networks has also been considered for
a number of civil applications. Wireless sensor networks have been suggested as
a scientific tool for better understanding real-world phenomena, as an enabling
technology for making our daily life more comfortable, as a tool for improving the
efficiency of industrial processes, and as a mechanism for dealing with issues such
as environmental protection and law enforcement. In these application domains,
wireless sensor networks are deemed a promising technology with the potential for
changing the way we live by bridging the gap between the real world and the virtual
world of existing information technology.

The diverse set of potential applications has two important implications.
Firstly, wireless sensor networks cannot any longer be characterized by a single,
narrow definition. Rather, wireless sensor networks span a broad design space with
vastly varying requirements and characteristics. Secondly, wireless sensor networks
have become a truly multidisciplinary domain, where close cooperation between
users, application domain experts, hardware designers, and software developers is
needed to realize efficient systems for specific applications.

In this chapter, we characterize wireless sensor networks in a number of dif-
ferent ways. We first informally define wireless sensor networks in Section 2.1,
also pointing out the research areas that are influential. In Section 2.2 we make
the design space of wireless sensor networks explicit by identifying its important
dimensions. We consider existing and envisioned applications of wireless sensor
networks in Section 2.4 and show that these applications do indeed cover various
regions in the design space. In Section 2.5 we discuss four classes of sensor node
prototypes and show how these can cover different areas in the design space. Sec-

5

CHAPTER 2. WIRELESS SENSOR NETWORKS 6

tion 2.6 is devoted to prominent technical challenges that can be found at different
points in the design space. Design principles that can help mitigate these technical
challenges are presented in Section 2.7.

2.1 Characterization

Sensor networks consist of sensor nodes – untethered computing devices that in-
clude a power source, a transceiver for wireless communication, a processor, mem-
ory, sensors, and potentially also actuators. Although the exact properties and
capabilities of these components may vary, a common property of sensor nodes is
their resource scarcity.

Multiple sensor nodes form a wireless network, whose topology and other prop-
erties do also depend on the application context. A large class of sensor networks
can be characterized as multi-hop ad hoc networks, where sensor nodes do not only
act as data sources, but also as routers that forward messages on behalf of other
nodes, such that no additional communication infrastructure (e.g., base stations)
is required for operating the network.

The sensor nodes participating in a network can vary in their capabilities and
configuration. For example, sensor nodes may be equipped with different types of
sensors; some sensor nodes might be equipped with a more powerful processor and
more memory to perform sophisticated computations; some nodes might be con-
nected to a other networks and can act as gateways to a background infrastructure.

Wireless sensor networks are deployed in the physical environment in order to
monitor a wide variety of real-world phenomena with unprecedented quality and
scale (by placing many sensor nodes close to the phenomenon of interest), while only
marginally disturbing the observed physical processes (due to the unobtrusiveness
of individual sensor nodes).

Using attached sensors, nodes can observe a partial state of the real world
in their close physical neighborhood. By integrating observations of many sensor
nodes, a more detailed and geographically extensive observation of a partial state
of the real world can be obtained. Due to the relatively small effective range of
sensor nodes, sensor networks often consist of many, densely deployed sensor nodes.

While individual sensor nodes have only limited functionality, the global be-
havior of a sensor network can be quite complex. The true value of the network is
in this emergent behavior: the functionality of the whole is greater than the sum
of its parts. For example, a sensor network may estimate the velocity of a moving
object even though sensor nodes are not equipped with velocity sensors. Instead,
velocity estimates can be obtained by correlating object sightings from spatially
dispersed sensor nodes, which requires only sensors for detecting the proximity of
objects.

The output of the sensor network may be used for various purposes. In the
most basic form, the output is delivered to a human user for further evaluation.
However, the output may also be used to control the operation of the sensor net-
work without human intervention by enabling/disabling sensors, or by controlling

CHAPTER 2. WIRELESS SENSOR NETWORKS 7

operation parameters of sensors (e.g., sampling rate, sensitivity, orientation, posi-
tion). In addition, actuators may be triggered based on the output of the sensor
network. Using the output of the sensor network to control sensors or actuators can
effectively create a closed-loop system that strives to achieve a particular nominal
condition in the sensor network or in the real world.

Sensor networks are a multidisciplinary area of research which is related to
and draws from a number of other research domains. However, due to a number
of novel characteristics and requirements of sensor networks, results from other
research domains typically cannot be directly applied to sensor networks. Below
we further characterize wireless sensor networks by discussing closely related and
influential research domains. In particular, we point out how sensor networks differ
from typical assumptions and models in these domains.

2.1.1 Distributed Systems

According to [7], a distributed system is an information-processing system that
contains a number of independent computers that cooperate with one another over
a communications networks in order to achieve a specific objective. Based on
this definition, wireless sensor networks are clearly distributed systems: sensor
nodes nodes cooperate by means of wireless communication in order to process
information about the real world.

In the sensor network context, computers and communications network differ
significantly from many traditional distributed systems. The unobtrusive deploy-
ment of large-scale sensor networks requires that sensor nodes be untethered, small,
and cheap. Size and cost constraints in turn imply that sensor nodes are limited
in their resources (computing, storage, communication) and energy budget. Com-
munication is wireless, typically short range, low bandwidth, and unreliable. In-
teraction with a harsh physical environment may lead to a high degree of network
dynamics (e.g., topology changes, network partitions, node failures, communication
failures) typically not found in traditional distributed systems.

Traditional distributed systems are mostly decoupled from the real world. In
contrast, sensor networks are inherently and closely integrated with the real world,
with data about the physical environment being captured and processed automat-
ically, online, and in real time. The input of a sensor network can be characterized
as a continuous stream of data with low information density (raw sensory data con-
tains few information per bit), with high data volume (since many nodes frequently
sample their sensors), with many redundancies and correlations (since many phys-
ical phenomena are continuous in time and space), and with a high level of noise
(since data is obtained by measurements using low-cost sensors). The desired
output typically has opposite characteristics: high information density, low date
volume, low redundancy, and high accuracy.

Sensor nodes cooperate with the goal of distilling the essence of information
contained in a large amount of dispersed sensor readings, taking into account the
limitations of individual nodes and the limitations of the communications network.

CHAPTER 2. WIRELESS SENSOR NETWORKS 8

2.1.2 Ubiquitous Computing

The term “Ubiquitous Computing” [106] refers to a world where computers are
unobtrusively integrated into our natural environment in order to support us in-
tuitively in fulfilling our tasks. This vision is based on the observation that using
today’s general purpose computers often requires complex and non-intuitive in-
teraction patterns. Humans have to pay special attention to the computer, are
distracted from the task to be solved – ultimately making the computer a very vis-
ible component of our current world. In contrast, using a “ubiquitous computer”
should not require abilities that are not immediately related to the task at hand.
In addition to this smooth integration into our natural environment, ubiquitous
computers are also physically embedded into our environment and interact with
the physical world by means of sensors and actuators.

One possible way to approach this vision is to integrate computing and
information-processing capabilities into familiar artifacts or into our physical envi-
ronment – resulting in so-called “smart things” and “smart environments”. Here,
the term “smart” refers to an augmented functionality that is both intuitive and
useful. In contrast to traditional general purpose computers, smart things and
environments are highly specialized for a particular application. The comput-
ers embedded into smart things and smart environments communicate with each
other or with a background infrastructure via a wireless network in order to provide
complex services.

Important for the intuitive or smart behavior of ubiquitous computing systems
is the notion of context. According to [29], context is any information that charac-
terizes the situation of an entity (e.g., person, place, object). While this is a very
broad characterization, context information (e.g., location, time, light, tempera-
ture, presence/absence of other entities) can often be circumscribed as the state of
an entity and its close physical environment. In most cases, sensors are used to ac-
quire context information. Context is a key to intuitive usage, since it is a primary
source of information for adapting system behavior to the current situation and
expectations of users. In the ubicomp literature, such context-driven adaptation is
referred to as “context awareness”.

From the above description, wireless networks of embedded sensing and com-
puting devices are a key enabling technology for ubicomp and have been used in
many prototypical ubicomp applications to date. Despite this, it is interesting to
note that the ubicomp and WSN research communities are largely separated both
in terms of research groups and venues for presenting research results.

One reason for this might be the somewhat different research foci of the two
communities. Typical topics in ubicomp research are user-interface issues, applica-
tions and their implications, high-level aspects of context acquisition and context
awareness. The WSN community often focuses on networking aspects, distributed
algorithms, and distributed signal processing. One further difference is related to
the use of networked sensors in ubicomp and WSN. Sensors for context acquisition
in ubicomp are often incorporated into specific artifacts, resulting in a predefined
and fixed association of sensors to a particular artifact. Detecting the context of

CHAPTER 2. WIRELESS SENSOR NETWORKS 9

such instrumented entities typically involves only a single or few networked sensors.
Deriving context information from raw sensor readings is often performed outside
of the “sensor network”.

In contrast, typical wireless sensor networks are embedded into the environment
to monitor phenomena occurring within this environment. Often, these phenomena
cannot be directly instrumented with sensors for observation. As a consequence,
there may be no predefined or fixed association of sensor nodes to a monitored
phenomenon. Also, a large number of sensor nodes may be involved in the obser-
vation of a single phenomenon. A changing set of sensor nodes may be involved in
monitoring a single phenomenon over time. Raw sensor readings are often (pre-)
processed inside the sensor network.

Despite these subtle differences, the transition between ubicomp and WSN is
rather smooth, which will also be reflected by the design space we propose later in
this chapter.

2.1.3 Peer-to-Peer Systems

Peer-to-peer (P2P) systems can be defined as self-organizing, decentralized dis-
tributed systems where nodes have symmetric roles. While originally conceived
for file sharing in the Internet, the scalability and resilience of P2P systems lends
itself to a growing domain of applications. Most P2P research is concerned with
the establishment of so-called overlay networks on top of existing communication
infrastructures such as the Internet. Such techniques effectively shield application
designers from the complexities of organizing and maintaining an overlay topology,
of tolerating node failures, of balancing load, and of locating application objects.

P2P systems share a number of properties with wireless sensor networks, namely
they are both large-scale, self-organizing, decentralized distributed systems. Hence,
there is a high potential for P2P techniques in the sensor network context. However,
there are also a number of differences between typical P2P systems and WSN,
which make an adoption non-trivial. Most prominently, P2P systems are typically
designed for wired networks, where nodes do not suffer from resource and energy
constraints. Also, neighbor nodes in overlay networks often map to distant nodes
in the underlying physical network. In the sensor network context, this may result
in poor performance and high energy consumption.

2.1.4 Embedded Systems

Many artifacts of our daily life such as consumer electronics, other consumer prod-
ucts, and vehicles contain computers, which are commonly referred to as embedded
systems. These embedded computing systems monitor and control certain aspects
of the containing system. In contrast to general purpose computing systems, em-
bedded system perform a single or tightly knit set of application-specific functions,
are often subject to real-time constraints, and must meet stringent dependability
requirements.

CHAPTER 2. WIRELESS SENSOR NETWORKS 10

Embedded computing systems show a high level of diversity, ranging from cen-
tralized, highly cost/resource/energy-constrained systems (e.g., a pocket remote
control), to high-performance distributed embedded systems (e.g., an aircraft au-
topilot). Most distributed embedded systems use wired communication, because it
is less prone to communication errors and offers more deterministic behavior than
wireless communication.

An embedded system consists of hardware and software components, where
the allocation of functions to hardware and software is highly dependent on the
requirements of the actual system. For performance and security reasons, part
of the functionality may be provided by application-specific hardware components.
The use of software in conjunction with programmable hardware provides flexibility
and support for more complex features.

What differentiates wireless sensor networks from traditional embedded systems
is the large number of participating nodes, the use of wireless communication,
and often severe resource/cost/energy constraints of sensor nodes. Traditional
embedded systems are typically a fixed part of highly engineered structures, that
is, the actual “embedding” takes place at production time and does not change
during the lifetime of the embedded system. In contrast, wireless sensor nodes may
be deployed in a natural setting with little control over the actual placement and
distribution of the nodes. Also, the embedding (i.e., deployment) of sensor nodes
into the physical environment is not tied to the production time of the sensor node
and may change during the lifetime of a sensor node.

2.1.5 Remote and Wired Sensing

Many existing systems for observing real-world phenomena are based on few sen-
sors with a relatively long range, such as satellites for earth observation, weather
stations, or sonars. Due to the long range, these systems can observe phenomena
that are far away from the sensors. However, the resolution of these systems de-
creases with the observation distance. Moreover, many systems require a free line
of sight between the sensors and the observed phenomenon.

Wireless sensor nodes are equipped with short range sensors. Many of these
devices are placed in the close vicinity of the observed phenomenon. Since the
average distance between the observed phenomenon and the sensors is small and
since many redundant sensors observe a single phenomenon, the effective monitor-
ing resolution of a wireless sensor network can be better than that of a remote
sensing approach. The placement of the sensors close the phenomenon allows the
use of wireless sensor networks also in cluttered environments where line-of-sight
paths are rather short.

Many existing systems make use of distributed, wired sensors that are connected
to a central computing device (e.g., sensors in cars and engines, sonar arrays).
Such an approach has a number of advantages: sensors do not need separate power
supplies, the wired network has a fixed topology, small and deterministic delays,
communication errors are very rare. On the other hand, the wiring limits the
flexibility and scale of such wired sensor networks.

CHAPTER 2. WIRELESS SENSOR NETWORKS 11

2.1.6 Wireless, Mobile, and Ad Hoc Networks

Wireless communication, especially with focus on short communication range and
low power consumption, is a key enabling technology for wireless sensor networks.
In mobile networks, computers capable of wireless communication can change their
physical position over time, resulting in dynamically changing network topologies.
Ad hoc networks are wireless networks that do not require an external infrastructure
such as base stations in mobile phone networks. The nodes of an ad hoc network
act both as sources/sinks of messages and as routers that forward messages on
behalf of other nodes. Nodes can join and leave the network anytime. Although
ad hoc networks may also consist of immobile nodes, they often contain mobile
nodes. Power awareness is an important issue in the context of mobile networks,
since mobile computing devices are often powered by batteries. Recent research in
mobile ad hoc networks focuses on routing, mobility management, power manage-
ment, self-configuration, and the radio interface (including the radio hardware and
medium access techniques).

It is anticipated that many wireless sensor networks will be implemented as a
mobile ad hoc network (MANET). However, results from MANET research often
cannot be directly applied to wireless sensor networks, since resource and energy
constraints are typically more stringent here. Typical MANET research focuses
on handheld devices or laptops with renewable batteries. The computing, storage,
communication resources of these devices are comparable to desktop computers.
In contrast, sensor node batteries are often not replaceable; range, bandwidth,
reliability of wireless communication links, computing and memory resources, and
available energy may be orders of magnitude smaller compared to more traditional
MANET nodes.

Wireless sensor networks may also rely on infrastructure-based mobile networks.
For example, mobile phone companies are currently exploring the value of mobile
phones for sensor networks. Such networks could either solely consist of mobile
phones equipped with sensors, or a mobile phone could act as a gateway con-
necting an ad hoc sensor network to the phone network. Such combinations of
infrastructure-based and ad hoc networks would allow remote access to sensor net-
works and an integration with existing computing infrastructures.

2.1.7 Digital Signal Processing

Digital signal processing (DSP) can be defined as the analysis and modification of
discrete time signals (i.e., sequences of numbers). It is a key technology for systems
that process signals from the real world. While wireless sensor networks do process
real-world signals, there are quite a number of differences between many traditional
signal processing systems and sensor networks.

First of all, many traditional DSP application are centralized, that is, data from
possibly many sources is collected at a single processor for evaluation. Depending
on the bandwidth of the input signals, this approach may require high-bandwidth
communication channels and a very powerful centralized processor.

CHAPTER 2. WIRELESS SENSOR NETWORKS 12

In typical sensor networks, the effective channel bandwidth and processing
power is typically rather limited. Hence, centralized processing of digital signals
is often not desirable. Rather, input signals should be preprocessed locally on
the originating sensor nodes to extract relevant features that can be communi-
cated more efficiently. Hence, DSP in sensor networks is often decentralized and
distributed over the sensor nodes.

2.2 The Sensor Network Design Space

In the recent past, wireless sensor networks have found their way into a wide variety
of applications and systems with vastly varying requirements and characteristics.
As a consequence, it is becoming increasingly difficult to discuss typical require-
ments regarding hardware issues and software support. This is particularly prob-
lematic in a multidisciplinary research area such as wireless sensor networks, where
close collaboration between users, application domain experts, hardware designers,
and software developers is needed to implement efficient systems.

Initial research into wireless sensor networks was mainly motivated by military
applications, with DARPA continuing to fund a number of prominent research
projects (e.g., Smart Dust, NEST) that are commonly regarded as the cradle of
sensor-network research. The type of applications considered by these projects
led to a de facto definition of a wireless sensor network as a large-scale (possibly
thousands of nodes, covering large geographical areas), wireless, ad hoc, multi-hop,
unpartitioned network of homogeneous, tiny (hardly noticeable), mostly immobile
(after deployment) sensor nodes that would be randomly deployed in the area of
interest.

More recently, other, civilian application domains of wireless sensor networks
have been considered, such as environmental and species monitoring, agriculture,
production and delivery, healthcare, etc. (see Section 2.4). Concrete projects
targeting these application areas indicate that the above definition of a wireless
sensor network does not necessarily apply for these applications – networks may
consist of heterogeneous and mobile sensor nodes, the network topology may be
as simple as a star topology, networks may make use of existing communication
infrastructures, etc. To meet this general trend towards diversification, we will
discuss important dimensions of the sensor network design space in the following
subsections. We will informally characterize each of the dimensions and, where
appropriate, identify (possibly orthogonal) property classes in order to support a
coarse-grained classification of sensor network applications.

It is certainly debatable which issues are important enough to be explicitly
considered as dimensions in the design space and one could argue in favor of adding
more dimensions or removing some from our suggestions detailed below. In fact,
we expect that this might become reasonable in the future as the field and its
applications evolve. However, we have tried to ensure that our initial suggestion
consisted of a sensible set of dimensions, by basing our choice on the following two
principles. Firstly, there should be notable variability between applications with

CHAPTER 2. WIRELESS SENSOR NETWORKS 13

respect to dimensions. Secondly, a dimension should have a significant impact on
the design and implementation of technical solutions.

In the subsequent section we show that existing and envisioned applications
of wireless sensor networks can indeed be located at different points in the design
space, with a number of important implications.

2.2.1 Deployment

The deployment of sensor nodes in the physical environment may take several
forms. Nodes may be deployed at random (e.g., by dropping them from an aircraft)
or installed at deliberately chosen spots. Deployment may be a one-time activity,
where the installation and use of a sensor network are strictly separate activities.
However, deployment may also be a continuous process, with more nodes being
deployed at any time during the use of the network – for example, to replace failed
nodes or to improve coverage at certain interesting locations.

The actual type of deployment affects important properties such as the expected
node density, node locations, regular patterns in node locations, and the expected
degree of network dynamics.

We suggest the following coarse-grained classification with respect to deploy-
ment: random vs. manual; one-time vs. iterative.

2.2.2 Mobility

Sensor nodes may change their location after initial deployment. Mobility can
result from environmental influences such as wind or water, sensor nodes may be
attached to or carried by mobile entities, and sensor nodes may possess automotive
capabilities. In other words, mobility may be either an incidental side effect, or
it may be a desired property of the system (e.g., to move nodes to interesting
physical locations), in which case mobility may be either active (i.e., automotive)
or passive (e.g., attached to a moving object not under the control of the sensor
node). Mobility may apply to all nodes within a network or only to subsets of
nodes. The degree of mobility may also vary from occasional movement with long
periods of immobility in between, to constant travel.

Mobility has a large impact on the expected degree of network dynamics and
hence influences the design of networking protocols and distributed algorithms. The
actual speed of movement may also have an impact, for example on the amount of
time during which nodes stay within communication range of each other.

We suggest the following coarse-grained classification with respect to mobility:
immobile vs. partly vs. all; occasional vs. continuous; active vs. passive.

2.2.3 Cost, Size, Resources, and Energy

Depending on the actual needs of the application, the form factor of a single sensor
node may vary from the size of a shoe box (e.g., a weather station) to a microscop-
ically small particle (e.g., for military applications where sensor nodes should be

CHAPTER 2. WIRELESS SENSOR NETWORKS 14

almost invisible). Similarly, the cost of a single device may vary from hundreds of
Euros (for networks of very few, but powerful nodes) to a few Cents (for large-scale
networks made up of very simple nodes).

Since sensor nodes are untethered autonomous devices, their energy and other
resources are limited by size and cost constraints. Varying size and cost constraints
directly result in corresponding varying limits on the energy available (i.e., size,
cost, and energy density of batteries or devices for energy scavenging), as well as
on computing, storage, and communication resources. Hence, the energy and other
resources available on a sensor node may also vary greatly from system to system.
Power may be either stored (e.g., in batteries) or scavenged from the environment
(e.g., by solar cells).

These resource constraints limit the complexity of the software executed on
sensor nodes. For our classification, we have partitioned sensor nodes roughly into
four classes based on their physical size: brick vs. matchbox vs. grain vs. dust.

2.2.4 Heterogeneity

Early sensor network visions anticipated that sensor networks would typically con-
sist of homogeneous devices that were mostly identical from a hardware and soft-
ware point of view. Some projects, such as Amorphous Computing [1], even as-
sumed that sensor nodes were indistinguishable, that is, they did not even possess
unique addresses or IDs within their hardware. This view was based on the obser-
vation that otherwise it would not be feasible to cheaply produce vast quantities
of sensor nodes.

However, in many prototypical systems available today, sensor networks consist
of a variety of different devices. Nodes may differ in the type and number of at-
tached sensors; some computationally more powerful “compute” nodes may collect,
process, and route sensory data from many more limited sensing nodes; some sen-
sor nodes may be equipped with special hardware such as a GPS receiver to act as
beacons for other nodes to infer their location; some nodes may act as gateways to
long-range data communication networks (e.g., GSM networks, satellite networks,
or the Internet).

The degree of heterogeneity in a sensor network is an important factor since it
affects the complexity of the software executed on the sensor nodes and also the
management of the whole system.

We suggest the following coarse-grained classification with respect to hetero-
geneity: homogeneous vs. heterogeneous.

2.2.5 Communication Modality

For wireless communication among sensor nodes, a number of communication
modalities can be used such as radio, diffuse light, laser, inductive and capaci-
tive coupling, or even sound.

The most common modality is radio waves, since these do not require a free

CHAPTER 2. WIRELESS SENSOR NETWORKS 15

line of sight, and communication over medium ranges can be implemented with
relatively low power consumption and relatively small antennas (a few centimeters
in the common sub-GHz frequency bands). Using light beams for communication
requires a free line of sight and may interfere with ambient light and daylight, but
allows for much smaller and more energy-efficient transceivers compared to radio
communication. Smart Dust [49], for example, uses laser beams for communication.
Inductive and capacitive coupling only works over small distances, but may be
used to power a sensor node. Most passive Radio Frequency Identification (RFID)
systems use inductive coupling, for example. Sound or ultrasound is typically used
for communication under water or to estimate distances based on time-of-flight
measurements. Sometimes, multiple modalities are used by a single sensor network
system.

The communication modality used obviously influences the design of medium
access protocols and communication protocols, but also affects other properties
that are relevant to the application.

We suggest the following coarse-grained classification with respect to commu-
nication modality: radio vs. light vs. inductive vs. capacitive vs. sound.

2.2.6 Infrastructure

The various communication modalities can be used in different ways to construct an
actual communication network. Two common forms are so-called infrastructure-
based networks on the one hand and ad hoc networks on the other hand. In
infrastructure-based networks, sensor nodes can only directly communicate with
so-called base station devices. Communication between sensor nodes is relayed
via the base station. If there are multiple base stations, these have to be able
to communicate with each other. The number of base stations depends on the
communication range and the area covered by the sensor nodes. Mobile phone
networks and Smart Dust [49] are examples of this type of network.

In ad hoc networks, nodes can directly communicate with each other without
an infrastructure. Nodes may act as routers, forwarding messages over multiple
hops on behalf of other nodes.

Since the deployment of an infrastructure is a costly process, and the installation
of an infrastructure may often not be feasible, ad hoc networks are preferred for
many applications. However, if an infrastructure is already available anyway (such
as the GSM network), it might also be used for certain sensor network applications.

Combinations of ad hoc networks and infrastructure-based networks are some-
times used, where clusters of sensor nodes are interconnected by a wide area
infrastructure-based network.

Note that the above arguments not only apply to communication, but also
to other infrastructures, such as localization or time synchronization (e.g., GPS
satellites).

We suggest the following coarse-grained classification with respect to infrastruc-
ture: infrastructure vs. ad hoc.

CHAPTER 2. WIRELESS SENSOR NETWORKS 16

2.2.7 Network Topology

One important property of a sensor network is its diameter, that is, the maximum
number of hops between any two nodes in the network. In its simplest form, a
sensor network forms a single-hop network, with every sensor node being able to
directly communicate with every other node. An infrastructure-based network with
a single base station forms a star network with a diameter of two. A multi-hop
network may form an arbitrary graph, but often an overlay network with a simpler
structure is constructed such as a tree or a set of connected stars.

The topology affects many network characteristics such as latency, robustness,
and capacity. The complexity of data routing and processing also depends on the
topology.

We suggest the following coarse-grained classification with respect to network
topology: single-hop vs. star vs. networked stars vs. tree vs. graph.

2.2.8 Coverage

The effective range of the sensors attached to a sensor node defines the coverage
area of a sensor node. Network coverage measures the degree of coverage of the
area of interest by sensor nodes. With sparse coverage, only parts of the area of
interest are covered by the sensor nodes. With dense coverage, the area of interest
is completely (or almost completely) covered by sensors. With redundant coverage,
multiple sensors cover the same physical location. The actual degree of coverage is
mainly determined by the observation accuracy and redundancy required. Coverage
may vary across the network. For example, nodes may be deployed more densely
at interesting physical locations.

The degree of coverage also influences information-processing algorithms. High
coverage is a key to robust systems and may be exploited to extend the network
lifetime by switching redundant nodes to power-saving sleep modes.

We suggest the following coarse-grained classification with respect to coverage:
sparse vs. dense vs. redundant.

2.2.9 Connectivity

The communication ranges and physical locations of individual sensor nodes define
the connectivity of a network. If there is always a network connection (possibly
over multiple hops) between any two nodes, the network is said to be connected.
Connectivity is intermittent if the network may be occasionally partitioned. If
nodes are isolated most of the time and enter the communication range of other
nodes only occasionally, we say that communication is sporadic. Note that despite
the existence of partitions, messages may be transported across partitions by mobile
nodes.

Connectivity mainly influences the design of communication protocols and
methods of data gathering.

CHAPTER 2. WIRELESS SENSOR NETWORKS 17

We suggest the following coarse-grained classification with respect to connec-
tivity: connected vs. intermittent vs. sporadic.

2.2.10 Network Size

The number of nodes participating in a sensor network is mainly determined by
requirements relating to network connectivity and coverage, and by the size of the
area of interest. The network size may vary from a few nodes to thousands of sensor
nodes or even more. The network size determines the scalability requirements with
regard to protocols and algorithms.

2.2.11 Lifetime

Depending on the application, the required lifetime of a sensor network may range
from some hours to several years. The necessary lifetime has a high impact on the
required degree of energy efficiency and robustness of the nodes.

2.2.12 Other QoS Requirements

Depending on the application, a sensor network must support certain quality-
of-service aspects such as real-time constraints (e.g., a physical event must be
reported within a certain period of time), robustness (i.e., the network should re-
main operational even if certain well-defined failures occur), tamper-resistance (i.e.,
the network should remain operational even when subject to deliberate attacks),
eavesdropping-resistance (i.e., external entities cannot eavesdrop on data traffic),
unobtrusiveness or stealth (i.e., the presence of the network must be hard to de-
tect). These requirements may impact on other dimensions of the design space
such as coverage and resources.

2.3 Implications of the Design Space

There are several important consequences of the design space as discussed above.
Clearly, a single hardware platform will most likely not be sufficient to support the
wide range of possible applications (cf. Section 2.5). In order to avoid the devel-
opment of application-specific hardware, it would be desirable, however, to have
available a (small) set of platforms with different capabilities that cover the design
space. A modular approach, where the individual components of a sensor node can
be easily exchanged, might help to partially overcome this difficulty. Principles and
tools for selecting suitable hardware components for particular applications would
also be desirable.

As similar observation can be made regarding algorithms and software in gen-
eral. As with hardware, one could try to cover the design space with a (larger)
set of different protocols, algorithms, and basic services. Note that this does in
particular apply to algorithms for locating sensor nodes in space and time as will

CHAPTER 2. WIRELESS SENSOR NETWORKS 18

be discussed in Chapter 3. The selection of appropriate software components for
the application at hand and perhaps also dynamic adaptation during runtime of
an application should be supported by appropriate frameworks.

In traditional distributed systems, middleware has been introduced to hide
such complexity from the software developer by providing programming abstrac-
tions that are applicable for a large class of applications. This raises the question,
whether appropriate abstractions and middleware concepts can be devised that are
applicable for a large portion of the sensor network design space. This is not an
easy task, since some dimensions of the design space (e.g., network connectivity)
are very hard to hide from the system developer. Moreover, exposing certain appli-
cation characteristics to the system and vice versa is a key approach for achieving
energy and resource efficiency in sensor networks. Even if the provision of ab-
straction layers is conceptually possible, they often introduce significant resource
overheads – which is problematic in highly resource-constrained environments such
as sensor networks.

In addition to these more technical issues, the design space we advocate can
hopefully bring more clarity to the often somewhat diffuse discussions about typical
or right characteristics and requirements of wireless sensor networks.

2.4 Applications

Wireless sensor networks can be considered as a tool for observing real-world pro-
cesses. In particular, the use of WSN might be a worthwhile option for observation
tasks with one or more of the following properties:

• The observation environment is cluttered and can be hardly observed from
afar.

• Any instrumentation for observation must be unobtrusive to avoid influencing
observation results.

• The phenomenon of interest or its close physical environment can be instru-
mented for observation.

• A high spatial and temporal monitoring resolution is required.

• The signal-to-noise ratio of signals emitted by the phenomenon of interest is
low or decreases significantly over distance.

• Traditional observation methods are very costly due to the involvement of
human personnel.

• The observation environment is very harsh, inaccessible, or even toxic.

• The observation must be continuously performed during long periods of time
or over large geographical areas.

CHAPTER 2. WIRELESS SENSOR NETWORKS 19

The above problem characterization applies to a wide range of problem domains
some of which we will sketch in the following sections. For each of these domains
we describe some representative applications. We also show that these applications
can be located at different points in the design space. In addition to these concrete
applications, we briefly sketch application ideas and visions that have not yet been
realized or which are not well-documented.

2.4.1 Species Monitoring

Wireless sensor networks can be used to observe the behavior of animals in their
natural habitats. Cerpa et al [22] give an overview and motivation of this applica-
tion domain.

Bird Observation at Great Duck Island

A WSN is being used to observe the breeding behavior of a small bird called
Leach’s Storm Petrel [58] on Great Duck Island, Maine, USA. These birds are
easily disturbed by the presence of humans, hence WSN seems an appropriate
way of better understanding their behavior. The breeding season lasts for seven
months from April to October. The biologists are interested in the usage pattern
of their nesting burrows, changes in environmental conditions outside and inside
the burrows during the breeding season, variations among breeding sites, and the
parameters of preferred breeding sites.

Sensor nodes are installed inside the burrows and on the surface. Nodes can
measure humidity, pressure, temperature, and ambient light level. Burrow nodes
are equipped with infrared sensors to detect the presence of the birds. The burrows
occur in clusters and the sensor nodes form a multi-hop ad hoc network. Each
network cluster contains a sensor node with a long-range directional antenna that
connects the cluster to a central base station computer. The base station computer
is connected to a database back-end system via a satellite link. Sensor nodes sample
their sensors about once a minute and send their readings directly to the database
back-end system.

Deployment manual, one-time
Mobility immobile
Resources matchbox
Cost approx. 200 USD per node
Energy battery, solar panel
Heterogeneity weather stations, burrow nodes, gateways
Modality radio
Infrastructure base station, gateways
Topology star of subgraphs
Coverage dense (every burrow)
Connectivity connected

CHAPTER 2. WIRELESS SENSOR NETWORKS 20

Size tens to hundreds (about 100 deployed)
Lifetime 7 months (breeding period)

ZebraNet

A WSN is being used to observe the behavior of wild animals within a spacious
habitat (e.g., wild horses, zebras, and lions) [48] at the Mpala Research Center in
Kenya. Of particular interest is the behavior of individual animals (e.g., activity
patterns of grazing, graze-walking, and fast moving), interactions within a species,
interactions among different species (e.g., grouping behavior and group structure),
and the impact of human development on the species. The observation period is
scheduled to last a year or more. The observation area may be as large as hundreds
or even thousands of square kilometers.

Animals are equipped with sensor nodes. An integrated GPS receiver is used
to obtain estimates of their position and speed of movement. Light sensors are
used to give an indication of the current environment. Further sensors (head up or
down, body temperature, ambient temperature) are planned for the future. Each
node logs readings from its sensors every three minutes. Whenever a node enters
the communication range of another node, the sensor readings and the identities
of the sensor nodes are exchanged (i.e., data is flooded across network partitions).
At regular intervals, a mobile base station (e.g., a car or a plane) moves through
the observation area and collects the recorded data from the animals it passes.

Deployment manual, one-time
Mobility all, continuous, passive
Resources matchbox
Energy battery
Heterogeneity nodes, gateway
Modality radio
Infrastructure base station, GPS
Topology graph
Coverage dense (every animal)
Connectivity sporadic
Size tens to hundreds
Lifetime one year

Further Applications in Species Monitoring

A variety of different sensor devices are used to monitor the behavior of Whale
Sharks [137] around the Seychelles. The so-called archival pop-off tag is attached
to the shark and uses light and pressure sensors to monitor the diving behavior.
After a certain time, the tag detaches from the shark and floats to the surface,
from where it sends off collected data to a satellite.

Sensor devices are also used to observe social interactions among seals [127] in

CHAPTER 2. WIRELESS SENSOR NETWORKS 21

the Northern Sea. A sensor node [37] is attached to each seal which can detect the
distance to and the identity of another nearby tag (and seal). These sightings are
collected and sent off to a satellite.

A project at CENS intends to use a sensor network for detection and classi-
fication of marine microorganisms (e.g., alga) that are toxic to marine life and
dangerous to human health [123]. Work in this project has so far focused on the
development of appropriate sensors. Obviously, these sensors cannot be attached
to microorganisms, but have to be installed in an area of interest in the ocean.

2.4.2 Environmental Monitoring

Besides animals, a number of other environmental phenomena can be observed
with wireless sensor networks.

Glacier Monitoring

A sensor network is being used to monitor sub-glacier environments at Briksdals-
breen, Norway, with the overall goal of better understanding the Earth’s climate
[62]. Of particular interest are displacements and the dynamics inside the glacier.
A lengthy observation period of months to years is required.

Sensor nodes are deployed in drill holes at different depths in the glacier ice
and in the till beneath the glacier. Sensor nodes are equipped with pressure and
temperature sensors and a tilt sensor for measuring the orientation of the node.
Sensor nodes communicate with a base station deployed on top of the glacier.
The base station measures supra-glacial displacements using differential GPS and
transmits the data collected via GSM. Nodes are not recoverable after deployment.
Radio communication through ice and water is a major problem.

Deployment manual, one-time
Mobility all, continuous, passive
Resources brick
Energy battery
Heterogeneity nodes, base station
Modality radio, GSM
Infrastructure base station, GPS, GSM
Topology star
Coverage sparse
Connectivity connected
Size 9 deployed (potential for tens to hundreds)
Lifetime several months

Bathymetry

A sensor network is being used to monitor the impact on the surrounding environ-
ment of a wind farm off the coast of England [61]. Of particular interest here is

CHAPTER 2. WIRELESS SENSOR NETWORKS 22

the influence on the structure of the ocean bed (e.g., formation of sand banks) and
the influence on tidal activity.

Sensor nodes are deployed on the ocean bed by dropping them from a ship
at selected positions, their location being fixed on the ocean bed by an anchor.
Each sensor node is connected via a cable to a buoy on the ocean surface that
contains the radio equipment and GPS, since radio communication under water is
virtually impossible. The sensor nodes are able to measure pressure, temperature,
conductivity, current, and turbidity, and form a self-organized ad hoc network.

Deployment manual, one-time
Mobility all, occasional, passive
Resources brick
Energy battery
Heterogeneity homogeneous
Modality radio
Infrastructure GPS
Topology graph
Coverage sparse (500m - 1km apart)
Connectivity connected
Size 6 deployed, 50 planned (potential for up to hundreds)
Lifetime several months

Ocean Water Monitoring

The ARGO project [112] is using a sensor network to observe the temperature,
salinity, and current profile of the upper ocean. The goal is a quantitative descrip-
tion of the state of the upper ocean and the patterns of ocean climate variability,
including heat and freshwater storage and transport. Intended coverage is global,
and observation is planned to last for several years. Measurement data is available
almost in real-time.

The project uses free-drifting profiling sensor nodes equipped with temperature
and salinity sensors. The nodes are dropped from ships or planes. The nodes
cycle to a depth of 2000m every ten days. Data collected during these cycles is
transmitted to a satellite while nodes are at the surface. The lifetime of the nodes
is about 4-5 years.

Deployment random, iterative
Mobility all, continuous, passive
Resources brick
Cost approx. 15000 USD per node
Energy battery
Heterogeneity homogeneous
Modality radio
Infrastructure satellite

CHAPTER 2. WIRELESS SENSOR NETWORKS 23

Topology star
Coverage sparse
Connectivity intermittent
Size 1300 deployed (3000 planned)
Lifetime 4-5 years

Further Applications in Environmental Monitoring

Several projects explore the use of sensor networks for monitoring water quality.
The European project SEWING [129] is currently concerned with the development
of sensors for certain chemicals. It is, however, anticipated to construct complete
sensor nodes for water quality monitoring. At CENS, a similar project intends to
observe water quality and to monitor transport of contaminants with ground water
using sensor networks [118].

In [107], as wireless sensor network for monitoring volcanic eruptions is pre-
sented. The system consists of several infrasound monitoring nodes, which report
low-frequency acoustic signals to an aggregator node, which preprocesses the data
and sends aggregated values to a remote base station via a long-range radio link.
A GPS node is used to synchronize the infrasound monitoring nodes. The system
can be used to monitor and locate volcanic eruptions.

Sensor networks can be used to monitor seismic activity and the structural
response of buildings [51]. A number of experiments with seismic sensor networks
in buildings have been carried out within CENS [109, 128]. A sensor network is
also used to monitor the influence of winds on Golden Gate Bridge in San Francisco
[133].

Another application of sensor networks is the observation of micro climates and
their changes over time [27, 122]. One particularly interesting application in this
context is the use of sensor networks for detecting signs of life on other planets
(e.g., on Mars) [28].

2.4.3 Agriculture

Wireless sensor networks can also be used to increase the efficiency of plant breeding
and livestock husbandry.

Grape Monitoring

A WSN is being used to monitor the conditions that influence plant growth (e.g.,
temperature, soil moisture, light, and humidity) across a large vineyard in Ore-
gon, USA [11]. The goals include supporting precision harvesting (harvesting an
area as soon as the grapes in it are ripe), precision plant care (adapting the wa-
ter/fertilizer/pesticide supply to the needs of individual plants), frost protection,
predicting insect/pest/fungi development, and developing new agricultural models.

CHAPTER 2. WIRELESS SENSOR NETWORKS 24

In a first version of the system, sensor nodes are deployed across a vineyard
in a regular grid about 20 meters apart. A temperature sensor is connected to
each sensor node via a cable in order to minimize false sensor readings due to heat
disseminated by the sensor nodes. A laptop computer is connected to the sensor
network via a gateway to display and log the temperature distribution across the
vineyard. The sensor nodes form a two-tier multi-hop network, with nodes in the
second tier sending data to a node in the first tier. Nodes in the first tier also
collect sensor data, but do additionally act as data routers.

Deployment manual, one-time
Mobility immobile
Resources matchbox
Cost 200 USD per node
Energy battery
Heterogeneity sensors, gateway, base station
Modality radio
Infrastructure base station
Topology tree (two-tiered multi-hop)
Coverage sparse (20m apart)
Connectivity connected
Size 65 deployed (potential for up to hundreds)
Lifetime several months (growth period)

Cattle Herding

A WSN is being used to implement virtual fences, with an acoustic stimulus being
given to animals that cross a virtual fence line [18]. Movement data from the cows
controls the virtual fence algorithm that dynamically shifts fence lines. Such a
system can reduce the overheads of installing and moving physical fences and can
improve the usage of feedlots.

For the first experiment, each sensor node consists of a PDA with a GPS re-
ceiver, a WLAN card, and a loudspeaker for providing acoustic stimuli to the cattle
as they approach a fence. These devices are attached to the neck of the cows. The
nodes form a multi-hop ad hoc network, forwarding movement data to a base sta-
tion (a laptop computer). The base station transmits fence coordinates to the
nodes.

Deployment manual, one-time
Mobility all, continuous, passive
Resources brick
Cost approx. 1000 USD per node
Energy battery
Heterogeneity homogeneous
Modality radio
Infrastructure base station, GPS

CHAPTER 2. WIRELESS SENSOR NETWORKS 25

Topology graph
Coverage dense (every cow)
Connectivity intermittent
Size 10 deployed (potential for up to hundreds)
Lifetime days to weeks

Further Applications in Agriculture

The Hogthrob project [135] intends to use sensor networks for sow monitoring. In
particular, movement data is intended to be used to detect the sow’s heat period
and to detect abnormal behavior which could be caused by diseases.

The PlantCare project [53] uses a sensor network to monitor soil humidity of
plants and to control a robot to water indigent plants.

2.4.4 Production and Delivery

In this section we consider the use of wireless sensor networks for monitoring the
production and delivery of goods.

Cold Chain Management

The commercial Securifood system [78] is a WSN for monitoring the temperature
compliance of cold chains from production, via distribution centers and stores, to
the consumer. Clients receive an early warning of possible breaks in the cold chain.

The system consists of four major components: sensor nodes, relay units, access
boxes, and a warehouse. Sensor nodes are transported with the products and collect
temperature data. Relay units collect and store temperature data from sensor nodes
– they are more powerful devices with a permanent power supply. Multiple relay
units form a multi-hop ad hoc network. An access box is an even more powerful
embedded Linux device that acts as a gateway between the network of relay units
and the Internet. There is one access box per production site. An Internet-hosted
data warehouse acts as a central server, collecting data from all the access boxes.
The data warehouse provides an online image of all the sensor data in the system
and acts as a central data repository for applications.

Deployment manual, iterative
Mobility partly (sensors), occasional, passive
Resources matchbox (sensors), brick (relays)
Energy battery
Heterogeneity sensor units, relay units, access boxes, warehouse
Modality radio
Infrastructure relays, access boxes
Topology tree (three-tiered multi-hop)
Coverage sparse

CHAPTER 2. WIRELESS SENSOR NETWORKS 26

Connectivity intermittent
Size 55 sensor units and 4 relays deployed (potential for hundreds)
Lifetime years

Further Applications in Production and Delivery

Wireless sensor networks can also be used to monitor and manage the life cycle
of production tools [9]. This applies in particular to tools that wear off and need
regular treatment to avoid failures. Additionally, sensor network technology can
help improve the availability of mobile tools and equipment. Intel research, for
example, is examining the use of vibration sensors for early detection of problems
with the cooling equipment in a semiconductor fabrication unit [136]. A similar
approach could also be used to detect potential problems in oil wells and pipelines
[76]. A number of ongoing projects at BP [16] use sensor networks for monitoring
ship vibrations and pipeline integrity.

2.4.5 Disaster Relief

Wireless sensor networks can be used in emergency situations, for example, to
coordinate and increase the efficiency of rescue actions.

Rescue of Avalanche Victims

A WSN is being used to assist rescue teams in saving people buried in avalanches
[67]. The goal is to better locate buried people and to limit overall damage by giving
the rescue team additional indications of the state of the victims and to automate
the prioritization of victims (e.g., based on heart rate, respiration activity, and
level of consciousness).

For this purpose, people at risk (e.g., skiers, snowboarders, and hikers) carry
a sensor node that is equipped with an oximeter (a sensor which measures the
oxygen level in blood), and which permits heart rate and respiration activity to be
measured. Additionally, an oxygen sensor is used to detect air pockets around the
victim. Accelerometers are used to derive the orientation of the victim. The rescue
team uses a PDA to receive sensory data from the buried victims.

Deployment manual, one-time
Mobility all, continuous, passive
Resources matchbox
Energy battery
Heterogeneity homogeneous
Modality radio
Infrastructure rescuer’s PDA
Topology star
Coverage dense (every person)

CHAPTER 2. WIRELESS SENSOR NETWORKS 27

Connectivity connected
Size tens to hundreds (number of victims)
Lifetime days (duration of a hike)
QoS dependability

Further Applications in Disaster Relief

In flood situations, dams of sank sacks are often used to protect against water.
One common problem with this approach is that sand sacks get wet, which may
eventually lead to water inleakage and to a collapse of the dam. By equipping sand
sacks with sensor nodes, such situations can be detected early on and people can
be guided to the defective place in order to fix them before bad things happen.
(This idea goes back to researchers at the University of Rostock.)

Sensor networks may be used to assist firefighters in defeating large scale forest
fires and can help protect the lives of firefighters [52]. A sensor network may
measure wind direction and speed to help predict direction and speed of spreading
of the fire. For this, a sensor network may be deployed in affected areas during
firefighting.

2.4.6 Building Management and Automation

Modern buildings do already contain a large number of wired sensors and actuators
to control a variety of functions (e.g., heat control, door openers, automatic light
and blind control) [126]. It has been argued that replacing these wired sensor by
wireless sensor networks could reduce construction cost and increase flexibility by
removing the cabling. However, wireless sensor networks may also enable a number
of novel applications in this context as indicated below.

Power Monitoring

A WSN is being used to monitor power consumption in large and dispersed office
buildings [50]. The goal is to detect locations or devices that are consuming a lot
of power to provide indications for potential reductions in power consumption.

The system consists of three major components: sensor nodes, transceivers,
and a central unit. Sensor nodes are connected to the power grid (at outlets or
fuse boxes) to measure power consumption and for their own power supply. Sensor
nodes directly transmit sensor readings to transceivers. The transceivers form a
multi-hop network and forward messages to the central unit. The central unit acts
as a gateway to the Internet and forwards sensor data to a database system.

Deployment manual, iterative
Mobility immobile
Resources matchbox
Energy power grid

CHAPTER 2. WIRELESS SENSOR NETWORKS 28

Heterogeneity sensor nodes, transceivers, central unit
Modality radio (sensors unidirectional)
Infrastructure transceivers
Topology layered multi-hop
Coverage sparse (selected outlets)
Connectivity connected
Size tens to hundreds
Lifetime years (building lifecycle)

Further Applications in Building Management and Automation

In [87], a wireless sensor network for commercial lighting control is suggested. For
this, sensor nodes are deployed in a building to sense the occupancy status of
individual rooms. The obtained raw data is fed to a decision system that controls
the lights.

It was also suggested to use sensor networks for calibration of air conditioning
systems to the particular installation environments to reduce the noise level and
power consumption of these systems [46]. For this purpose, a portable sensor
network is installed in the room, providing temperature, humidity, and noise level
distribution. These data can be used to fine tune the configuration of the air
conditioning.

2.4.7 Traffic and Infrastructure

There is a growing trend to instrument cars with more and more sensors and actu-
ators to improve the drivability and comfort. While past research mostly focused
on single cars, recent developments include networking of cars [117, 119] to reduce
accidents, traffic jams, environmental stress, or to improve fleet management.

Networked Parking Spaces

A sensor network is used to find free parking lots [8]. The system can help find
streets in the locality with vacant spots, can find occupied parking meters within
a certain range which will expire at a certain time, and can locate all vehicles that
reside in expired spots.

In this system, parking meters are equipped with sensor nodes. These nodes
are equipped with sensors to detect the occupancy status of the according parking
spot and have access to parameters of the parking meter such as time of expiry.
The sensor nodes form a static multi-hop ad hoc network. Cars are also equipped
with sensor nodes that establish a link to the meter network to issue queries about
free parking spots.

Deployment manual
Mobility partly (car nodes)

CHAPTER 2. WIRELESS SENSOR NETWORKS 29

Resources matchbox
Energy car power system, solar, battery
Heterogeneity car nodes, meter nodes
Modality radio
Infrastructure ad hoc
Topology multi-hop
Coverage dense
Connectivity intermittent (car - meter network)
Size hundreds to thousands
Lifetime years (lifecycle of meters/cars)
QoS robustness

Further Applications in Traffic and Infrastructure

Sensor nodes installed alongside roads can serve a number of purposes, among
others to improve safety, to improve traffic flow, and to improve environmental
health [72]. Based on local environmental data (e.g., road surface temperature),
such sensor devices can issue warnings or even control vehicle speed. Roadside
sensor nodes can also be used for traffic monitoring and can thus help predict
traffic flow and jams. For example, in [24] a wireless sensor network is presented
for vehicle detection, estimation of vehicle length, and speed measurements.

2.4.8 Home and Office

Sensor networks can also improve the convenience of home and office environments.

Furniture Assembly

A WSN is being used to assist people during the assembly of complex composite
objects such as do-it-yourself furniture [3]. This saves users from having to study
and understand complex instruction manuals, and prevents them from making
mistakes.

The furniture parts and tools are equipped with sensor nodes. These nodes
possess a variety of different sensors: force sensors (for joints), gyroscope (for
screwdrivers), and accelerometers (for hammers). The sensor nodes form an ad
hoc network for detecting certain actions and sequences thereof and give visual
feedback to the user via LEDs integrated into the furniture parts.

Deployment manual, one-time
Mobility all, occasional, passive
Resources matchbox
Energy battery
Cost approx. 100 Euro per node
Heterogeneity different sensors

CHAPTER 2. WIRELESS SENSOR NETWORKS 30

Modality radio
Infrastructure ad hoc
Topology star
Coverage sparse
Connectivity connected
Size tens
Lifetime hours (duration of assembly)

Further Applications in Home and Office

In an office environment, sensor nodes can be attached to a number of artifacts such
as coffee mugs [12] or chairs [13] in order to improve the efficiency and convenience
of the environment. Sensor in chairs, for example, can be used to detect whether a
chair is occupied or not. The status of multiple chairs in a room could be used to
derive the occupancy status of the room, which could be displayed at an electronic
doorplate (e.g., to keep people from entering the room), or could be sent to a
central room management system (e.g., to improve room allocation).

2.4.9 Military and Homeland Security

The military and its funding agencies have been one of the main driving forces
behind wireless sensor network research. More recently, the use of wireless sensor
networks has also been considered for improving homeland security.

Vehicle Tracking

A WSN is being used to track the path of military vehicles (e.g., tanks) [134]. The
sensor network should be unnoticeable and difficult to destroy. Tracking results
should be reported within given deadlines.

Sensor nodes are deployed from an unmanned aerial vehicle (UAV). Magne-
tometer sensors are attached to the nodes in order to detect the proximity of
tanks. Nodes collaborate in estimating the path and velocity of a tracked vehicle.
Tracking results are transmitted to the unmanned aerial vehicle.

Deployment random (thrown from aircraft)
Mobility all, occasional, passive
Resources matchbox
Cost approx. 200 USD per node
Energy battery
Heterogeneity homogeneous
Modality radio
Infrastructure UAV
Topology graph
Coverage sparse

CHAPTER 2. WIRELESS SENSOR NETWORKS 31

Connectivity intermittent (UAV)
Size 5 deployed (potential for tens to thousands)
Lifetime weeks to years (conflict duration)
QoS stealth, tamper-resistance, real-time

Self-Healing Mine Field

Anti-tank landmines are being equipped with sensing and communication capabil-
ities to ensure that a particular area remains covered even if the enemy tampers
with a mine to create a potential breach lane [66]. If tampering is detected by the
mine network, an intact mine hops into the breach using a rocket thruster.

The mines form a multi-hop ad hoc network and monitor radio link quality
to detect failed mines. Nodes also estimate their location and orientation using
ultrasonic ranging. When a node failure is detected, one of the mines is selected to
relocate itself using one of eight rocket thrusters.

Deployment manual
Mobility all, occasional, active
Resources brick
Energy battery
Heterogeneity homogeneous
Modality radio, ultrasound (for localization)
Infrastructure ad hoc
Topology graph
Coverage dense
Connectivity connected
Size 20 deployed (potential for up to hundreds)
Lifetime months to years
QoS tamper-resistance

Further Applications in Military and Homeland Security

A number of research and development efforts are dedicated to sensor net-
works for detection, classification, and tracking of hostile activities (e.g., biolog-
ical/chemical/radiological attacks, troops, tanks, vessels) in the military context.
The goal of the DARPA-funded project ARGUS [113] was the development of ad-
vanced remote ground unattended sensors the would be dropped from aircraft to
detect seismic and acoustic signatures and send them to a satellite. The later
project MIUGS [100] focused on the same type of application, but sensors would
form multi-hop ad hoc networks without using satellite communication. A number
of DARPA-funded research projects such as NEST also work on energy-efficient
sensor networks for target tracking [45].

One particularly noticeable effort in this context is the Seaweb project [77],
which tries to accomplish near-real-time data telemetry for a set of widely spaced

CHAPTER 2. WIRELESS SENSOR NETWORKS 32

oceanographic sensors. Sensor nodes are deployed on the ground of ocean/river/bay
environments and communicate with each other via undersea acoustic signaling
(telesonar). Such a system would be useful for the detection, classification, and
tracking of vessels and mines, but also for the detection of biological, chemical, and
radiological contamination.

2.4.10 Surveillance and Law Enforcement

Being an ideal tool for unobtrusive surveillance, sensor networks may also be used
by executive authorities to enforce laws, to prevent and to elucidate offenses.

Sniper Localization

A WSN is being used to locate snipers and the trajectory of bullets [97], provid-
ing valuable clues for law enforcement. The system consists of sensor nodes that
measure the muzzle blast and shock wave using acoustic sensors. The sensor nodes
form a multi-hop ad hoc network. By comparing the time of arrival at distributed
sensor nodes, the sniper can be localized with an accuracy of about one meter, and
with a latency of under two seconds. The sensor nodes use an FPGA chip to carry
out the complex signal processing functions.

Deployment manual
Mobility immobile
Resources matchbox with FPGA
Cost approx. 200 USD per node
Energy battery
Heterogeneity homogeneous
Modality radio
Infrastructure ad hoc
Topology graph
Coverage redundant (multiple nodes must recognize a shot)
Connectivity connected
Size 60 deployed (potential for up to hundreds)
Lifetime months to years
QoS real-time

Further Applications in Surveillance and Law Enforcement

Sensor networks might also be helpful for surveillance of transient events such as
construction sites, carnivals, crime scene surveillance, or temporary cubicle moni-
toring [4]. In these settings, existing surveillance systems often cannot be used due
to their high cost and due to the deployment overhead. Sensor networks might also
be helpful in the surveillance of widespread areas (e.g., border protection), where
the use of traditional equipment would be too expensive or otherwise disadvanta-
geous (e.g., cluttered environments).

CHAPTER 2. WIRELESS SENSOR NETWORKS 33

2.4.11 Health Care

Networks of wireless sensors can be used to observe the state of health of humans.
A discussion of this application domain can be found in [10, 92].

Vital Sign Monitoring

Wireless sensors are being used to monitor vital signs of patients in a hospital
environment [6]. Compared to conventional approaches, solutions based on wire-
less sensors are intended to improve monitoring accuracy whilst also being more
convenient for patients.

The system consists of four components: a patient identifier, medical sensors,
a display device, and a setup pen. The patient identifier is a special sensor node
containing patient data (e.g., name) which is attached to the patient when he or
she enters the hospital. Various medical sensors (e.g., electrocardiogram) may be
subsequently attached to the patient. Patient data and vital signs may be inspected
using a display device. The setup pen is carried by medical personnel to establish
and remove associations between the various devices. The pen emits a unique ID
via infrared to limit the scope to a single patient. Devices which receive this ID
form a body area network.

Deployment manual
Mobility all, continuous, passive
Resources matchbox
Energy battery
Heterogeneity medical sensors, patient identifier, display device, setup pen
Modality radio, IR light (for setup pen)
Infrastructure ad hoc
Topology single-hop
Coverage dense
Connectivity connected
Size tens
Lifetime days to months (hospital stay)
QoS real-time, dependability, eavesdropping-resistance

Further Applications in Health Care

Body-worn sensor networks can also be used for automated detection and classifi-
cation of activities (e.g., running, walking, standing, climbing stairs) and clinical
symptoms (e.g., stress, epileptic seizures) [99]. These basic classifiers can be used
to implement proactive healthcare, for example by assessing the healthiness of a
lifestyle or by detecting diseases early on.

Sensor networks can also be used to assess social interactions [32], for example
to detect and monitor physical and cognitive decline of elderly people [121].

CHAPTER 2. WIRELESS SENSOR NETWORKS 34

2.5 Sensor Node Prototypes

The previous section pointed out that different applications require different types
of sensor nodes and even heterogeneous networks consisting of different classes of
sensor nodes. Below we discuss four prominent classes of devices and instances
thereof.

2.5.1 Motes

The most commonly used class of sensor nodes at the time of writing is often re-
ferred to as Motes. These devices are built from commercially available general
purpose electronic circuits. Including a battery, the size of a typical Mote is com-
parable to a matchbox. The most prominent example of this device class are the
Berkeley Motes [115].

The major components of a Mote are an embedded microcontroller, a radio
transceiver and antenna, interfaces to sensors and actuators, a real-time clock,
circuitry for power conversion, and a battery. Some designs include additional
memory or co-processors for speeding up computations. We will investigate these
components in the following sections.

Microcontroller and Memory

Embedded microcontrollers such as the ATMEL AT Mega series used in many de-
signs do not only provide a processor core, but program memory, general purpose
memory, and a variety of input/output interfaces. The latter include Universal
Asynchronous Receiver/Transmitters (UART) for serial IO, analog-to-digital con-
verters, analog voltage comparators, a large number of freely programmable digital
input and output signals, and various standard digital IO interfaces such as I2C
and SPI, which are directly supported by many digital sensors. Additional general
purpose memory is often provided by a separate chip. The exact capabilities of
microcontrollers may vary, but typical numbers are a few MIPS processing power,
few hundred kilobytes of program memory, few kilobytes of general purpose mem-
ory. External memory chips provide additional general purpose memory of tens to
hundreds of kilobytes.

Radio and Antenna

The radio transceiver enables wireless networking of the Motes and is perhaps the
component that varies most among different Mote designs. The most simple radios
support a single communication channel and a simple on-off modulation scheme
(e.g., RFM TR1000 used by early Berkeley Motes). The functionality of such radios
is limited to a simple conversion between a digital signal and a modulated radio
wave. There is no support for medium access control mechanisms such as handling
of collisions. Communication is broadcast, that is, all receivers within communi-
cation range receive the signal. More elaborate radios such as the ChipCon (used

CHAPTER 2. WIRELESS SENSOR NETWORKS 35

by more recent Berkeley Mote designs) support multiple communication channels
and more robust modulation schemes. This type of radio typically has a shared
bandwidth of some tens of kilobits per second and a communication range of few
tens of meters.

Another class of radio are so-called radio modems. These are not simply radio
transceivers on the physical layer, but provide much more sophisticated function-
ality (including MAC functions). Overall, these devices are somewhat similar to
traditional modems, in that they accept complex commands such as “connect to
X” or “send a packet to X”. To support this functionality, they often include a
separate microcontroller. One example of this type of radio is Bluetooth (used by
the BTnode [116]). Bluetooth is connection-based, that is, prior to communication
a connection has to be established between a pair of nodes. A broadcast mode is
also supported, where a message is sent to all connected peers. The basic element
of a Bluetooth network is the Piconet, which consists of a single master and up
to seven slaves that form a star topology. Multiple Piconets can be connected
to form multi-hop Scatternets. Bluetooth supports communication ranges of 10
or 100 meters and a shared bandwidth of one Megabit per second. A frequency
hopping technique is used to minimize interference among Piconets and with other
radio signals. While Bluetooth offers a number of advantages (e.g., simple to use,
high bandwidth, standardized), it suffers from two major drawbacks: the energy
consumption is rather high compared to the simple radios described above, and
connection setup may take up to several seconds.

Some sensor node designs even support multiple radio frontends. Older designs
included multiple identical radios in order to enable a node to form robust multi-
hop networks. More recent developments support multiple radio frontends with
vastly varying characteristics (e.g., Bluetooth and a low-power radio) to combine
the advantages of these technologies.

Most radios used for sensor nodes operate in license-free ISM bands (e.g., 868
MHz, 915 Mhz, 2.4 GHz). Typical frequencies range from few hundred MHz to
few GHz. Various kinds of antennas are used for these frequencies: simple wires,
antennas integrated into the circuit board (e.g., “F” or “L” shaped patch antennas),
or more compact chip antennas. The size of a simple wire antenna is typically a
quarter of the wavelength, (i.e., between 5 and 10 cm for the above frequencies).

Sensor/Actuator Interface

Analog sensors map a certain physical quantity (e.g., temperature) to a variable
voltage or current. An analog-to-digital converter (ADC), which is often included
in the microcontroller, maps this analog quantity to a digital number. Digital
sensors do already include an ADC and do often support a bus system such as
I2C. The same applies to actuators (e.g., LEDs, speaker, buzzer): some expect
an analog input, other expect digital input and can be connected to standard bus
systems.

Most sensor node designs do only provide a minimal set of sensors and actua-
tors (e.g., light sensor, LEDs) on board, mainly for testing purposes. An extension

CHAPTER 2. WIRELESS SENSOR NETWORKS 36

slot then allows to connect more sensors or even so-called sensor boards. Besides
sensors, such extension boards may contain ADC, multiplexers to support many
sensors, and even an additional microcontroller to connect analog sensors to stan-
dard bus systems.

Real-time Clock

Since microcontrollers are clocked circuits, an additional hardware clock is not
strictly necessary. However, some processor cores support dynamic frequency scal-
ing for power efficiency. Also, the microcontroller may be switched to power-saving
sleep modes. Therefore, an additional external real-time clock chip and oscillator
is often used to implement a stable clock that is independent of a system clock
with variable frequency.

Battery and Power Supply

Sensor nodes may be powered by batteries or may scavenge energy from the en-
vironment (e.g., vibrations, light). However, the power output of many energy
sources often varies over time (e.g., output voltage of a battery, solar cell) and
often does not match the requirements of the sensor node electronics. Additional
power supply circuitry is needed to transform the output of these power sources.
For example, a so-called step-up converter can be used to power 3.3V circuits from
a single 1.5V battery. It has also been observed that the effective capacity of a bat-
tery can be increased if power is drained in bursts rather than continuously, allowing
the battery to recover between bursts. An implementation of this strategy requires
conversion circuitry to provide a constant voltage to the sensor node electronics.
Many sensor node designs do also provide switchable power supplies for individual
subsystems (e.g., radio, sensors) in order to optimize power consumption.

Co-Processors

Microcontrollers may not be sufficient to perform complex signal processing tasks
(e.g., FFT, correlations) which are often required for preprocessing high-volume
sensory data on the sensor nodes. Hence, some sensor node designs provide FPGA
or DSP [73, 130] add-ons for this purpose.

2.5.2 Egrains

Some applications may require the functionality of Motes as described in the pre-
vious section, but the size of existing prototype systems makes the use of these
devices inconvenient (e.g., body-worn sensors in healthcare applications) or impos-
sible. Hence, there is a need for Egrains – devices that provide the functionality of
a Mote within the size of a cubic centimeter and less. Currently, two approaches
for achieving the desired size reduction are examined: micro-integration techniques
and system-on-chip solutions.

CHAPTER 2. WIRELESS SENSOR NETWORKS 37

Micro integration seeks to improve the packaging density of discrete circuits [74,
114]. This can be achieved in various ways. The simplest approach is to use more
size-efficient chip packaging techniques. One example are so-called Flip Chips (FC),
where the leads are on the bottom of the chip and hence do not require extra space
as do standard Surface Mounted Devices (SMD). Another technique to construct
more compact devices is 3D integration, for example by stacking multiple boards,
or by using flexible boards which can be folded into a stack or other 3D layouts. Yet
another option are so-called Multichip Modules (MCM), where bare silicon dices
(without plastic packaging) are used to construct a circuit. The resulting circuitry
is than sealed as a whole with plastic.

In contrast to micro-integration techniques, system-on-chip (SOC) solutions
combine the various circuits on a single silicon die, such that only a few external
components (e.g., quartz oscillator, antenna, power supply) are required to build a
complete sensor node [131, 138]. In the SOC design process it is possible to take a
modular approach, where the various circuits (e.g., microcontroller, radio) are just
laid out and connected on a single piece of silicon without further integration of
the circuits. Otherwise, the development process of SOC is similar to Application-
Specific Integrated Circuits (ASIC).

With both approaches, there are two fundamental limitations for the achievable
size reduction: antennas and batteries. The size of radio antennas is directly linked
to the wavelength of the carrier signal and is a couple of centimeters for commonly
used ISM bands. The use of higher frequency bands (e.g., some tens of GHz) is
possible, but does increase the power consumption of the radio transceiver due to
higher signal attenuation and due to higher dielectrical losses. Since the radio is the
dominating power consumer of a sensor node, savings in antenna size will typically
result in more battery volume.

Since the above miniaturization methods themselves do not significantly reduce
power consumption, power sources with a higher energy density would be required
to reduce the size of the power supply. However, the energy density of electro-
chemical power sources (e.g., batteries) did only improve by 20 % during the last
twenty years and a significant improvement of this rate in the future is not expected.

2.5.3 Smart Dust

Some applications may require even smaller sensor nodes that resemble the size
of a dust particle. Some applications that may require such tiny devices are the
integration of sensors into coatings (e.g., paint), applications where sensor nodes
have to float in air, or applications where the presence of sensor nodes must be
hardly noticeable (e.g., military).

As explained in the previous section, the use of radio communication presents
some fundamental limits to the integration density of sensor nodes. While Egrains
are just shrunk versions of motes, Smart Dust will likely require the use of other
technologies. This applies in particular to communication techniques.

A project at UC Berkeley examined the use of laser-based communication for

CHAPTER 2. WIRELESS SENSOR NETWORKS 38

Smart Dust. A similar approach is also examined by the Speckled Computing
initiative [132]. As described in [49], Berkeley Smart Dust nodes consist of a
small battery, a solar cell, a power capacitor, sensors, a processing unit, an opti-
cal receiver, and a corner-cube retroreflector (CCR) within a space of few cubic
millimeters. Later versions might also contain an active transmitter based on a
semiconductor laser diode. However, the high power consumption of the laser
diode may significantly limit the value of such a component. Therefore, in the near
future, communication will be possible only between sensor nodes and a so-called
base station transceiver (BST).

The BST mainly consists of a steerable laser and a compact imaging receiver.
For downlink communication, the BST points the modulated laser beam at the
optical receiver of a node. For uplink communication, the BST points an unmodu-
lated laser beam at the node, which modulates the laser beam and reflects it back
to the BST using its CCR. Using its imaging receiver, the BST can receive and
decode transmissions from dust nodes.

The CCR is a special Micro Electro-Mechanical Systems (MEMS) structure
consisting of three mutually perpendicular mirrors. The CCR has the property that
any incident ray of light is reflected back to the source under certain conditions. If
one of the mirrors is misaligned, this retroreflection property is spoiled. The Smart
Dust CCR includes an electrostatic actuator that can deflect one of the mirrors at
kilohertz rates. Using this actuator, the incident laser beam is on-off modulated
and reflected back to the BST. Using a 5-milliwatt laser, data transmission at a bit
rate of up to 1 kilobit per second over a range of up to 150 meters in full sunlight
has been demonstrated [49].

This type of design implies a single-hop network topology, where the nodes
cannot directly communicate with each other, but only with the base station. The
base station can be placed quite far away from the nodes. Communication may
suffer from significant and highly variable delays if the laser beam is not already
pointing at a node which is subject to communication with the BST.

Obviously, this communication scheme has a number of limitations. It requires
a free line of sight between BST and Smart Dust nodes, and nodes must point their
optical receiver and CCR towards the BST. On the other hand, communication is
very energy efficient, since the dust nodes do not actively emit any signals. Also,
the complexity of the transceiver and hence also its energy consumption is rather
low. Moreover, optical receiver and CCR are small enough to fit into few cubic
millimeters.

Recent prototypes of Smart Dust [105] implement the optical receiver, CCR,
a light sensor, a solar cell, and a simple control unit within 16 cubic millimeters.
Future devices are expected to include a complete processing unit instead of the
simple control unit, provide a wider variety of sensors, and are expected to feature
further reductions in size and energy consumption.

CHAPTER 2. WIRELESS SENSOR NETWORKS 39

2.5.4 Commodity Devices

In the previous sections, we have described devices that have been deliberately
developed for use as sensor nodes. However, many existing sensor network ap-
plications do also use existing commodity devices such as mobile phones, PDAs,
embedded PCs, or even cameras and laptop computers. One reason for this is that
many developers prefer to develop early prototypes of an application using such
commodity devices, since software development for these devices is often more
convenient due to established operating systems and tool chains.

Commodity devices may also be included in heterogeneous sensor networks for
a number of reasons [14, 96]. Firstly, commodity devices may act as a gateway be-
tween the sensor network and a background networking infrastructure. A mobile
phone, for example, may connect a sensor network to the GSM network. Secondly,
many commodity devices offer a user interface that can display monitoring results
to the user or which allows a user to analyze, control, and debug certain aspects
of a sensor network. Thirdly, many commodity devices offer sensors (e.g., audio,
photo, video) and actuators (e.g., audio output, phone ringing) that may be useful
in certain applications. And finally, commodity devices typically offer rich com-
puting and storage resources to perform more complex tasks. For example, PDAs
and embedded PCs may be used as cluster heads or in the upper layers of tiered
networks, where they serve a large number of more constrained sensor nodes.

The use of commodity devices in conjunction with sensor networks requires the
provision of communication links between these devices and other sensor nodes. If
the sensor network uses standardized communication technology such as Bluetooth,
commodity devices with support for this technology can be directly integrated into
the network. If the sensor network uses a networking technology which is not
directly supported by a commodity device, a sensor node can often be connected
to the commodity device via serial IO, such that the attached sensor node acts as
an external network interface for the commodity device.

2.6 Technical Challenges

The characteristics of wireless sensor networks can present a number of major
challenges to the development of algorithms, protocols, and systems. The existence
and impact of these challenges varies across the design space. Below we present
the main technical challenges and their relationship to the dimensions of the design
space.

2.6.1 Resource and Energy Constraints

Each application has specific constraints on the size and prize of individual sen-
sor nodes. These constrains directly imply constraints on the available amount
of energy, computing (instructions per time unit), storage (amount of memory),
and communication resources (bandwidth, range) per sensor node. On the other

CHAPTER 2. WIRELESS SENSOR NETWORKS 40

B

Figure 2.1: Sensor nodes send data to base station B along a spanning tree. Nodes
close to the base station will run quickly out of power due to forwarding messages
from nodes further away.

hand, a task to be performed by a sensor node has particular requirements on the
above resources. For example, a required minimum lifetime maps directly to a
requirement on available energy, given a certain power consumption per time unit.
Different implementations of the same task can have vastly varying requirements.
Therefore, the tighter the constraints on available resources and energy, the more
attention must be paid to resource-efficient and energy-efficient implementations.
In many cases, resource and energy efficiency become the primary design goals,
which renders existing solutions for many problems useless, since they have not
been designed for resource and energy efficiency. In particular, many common
technologies (e.g., GPS) may not be applicable due to their high cost, size, and
energy overheads. As explained in Section 2.5.3, the resource requirements of ra-
dio communication may preclude its use in very constrained setups such as Smart
Dust.

Often it is also important to ensure that resource usage and energy consump-
tion is equally spread among the nodes of the network. If some nodes exhaust
their battery quickly and fail early, resulting permanent network partitions may
render the network inoperational. Likewise, hotspot usage of resources may lead to
bottlenecks such as network congestions. Figure 2.1 illustrates a typical problem
with asymmetric energy consumption in sensor networks. Sensor nodes send sensor
readings along a spanning tree to a base station B for evaluation. Nodes close to
the base station will run quickly out of power since they forward messages from
nodes further away. Failure of these nodes will create a “dead ring” around the
base station.

2.6.2 Network Dynamics

Depleted batteries and corruptive environmental conditions (e.g., pressure, humid-
ity, temperature, destructive chemicals) often lead to node failures. Temporary
environmental obstructions (e.g., vehicles, humans) may influence the communica-

CHAPTER 2. WIRELESS SENSOR NETWORKS 41

t

t

1

2

1

1

1

2 3

2 3

2 3

Figure 2.2: Message transport across partition boundaries through node mobility
may result in unidirectional multi-hop paths with unpredictable, unbounded delays.

1

3

2

Figure 2.3: Interference may lead to temporal and spatial variations in link quality,
possibly resulting in asymmetric and unidirectional single-hop links.

tion range of nodes. Nodes may be mobile, new nodes may be added to replace
failed ones. All these issues may lead to frequent topology changes in sensor net-
works. In particular, temporary network partitions are likely to exists in sparse
networks.

Despite intermittent connectivity, messages can be forwarded across partitions
by mobile nodes as illustrated in Figure 2.2. At time t1 nodes 1 and 2 are within
communication range of each other only, then node 2 moves towards node 3, such
that at time t2 nodes 2 and 3 are within communication range of each other only.
Node 2 can carry a message from node 1 to node 3 across a partition boundary.
The resulting multi-hop message flow has two challenging properties. Firstly, the
path is unidirectional: it is not possible to send a message from node 3 to node
1 unless there exists a node with an appropriate mobility pattern. Secondly, the
delay of this message flow can be arbitrarily high and is hardly predictable unless
the mobility pattern of node 2 is known in advance.

It has also been observed that due to interference of sensor nodes among each
other and with the environment, communication link quality may vary heavily from
node to node, over time and space [39]. This may lead to a number of temporary
or permanent effects as depicted in Figure 2.3. Although all nodes are identical,
node 2 may not be able send a message to node 1 even if node 1 can send a message
to node 2. Also, node 1 may not be able to send a message to node 3, even though
node 1 is closer to node 3 than to node 2.

Ensuring robust operation of a sensor network in such setups can be a very
challenging task.

CHAPTER 2. WIRELESS SENSOR NETWORKS 42

2.6.3 Network Size and Density

Depending on the desired observation detail and area, wireless sensor networks
may consist of a large number of sensor nodes. This is due to the fact that sensors
typically have a small effective range, while at the same time a potentially large
geographical area of interest must be covered by the sensors. Also, the quality
and detail of observations can profit from redundant deployment of sensor nodes
(where many sensors cover a certain physical spot) very close to the phenomenon
of interest.

Ensuring that sensor networks scale to large numbers of densely deployed nodes
can be technically challenging. If onmidirectional radios are used for communica-
tion, for example, the network capacity per node decreases with the node density.
In dense networks, the occurrence of a physical event may trigger communication
at a large number of collocated nodes, which could lead to network congestions and
increased delays.

2.6.4 Unattended and Untethered Operation

Depending on the application, sensor networks may have to be deployed in remote,
unexploited, or hostile geographical areas. In such cases, sensor networks may not
rely on well-engineered or excessive hardware infrastructure (e.g., for communica-
tion, localization, time synchronization).

After deployment, it may be impossible or prohibitively costly to physically
access sensor nodes for recharging, maintenance, etc. Hence, sensor networks may
have to operate unattended for extended periods of time.

If the sensor network consists of a large number of nodes, manual configuration
of individual nodes may not be an option. Additionally, pre-deployment configura-
tion is often infeasible because some configuration parameters such as node location
and network neighborhood are typically unknown prior to deployment. Also, node
parameters may change over time, necessitating dynamic re-configuration. Hence,
a means for in-situ configuration after deployment is often necessary. The term self-
configuration is commonly used to express the fact that a sensor network should
configure itself without manual intervention.

2.7 Design Principles

In the previous section we outlined a number of technical challenges. Fortunately,
there exist general techniques to deal with these challenges or to mitigate their
effect.

2.7.1 Adaptive Tradeoffs

Often, there are tradeoffs between different system parameters such as fidelity, la-
tency, and energy/resource usage. Improving one of these parameters often implies

CHAPTER 2. WIRELESS SENSOR NETWORKS 43

a degradation of other parameters. The requirements on these parameters do not
only vary among different applications, but also during the lifetime of a single ap-
plication. Algorithms that provide “turning knobs” to dynamically adapt these
tradeoffs to the actual application requirements can help optimize the resource and
energy consumption, for example. If such a parameterization of a single algorithm
is limited or impossible, the provision of a family of algorithms – with different,
but fixed tradeoffs – to select from may be worthwhile option.

2.7.2 Multi-Modality

The concurrent use of different approaches (i.e., modalities) to the same problem
can often help to improve the robustness. For example, wide-band communication
techniques use multiple frequencies concurrently or sequentially (e.g., frequency
hopping, chirp sequences) to improve the robustness to narrow-band interferences.
The detection of an object can be made more robust by using different types of
sensors (e.g., a motion detector and a magnetometer).

2.7.3 Local Interaction

Limiting the interaction of each sensor node to nodes in the direct network neigh-
borhood can improve scalability, since the number of nodes in the local neighbor-
hood does not depend on the total number of nodes in the network if the node
density is fixed.

2.7.4 Data Centricity

In many traditional distributed systems, algorithms such as routing and distributed
data storage operate independently of the actual contents and meaning of the data.
In contrast, data-centric approaches make the type of data (e.g., “temperature
reading”) and its properties (e.g., “sample obtained at position p”) an explicit
input to such algorithms.

Data centricity can improve the robustness of sensor networks, since it can be
used to decouple sensory data from specific sensor nodes. By using a data-centric
query such as “what is the current temperature at position p”, any node located
near position p can answer the query, whereas a traditional address-centric query
such as “what is the temperature at node #7” fails if node #7 experiences problems,
even though a nearby node with a different address could answer the query.

Data centricity can also reduce energy and resource consumption, since it sup-
ports content-based filtering (e.g., “not interested in temperature readings below
T degrees”) and placement of sensory data (e.g., storage close to a potential user
of a certain type of data).

CHAPTER 2. WIRELESS SENSOR NETWORKS 44

2.7.5 In-Network Data Processing

Instead of sending streams of raw sensory data to a central processor for evalua-
tion, raw sensory data can be preprocessed by sensor nodes (i.e., in the network),
as the data flows through the sensor network. For example, a sensor node can
filter sensor readings, such that only application-relevant data is sent through the
network. Another example is in-network aggregation and fusion of sensor readings
that originate from different sensor nodes.

In-network data processing can improve the scalability and can reduce the en-
ergy/resource consumption, since it can significantly reduce the data volume that
has to be routed through the network.

2.7.6 Cross-Layer Interaction

Traditional networked systems are typically based on layered designs and imple-
mentations (e.g., hardware layer, network layer, application layer), where each layer
provides a service to the layer on top of it. The layers are mostly independent of
each other in order to enable the exchange of single layers without touching the
other layers. While such an approach ensures genericity and modularity, it may
cause significant overheads, since any single layer has to satisfy the maximum of
the requirements of all possible instances of the layer on top of it. For example,
if the application layer can tolerate the loss of a specific subclass of messages, the
network layer cannot do better that retransmitting all messages, since it does not
know which messages are important to the application layer and which are not.

Cross-layer interaction relaxes the strict separation of layers by passing useful
bits of information from one layer to another. In the above example, the application
layer may want to pass a classifier for important messages to the network layer.
Hence, cross-layer interaction can improve the energy and resource efficiency.

The information passed across layers can be static (e.g., certain fixed features
of the application or hardware) or dynamic. In the static case, a generic approach
with large overhead can often be collapsed into a specific and more efficient solution
(e.g., application-specific or hardware-specific designs).

The application and hardware layers are particularly valuable sources of infor-
mation that can improve the efficiency of other layers. For example, the application
layer may pass filter criteria and aggregation rules to the network layer in order to
enable in-network data processing. Some algorithms in the application layer can
exploit knowledge about the quality of a link (e.g., signal strength).

2.8 Summary

This chapter discussed wireless sensor networks in general. We first characterized
WSN, also in the context of related research areas such as ubiquitous computing,
embedded systems, mobile networking, and digital signal processing. Motivated
by a study of concrete applications, we proposed a design space for wireless sensor

CHAPTER 2. WIRELESS SENSOR NETWORKS 45

networks as a replacement of the currently adopted narrow view. We showed that
concrete applications occupy different points in this design space. We discussed
implications of the design space and presented four classes of hardware that sup-
ports different regions in the design space. We also discussed technical challenges
associated with different regions of the design space and sketched design principles
that can be helpful in dealing with these challenges.

Chapter 3

Space and Time in Sensor
Networks

Space and time play a crucial role in wireless sensor networks, since sensor nodes
are used to collaboratively monitor physical phenomena and their spatio-temporal
properties. Consequently, a number of techniques and distributed algorithms for
location estimation and time synchronization have been developed specifically for
sensor networks. However, research in these two domains has been performed by
mostly separated research communities.

A closer look on both research domains reveals that there are many similarities.
This does affect a variety of aspects of location estimation and time synchroniza-
tion, ranging from applications and requirements to basic approaches and concrete
algorithmic techniques. The purpose of this chapter is to make this close affinity
explicit in order to further a better understanding of both domains. We will base
our detailed discussion of synchronization and localization in the subsequent two
chapters on the common framework we develop in this chapter.

The remainder of this chapter is structured as follows. In Section 3.1 we describe
uses of space and time in sensor networks. Section 3.2 presents a common model for
location estimation and time synchronization and discusses various requirements
and different approaches to location estimation and time synchronization based
on this model. In Section 3.3 we examine the structure of distributed algorithms
for location estimation and time synchronization. In particular, we will point out
that algorithms for both problems are based on a number of common structural
elements. Section 3.4 discusses various limitations and trade-offs of this class of
algorithms.

3.1 Uses of Space and Time

Figure 3.1 illustrates three important application classes of space and time in sensor
networks. Typically, a sensor network is tasked by and reports results to an external
observer (a). A sensor network also interacts with the physical world through
distributed sensors and possibly also through actuators (c). Finally, the sensor

46

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 47

(a) (c)(b)

Figure 3.1: Applications of space and time. (a) interaction of an external observer
with the sensor network, (b) interaction among sensor nodes, (c) interaction of the
sensor network with the monitored real world.

nodes interact among each other to coordinate distributed computations (b). The
following paragraphs will discuss applications of space and time in these three
domains.

3.1.1 Sensor Network – Observer

In many applications, a sensor network interfaces to an external observer for task-
ing, reporting results, and management. This external observer may be a human
operator (as depicted in Figure 3.1) or a computer system. Tasking a sensor net-
work often involves the specification of regions of interest in space and time such
as “only during the night” or “the area south of ...”. Since the observer is typically
interested in a physical phenomenon of the real world (and not in individual sensor
nodes), such spacetime addressing is often preferable over addressing individual
nodes or groups of nodes by identifiers.

As a sensor network reports monitoring results to the observer, many spatio-
temporal properties of observed physical phenomena are of interest. For example,
time and location of occurrence of a reported physical event are often crucial to
associate event reports with the originating physical events. Properties such as
size, shape, speed, trajectory, density, frequency do all refer to the categories time
and space.

3.1.2 Sensor Network – Real World

In sensor networks, many different sensor nodes distributed over an area may be in-
volved in the observation of a single physical phenomenon. One of the key functions
of a sensor network is therefore the assembly of many distributed observations into
a coherent estimate of the original physical phenomenon – a process known as data
fusion. Space and time are key ingredients for data fusion. For example, many sen-
sors can only detect the proximity of an observed object. Higher-level information,
such as speed, size, or shape of an object can then only be obtained by correlating

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 48

data from multiple sensor nodes whose locations are known. The velocity of a mo-
bile object, for example, can be estimated by the ratio of the spatial and temporal
distances between two consecutive object sightings by different sensor nodes. As
another example, the size and shape of a widespread object can be approximated
by the union of the coverage areas of the sensor nodes that concurrently detect the
object.

Since many different instances of a physical phenomenon can occur in spatio-
temporal proximity, one of the tasks of a sensor network is the separation of sensor
samples, that is, the partitioning of sensor samples into groups that each represent a
single physical phenomenon. Spatio-temporal relationships (e.g., distance) among
sensor samples are a key element for separation.

Spatio-temporal coordination among sensor nodes may also be necessary to
ensure correctness and consistency of distributed measurements [40]. For example,
if the sampling rate of sensors is low compared to the temporal frequency of an
observed phenomenon, it may be necessary to ensure that sensor readout occurs
concurrently at all sensor nodes in order to avoid false observation results. This
is also an issue for sensor calibration as explained in [19]. Likewise, the spatial
distribution of sensors has an impact on the correctness of observation results. For
example, in order to estimate the average of a certain physical quantity over a
certain physical area (e.g., average room temperature), it is typically not sufficient
to simply calculate the average over all sensor nodes covering the area, because then
areas with higher node density would be overrepresented in the resulting average
value.

It is anticipated that in the future large-scale and complex actuation functions
will be realized by coordinated use of many simple distributed actuator nodes that
are part of a sensor network. Similar to distributed measurements, spatio-temporal
coordination will then also be an important ingredient for consistent distributed
actuation.

3.1.3 Within a Sensor Network

Time and location are also valuable concepts for intra-network coordination among
different sensor nodes. As sensor networks are essentially distributed systems, many
traditional uses of the concepts of time and location do also apply to wireless sensor
networks. Liskov [57] points out a number of uses of time in distributed systems
in general such as for concurrency control (e.g., atomicity, mutual exclusion), se-
curity (e.g., authentication), data consistency (e.g., cache consistency, consistency
of replicated data), and communication protocols (e.g., at-most-once message de-
livery).

One particularly important example for concurrency control is the use of time-
division multiplexing in wireless communication, where multiple shared access to
a common communication medium may be realized by assigning time slots with
exclusive access to the communicating peers. This may require the participating
sensor nodes to share a common view on physical time. A prominent use of spatial

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 49

information for network coordination is geographic node addressing and routing,
where geographic locations replace the use of node identifiers.

A number of approaches intend to improve energy efficiency by selectively
switching sensor nodes or components thereof into power-saving sleep modes. In
order to ensure seamless operation of the sensor network despite of this, spatio-
temporal coordination among sensor nodes may be required. The algorithm pre-
sented in [110], for example, extends the lifetime of dense networks by switching
off nodes such that the remaining nodes are sufficient to cover the area of interest.
To ensure coverage, node locations must be known. Another way of extending net-
work lifetime is to periodically switch off radio transceivers of sensor nodes, since
their power consumption is rather high even when only listening to the network.
Temporal coordination is required to ensure that activity periods of sensor nodes
overlap in time in order to enable communication (see, e.g., [111]).

Another service of importance for sensor network applications is temporal mes-
sage ordering [81]. Many data-fusion algorithms have to process sensor readings
ordered by the time of occurrence (e.g., in the approach for velocity estimation
sketched above). However, highly variable message delays in sensor networks (cf.
Section 2.6.2) imply that messages from distributed sensor nodes typically do not
arrive at a receiver in the order they have been sent. Reordering messages according
to the time of sensor readout requires temporal coordination among sensor nodes.

The close relationship between time and space in the physical world is also
reflected by methods for time synchronization and location estimation themselves.
For example, methods for location estimation based on the measurement of time of
flight or time difference of arrival of certain signals typically require synchronized
time. The other way round, location information may also help to achieve time
synchronization. This is due to the fact that time synchronization approaches
often have to estimate message delays. One component of the message delay is the
time of flight of the carrier signal between two nodes, which can be calculated if
the distance between sender and receiver and the propagation speed of the carrier
signal are known (cf. Section 5.1.1).

3.2 Locating Nodes in Spacetime

In this section we present a common model for location estimation and time syn-
chronization. Using this model, we will discuss various requirements on and differ-
ent classes of time synchronization and localization.

One possible way to model physical space is to do this as a three-dimensional
real-valued vector space. Likewise, physical time can be modeled as a one-
dimensional real-valued vector space. These two vector spaces are often combined
to form a four-dimensional vector space known as spacetime. To indicate points
in spacetime, a coordinate system is used, consisting of the vector o (the origin)
and four linearly independent vectors e1, e2, e3, e4 (the axes). To avoid relativistic
effects and to simplify our discussion, we assume that a coordinate system has the
following properties: e4 = (0, 0, 0, t), the ei are mutually orthogonal (i.e., inner

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 50

p
2

p
1

p’
2

p’
1

o+e 2
o’+e’2

o’+e’1

o+e 1

o’

o

p

Figure 3.2: A point p in spacetime and its coordinates pi and p′i in two different
coordinate systems.

product is zero), and |e1| = |e2| = |e3|. In other words, the space axes e1, e2, e3

form a Cartesian coordinate system, e4 is the time axis, and |e1| = |e2| = |e3| and
|e4| are the space and time units, respectively. Any point p in spacetime can now
be specified by its coordinates (p1, p2, p3, p4) with respect to the coordinate system
(o, e1, e2, e3, e4), such that p is given by o + p1e1 + p2e2 + p3e2 + p4e4.

Under these assumptions, the spatial distance between two points p and q is
given by

√
(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2, and the temporal distance is given

by |p4 − q4|.
The above model allows a unified view on localization and time synchronization

as follows. If a sensor node is modeled as a point p in spacetime, localization and
time synchronization can be considered as determining the current coordinates of
p with respect to a given coordinate system. We refer to this process as locating a
sensor node in spacetime.

Note that it is quite common to use different coordinate systems, even in a
single application. However, using a simple coordinate transformation scheme, the
coordinates pi of a given point p can be transformed into coordinates p′i in a primed
coordinate system, as depicted in Figure 3.2 for a two-dimensional coordinate sys-
tem.

In the remainder of the chapter we will simply use the terms localization /
location as an abbreviation for localization / location in spacetime. We will use
localization / location in time and localization / location in space when specifically
referring to time and space.

Localization in spacetime comes in many different flavors and with many dif-
ferent requirements and practical constraints, which are discussed in the following
sections.

3.2.1 Internal vs. External

With external localization in spacetime, a given coordinate system is used as a
reference. With internal localization, there exists no predefined coordinate system.
The nodes of a sensor network then have to agree on a single coordinate system,

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 51

transformation

coordinate

Figure 3.3: Small sets of nodes may use local coordinate systems. If a point in
spacetime is passed beyond the scope of such a local coordinate system, a coordinate
transformation is applied.

but which one is actually chosen is irrelevant.
Note that external localization is a special case of internal synchronization,

since a coordinate transformation can be applied to map coordinates w.r.t. an
arbitrary coordinate system used for internal synchronization to coordinates w.r.t.
a predefined external coordinate system.

External localization is mostly used when interfacing to the real world and
observers, since there are well-established coordinate systems used in daily life
such as the coordinate system defined by Universal Transverse Mercator (UTM)
space coordinates and Coordinated Universal Time (UTC). For spatio-temporal
coordination among sensor nodes, internal localization is often sufficient.

3.2.2 Global vs. Local

In order to be able to compare two points p and q in spacetime, the coordinates of
the two points must be known w.r.t. a single coordinate system. The most obvious
way to achieve this is to have all network nodes use a single global coordinate sys-
tem. In this case, any sensor node can easily compare any two points in spacetime
obtained from any two nodes.

However, the use of a single global coordinate system is not the only possible
solution. As illustrated in Figure 3.3, small sets of nodes or even single nodes
may use a local coordinate system each. If points in spacetime remain within the
scope of such a local coordinate system, they can be easily compared. However, if
the coordinates of a point in spacetime are passed across the border between the
scopes of two different local coordinate systems, a coordinate transformation must
be applied to the point.

When to prefer the one or the other approach depends on the actual application.
Maintaining a coordinate system across a set of distributed network nodes requires
communication among the participating nodes. However, comparing points within
the scope of a single coordinate system then comes for free. Local coordinate

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 52

systems typically do not require active communication among nodes using different
coordinate systems. Passing points across a coordinate system boundary, however,
requires to compute a suitable transformation between the two involved coordinate
systems, which then has to be applied to the affected points.

Therefore, a reasonable approach would be to cluster nodes based on their
interaction patterns, where each cluster has a local coordinate system. If two
nodes do frequently exchange points in spacetime, they should end up in the same
cluster. If there is strong interaction among all nodes in the network, using a single
global coordinate system is likely the better choice.

3.2.3 Point Estimates vs. Bounds

Actual implementations of localization in spacetime are based on measurements.
Since measurements are always afflicted with errors, only estimates of the coordi-
nates of a point in spacetime can be obtained in practice. Despite this, it is often
convenient to use such point estimates as if they were correct in the absolute sense.

Another approach is to explicitly deal with errors in measurements by specifying
bounds on the actual coordinates of a point in spacetime, where one assumes that
the true value lies within the bounds. Common ways of specifying bounds are
bounding boxes and spheroids. In the special case of (one-dimensional) time, both
map to intervals.

Both point estimates and bounds have advantages and disadvantages that in-
fluence the choice of one over of the other. Basically, point estimates are convenient
to use due to the simplicity of point arithmetic and because statements in terms
of the abstract spacetime model can be directly applied to the point estimates.
However, the use of point estimates may lead to wrong results. For example, for
two point estimates p̂ and q̂ where p̂4 < q̂4 holds, p may despite of this actually
represent a later point in time than q.

While the use of explicit bounds is often more complex and inconvenient, and
sometimes rather imprecise, errors like the above one can be avoided. However,
the use of bounds also introduces situations where it is impossible to decide on a
certain predicate. For example, if intervals are used to represent points in time, it
cannot be determined whether one point is earlier than another if the corresponding
intervals overlap. While the introduction of such undecidable situations may seem
undesirable from a technical point of view, they explicitly represent fundamental
limitations of the system and alert the application or user about it, instead of
making arbitrary and potentially wrong decisions.

Yet another approach to deal with the imprecision of localization algorithms is
the use of probability distributions over spacetime. However, due to the practical
difficulty of dealing with probability distributions, this approach is currently barely
used in distributed algorithms for sensor networks.

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 53

3.2.4 Points vs. Distances

In the previous discussions we assumed that points in spacetime originating from
different nodes in the sensor network need to be compared. However, there are
also applications where individual nodes locally measure distances between points
in spacetime and where it is sufficient to compare distances measured at different
sensor nodes.

As an example, consider an application where sensor nodes measure the time
during which a certain phenomenon can be sighted and where the sighting durations
at different sensor nodes must be compared (e.g., to estimate the acceleration of
a mobile object). Here, the actual points in time when the phenomenon appeared
or disappeared are irrelevant. However, it is important that different sensor nodes
measure the same duration given identical physical stimuli.

Obviously, measuring and comparing distances is a special case of measuring
and comparing points in spacetime, since a distance can be easily calculated when
the points are given w.r.t. a common coordinate system.

3.2.5 Scope and Lifetime

A scope defines a subset of nodes where localization in spacetime is required. A
lifetime defines a time interval during which localization is required. The two
extremes are everywhere/continuous and on-demand, where localization is only
performed where and when actually needed.

Both lifetime and scope requirements can vary from application to application
and may change dynamically and in unpredictable ways. In many sensor network
applications, scope and lifetime are correlated with the occurrence of the observed
physical phenomena. For example, to locate an object moving through a sensor
network, nodes that detect the object might define the scope and the lifetime.

With everywhere/continuous localization, the localization procedure is per-
formed permanently on all nodes, such that an up-to-date estimate of the current
location in spacetime is immediately available whenever requested by the applica-
tion. With on-demand localization, the localization procedure is performed only
where (i.e., on a certain node) and when the application requests the current loca-
tion in spacetime. The result is only available after a delay caused by the execution
of the localization algorithm.

The overheads of the two approaches depend on the frequency of the applica-
tion requesting localization. If rarely requested, on-demand localization may be
more efficient. If frequently requested, continuous localization is likely to be more
efficient. In sensor networks, where activity is often triggered by the occurrence of
rare physical events, the on-demand approach is certainly a promising technique
for achieving resource efficiency.

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 54

3.2.6 Precision

A localization algorithm yields a point estimate or bounds on a sensor node’s
actual position p in spacetime. Precision is a measure for how well this result
matches the ground truth locations p of nodes across the network over time. For
algorithms returning point estimates, the instantaneous precision for a given node
at a given point in time is usually expressed in terms of the distance between the
point estimate and p. Algorithms that return bounds are error-free if p is actually
enclosed by the bounds. However, the precision of bound-based algorithms can be
expressed by the uncertainty of the bounds (e.g., the volume of a bounding box,
the length of an interval).

To derive the overall precision of an algorithm within a given scope and during a
given lifetime, the instantaneous precisions of the nodes have to be combined. The
combined precision then has to be accumulated over time to arrive at a single value
that characterizes precision. Common ways of combining instantaneous precision
values of many nodes are maximum, average, and standard deviation. A variant
often found in the literature is the maximum error after removing a given percentage
(e.g., 5%) of the largest errors. The combined precision typically improves during
the execution of an algorithm and approaches a stable value in the steady state.
The combined precision in the steady state can be used to express the overall
precision of an algorithm.

Requirements on the precision may heavily vary from application to application.
This applies both to quality and quantity. With respect to quality, an application
might require a certain average precision, other applications may request a certain
maximum error. The requirements on the distribution of precision over the net-
work and over time may also vary from application to application. With respect to
quantity, required precision is closely related to the temporal frequency and spatial
detail of the phenomena that require localization in spacetime. For localization
in time, precision requirements range from a maximum error of few micro seconds
(e.g., for controlling access to the communication channel) to seconds or even min-
utes (e.g., for activating a sensor network during certain times of the day). With
respect to location, precision requirements range from a maximum error of some
centimeters (e.g., locating a shooter [97]) to tens or even hundreds of meters (e.g.,
locating an animal herd).

As mentioned in Section 3.2.5, the scope of localization in sensor networks is
often defined by a set of collocated sensor nodes that cooperate in monitoring a
close-by event in the real world. For this kind of application, the precision among
this set of collocated nodes typically must be high. However, the precision among
nodes which are far apart in space may be of lesser importance. We will return to
this issue in Section 3.4.1.

3.2.7 Other Quality-of-Service Aspects

Besides the aspects discussed so far, a number of additional QoS characteristics of
localization in spacetime are of practical relevance. Two prominent examples are

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 55

∆
∆

∆

∆

∆

∆

(a) (b) (c)

1

2

3 1

2

S S

S

S

S

S

1 3

2

1

3
3

2

Figure 3.4: Client nodes infer their location in spacetime by measuring spatio-
temporal relationships ∆ (e.g., Euclidean distance, message delay) to black refer-
ence nodes with known locations S in spacetime. The process is iteratively applied.
The figure shows from the left to the right, a sequence of three snapshots.

robustness and security. A robust localization algorithm delivers correct location
estimates even in the presence of well-defined, accidental failures. Another aspect
is secure verification of location estimates, where spoofed locations can be detected
(see, e.g., [21]).

3.3 Distributed Algorithms for Localization in

Spacetime

Many practical distributed algorithms for localization in space (e.g., [17, 36, 69, 75,
88, 89]) and time (e.g., [26, 38, 60, 98, 101]) are based on a few common structural
elements. In this section we point out these structural elements and discuss various
concrete instances of these elements found in existing algorithms.

Consider the example illustrated in Figure 3.4. Part (a) shows two kinds of
nodes: black reference nodes with known locations and white client nodes with
unknown locations. In part (b), a gray client node measures its distance ∆i from
a number of neighboring reference nodes. Using the locations Si of the references
and the measured distances ∆i, the gray node infers its own location in spacetime.
The client node can now also act as a reference for other client nodes in subsequent
iterations of the algorithm as illustrated in part (c). Eventually, all nodes should
be able to measure distances to a sufficient number of neighboring reference nodes
in order to estimate their location in spacetime.

The meaning of the symbols ∆ and S has to be interpreted in a rather broad
sense here. S is any state information of a node that is relevant to a localization
algorithm. Examples for S are time, location, orientation, and address of a node. S
may also include confidence values that characterize the precision of the respective
bits of state information. ∆ is a spatio-temporal relationship between a client
node and one or more reference nodes. Examples include Euclidean distance, hop
distance, message delay, and angle with respect to the orientation of the client. ∆

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 56

may also include confidence values.
A pair (S, ∆) can be interpreted as a constraint on the possible spacetime

locations of a client node. For example, if S is a location of a reference node
in space and ∆ its Euclidean distance, then the location of the client node is
constrained to the hull of a sphere with radius ∆ centered at S. As we will show
in Section 3.3.2, a constraint may also involve multiple reference nodes, such that
∆ is a relationship among a client node and any number of reference nodes (e.g.,
client node is closer to reference 1 than to reference 2). Also, reference nodes need
not be network neighbors of the client node.

A second structural element of localization algorithms is a procedure for com-
bining multiple constraints. As pointed out above, a single constraint limits the
possible locations of a client node, but the resulting solution space often does not
satisfy precision requirements. Hence, multiple constraints have to be combined
(e.g., intersected) to further cut down the solution space (e.g., to a single point in
spacetime).

A third important component of localization algorithms are rules to select con-
straints. In dense networks with many reference nodes, there is a large set of
possibilities for obtaining constraints that involve different sets of reference nodes.
While a large number of constraints may result in very precise location estimates,
the overhead for combining such numerous constraints may be prohibitive. Hence,
the goal is to select a small number of tight constraints that are sufficient to achieve
a certain precision. This selection process is not trivial, as it depends on a num-
ber of parameters such as the precision of the state information of the individual
reference nodes, but also on a particular combination of reference nodes. Also,
certain reference nodes may only become available after they have estimated their
location themselves. Often, an overlay structure (e.g., spanning tree, clustering)
is constructed to ease this selection process. For example, a client node may use
its parent in a spanning tree as a reference node. Essentially, constraint selection
can be interpreted as the approach an algorithm takes to structure localization in
multi-hop networks (i.e., across space).

The fourth important element of localization algorithms is an approach to main-
tain localization over time, since a single estimate of a node’s location in spacetime
is quickly invalidated due to the progress of time and due to node mobility. The
conceptually simplest approach to this problem is to repeat a one-shot localization
frequently.

Last but not least, a bootstrapping mechanism is needed to provide initial ref-
erence nodes that act as seeds for distributed localization algorithms.

An algorithm for localization in spacetime can often be considered as a com-
bination of concrete instances of the above five categories and additional “glue”
elements. Many practical algorithms consist of several phases in order to improve
precision or other performance metrics. In each phase, different instances of the
five categories may be used. For example, several algorithms consist of a first phase
to obtain rough location estimates for all nodes. In a second phase, the so-called
refinement phase, these initial estimates are further improved.

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 57

1

2

3

d
23

d
12

d13

y

x

Figure 3.5: Three non-collinear nodes with known mutual distances dij define a
coordinate system for two-dimensional space.

In the following sections we give a more detailed overview of the above structural
elements. Sections 4.1 and 5.1 discuss concrete instances of these elements for
localization in time and space, respectively.

3.3.1 Bootstrapping

Obtaining constraints typically requires a number of reference nodes with known
locations in spacetime. Bootstrapping consists in providing such initial reference
nodes with location estimates. The most commonly used approach to solve the
bootstrapping problem is the provision of so-called anchor nodes which are able to
estimate their locations by means of an out-of-band localization mechanism such
as GPS, which can provide locations in both time and space. While anchors are
a natural way to solve the bootstrapping problem and allow for good precision
due to providing location “fixpoints” throughout large networks, they also come
with a significant overhead: a certain portion of the nodes must be equipped with
additional hardware (e.g., GPS receivers) and an additional infrastructure is often
needed (e.g., GPS satellites). We will discuss issues with anchors in more detail in
Section 3.4.1.

It is also possible to solve the bootstrapping problem without the use of an-
chors. Consider for example Figure 3.5, where three nodes 1, 2, and 3 with mutual
Euclidean distances d12, d23, d13 are depicted. The nodes define a coordinate sys-
tem as follows. The origin is given by the position of node 1. The positive x axis
is given by a ray starting at node node 1 passing through node 2. The positive
y axis is given by a ray starting at node 1 that is orthogonal to the x axis and
that extends into the half plane (defined by the x axis) that contains node 3. In
this coordinate system, the coordinates of the three nodes are (0, 0), (0, d12), and
(X,

√
d2

12 −X2), respectively, with X = (d2
12 + d2

13 − d2
23)/2d12 (e.g., [20, 79]).

Note, however, that this is only one possible coordinate system, any other co-
ordinate system could have been used as well. Hence, in contrast to anchor-based
approaches, anchor-free approaches are not suitable for external localization (cf.

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 58

Section 3.2.1). Also, the above coordinate system changes when one of the initial
reference nodes moves, invalidating the location estimates of all nodes whose posi-
tions have been estimated with respect to this coordinate system. The precision of
anchor-based algorithms is often superior to anchor-free approaches, since anchor
nodes may be distributed over the network to act as fixpoints for localization. With
anchor-free approaches, nodes far away from the reference nodes that define an ini-
tial coordinate system may experience significant imprecision due to accumulating
errors.

3.3.2 Obtaining Constraints

The general form of a constraint is ({S1, ..., SN}, ∆), where N reference nodes and
their respective state information Si are involved. ∆ represents a spatio-temporal
relationship among these reference nodes and the client node. While Si are typically
retrieved from a reference node by means of message exchanges, ∆ is usually a
measured quantity. In most cases, ∆ is either represented by a point estimate
(e.g., distance = X) or by bounds (e.g., distance > X and/or distance < Y).

For localization in time, the delay of network messages is typically used as
a foundation for ∆ measurements. For example, a round-trip message exchange
between client and reference can be used to derive lower and upper bounds on
the message delay between reference and client (e.g., [80]). The average of these
bounds can be used as a point estimate of the temporal distance (e.g., [38, 101]).

For localization in space, distance-dependent properties of propagating signals
(e.g., sound, radio) such as received signal strength or time of flight are typically
used as a foundation for ∆ measurements. Two common forms of constraints
are based on Euclidean distances (e.g., bounds or point estimates for the distance
from a reference) and angles (e.g., bounds or point estimates for the direction of
arrival of a signal from a reference). Two common constraints that involve multiple
references are “closer to” relationships (e.g., client is closer to reference 1 than to
reference 2) and distance differences (e.g., client is X meters closer to reference 1
than to reference 2).

3.3.3 Combining Constraints

A single constraint can be interpreted as a region in spacetime that contains the
location of a client. Combining multiple constraints typically consists of two steps.
In a first step, “bad” constraints are eliminated from the set of available con-
straints. One example of such bad constraints are outliers that represent a region
in spacetime that does not overlap with the regions defined by some or all other
constraints. After this step, the remaining constraints should have a non-empty
intersection that contains the prospective location estimate of the client.

In a second step, the intersection or a point in the intersection of the remaining
constraints is computed. In many cases, this can be achieved analytically, for
example by solving an equation system. In some cases, a closed-form solution

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 59

cannot be derived or the computational overhead may be prohibitively high. An
approximative solution that trades off computational overhead for memory is to
subdivide the solution space into pixels, where the intersection region is defined by
the pixels that are contained in all constraints (e.g., [44]).

Due to measurement errors, it may happen that there is no sufficiently large
subset of constraints with a non-empty intersection. This is often the case if the
constraints use ∆ relationships that are point estimates (e.g., distance = X) rather
than bounds. Here, an optimization problem may be set up that requires the
solution point to minimize a certain error metric. A commonly used error metric
is the distance between a point and a constraint, which is defined as the minimal
distance to any point contained in the region defined by the constraint. A typical
objective function for the optimization problem is then to minimize the sum of the
squared distances between the solution point and each constraint.

For localization in time, constraints define regions that are either points or
intervals. In case of intervals, the intersection interval can be computed as the
maximum of the lower bounds and the minimum of the upper bounds. In case of
point estimates, the average of all constraints is typically used, which minimizes
the sum of the squared error distances.

Let us consider some commonly used examples for constraint combination in
algorithms for localization in space. A very simple approach is based on centroids
(e.g., [17]), where multiple distance-bound constraints are given (i.e., distance from
reference is at most X). Here, each constraint defines a sphere. A point close to
the intersection of such a set of spheres can be obtained by computing the centroid
of the locations of the according reference points.

Another commonly used approach is multilateration to combine multiple dis-
tance constraints, where the region defined by each such constraint can be inter-
preted as the hull of a sphere. Multilateration finds the intersection point of a set
of at least 4 spheres in three-dimensional space. In case of exactly four spheres,
a linear equation system can be derived and solved to find the intersection point.
For more than 4 constraints a minimum-square-error optimization problem can be
derived, also resulting in a linear equation system (e.g., [71, 88, 89]).

One further approach is based on triangle tests, where a node performs a check
to see whether it is located inside the triangle formed by three reference nodes (e.g.,
[44]).

3.3.4 Selecting Constraints

At each point during the execution of a localization algorithm, a certain set of
reference nodes are available. Using these reference nodes, a number of “good”
constraints must be selected out of the large set of possible constraints. This
selection is based on the quality of the state information of the reference nodes,
on the quality of the spatio-temporal relationship and on temporal aspects. For
example, a better set of references may become available in a future iteration.
However, the algorithm might not be able to proceed if a node chooses to wait for

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 60

better references to become available, since the node itself then cannot act as a
reference for other nodes.

There are two different ways to approach this problem. Structured approaches
first construct an overlay topology that controls selection of reference nodes and
triggers client nodes to start measurements. A common overlay topology are trees.
For each anchor, a spanning tree of the network is constructed with the anchor
at the root. A client node becomes active as soon as its parent has estimated its
location and can thus act as a reference (e.g., [26, 38, 101]). Another typical overlay
topology are clusters, where nodes in a cluster establish a local coordinate system
and estimate their locations in terms of this reference grid. Adjacent clusters must
share a number of nodes to allow for the derivation of a coordinate transformation
between these clusters (e.g., [20, 33]).

While such structured approaches guide the selection of reference nodes, there is
an additional overhead for constructing and maintaining the overlay topology. For
example, if nodes fail or move, the overlay topology has to be updated to reflect this
change. In contrast, unstructured approaches do not explicitly construct an overlay
topology (e.g., [60, 89]). Instead, each node actively monitors its neighborhood for
a sufficient set of references to become available. While this approach avoids the
overheads of topology construction, it introduces an overhead due to a potentially
large number of constraints.

Approaches for localization in time often use structured approaches, since a
small number of constraints is usually sufficient to achieve the requested level of
precision. With localization in space, significant measurement errors and a high
degree of freedom due to the three dimensions of space typically requires the use of
as many constraints as possible. Hence, many approaches for localization in space
are unstructured.

3.3.5 Maintaining Localization over Time

A single run of a localization algorithm allows each node to estimate its location
in spacetime at a certain point in real time. However, as time progresses, the
precision of this one-shot estimate may decrease quickly due to node mobility or
due to the progress of time. Obviously, an algorithm can be executed one more time
to obtain up-to-date estimates. The resulting precision over time then depends on
the frequency of execution. However, since each execution of the algorithm takes
a certain amount of time, this frequency cannot be arbitrarily increased. Hence,
the maximum precision over time is also limited. Alternatively, if a certain target
precision is requested by the application, the execution frequency may be calculated
to be just high enough to provide the requested precision (see, e.g., [101]). For
localization in space it is also possible to limit re-execution to nodes that have
changed their location (e.g., [88]) in the meantime.

One way to further improve precision over time is the use of sensors to measure
the location in spacetime locally without referring to other nodes. This technique
is also known as dead reckoning. Hardware clocks, for example, are dead-reckoning

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 61

devices for estimating the current time. Accelerometers may be used to measure
movements and can hence provide estimates of the current position in space (see,
e.g., [102]). However, dead-reckoning techniques typically suffer from significant
errors that accumulate over time and can therefore only be used to bridge the
short gap between two consecutive runs of a localization algorithm. For example,
typical hardware clocks suffer from an unknown clock drift between 10 and 100
parts per million. After one minute, the deviation from real time is then between
0.6 and 6 milliseconds. For location estimation using accelerometers, there is a
quadratic relationship between acceleration-measurement errors and errors in the
computed location estimate.

Another way of improving the precision is prediction, where based on location
estimates from the past a current estimate is computed. Besides the past behavior,
prediction requires a model of how a node can move through spacetime. With
respect to time, such a model is rather simple as real-time progresses at a constant
rate. The situation gets more complicated for space, where nodes can move in
complex patterns. However, it is often possible to derive constraints on the possible
locations (e.g., only on roads), bounds on speed and acceleration. For example,
if there is an upper bound on the speed of a node, we can derive bounds on the
possible locations of a node at time t1 given the node’s location at time t0 < t1.
Technically, prediction can be achieved by fitting a curve (often a polynomial with
low degree) to a set of locations in spacetime observed in the recent past. As with
dead reckoning techniques, prediction often experiences significant errors.

3.4 Limitations and Trade-offs

Sensor networks are subject to various challenges that have to be met by algorithms
for localization in spacetime. In the following subsections we discuss typical trade-
offs and limitations of distributed algorithms for localization in spacetime with
respect to the technical challenges presented in Section 2.6.

3.4.1 Anchor Infrastructure

In many applications, sensor networks have to be deployed in remote, unexploited,
or hostile regions. Sensor networks therefore often cannot rely on sophisticated
hardware infrastructure. However, anchor-based algorithms require an anchor in-
frastructure, where the number, distribution, and arrangement of anchor nodes in
a network is a key parameter for the algorithm performance. In this section, we
discuss various issues with such an anchor infrastructure.

In order to obtain precise location estimates, the anchors must define an unam-
biguous coordinate system at the least. With respect to time, the local time scale
of any single node defines such an unambiguous time coordinate system. For space,
at least four anchors are required. Three anchors typically result in two possible
coordinate systems, but one of them can often be excluded due global constraints
on possible locations of nodes.

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 62

Figure 3.6: Collocated nodes (white) may end up with a large relative error due to
using different chains of reference nodes (gray).

However, such a minimum number of anchors is often not sufficient. Energy
considerations and interference issues often limit the effective range of anchors.
With radio communication, for example, the energy consumption grows with range
to the power of k, where typically 2 ≤ k ≤ 4. Hence, in large networks with
small anchor range, typically a significant portion of nodes cannot directly obtain
constraints for a sufficient number of anchor nodes. In this case, an iterative
approach can be applied, where nodes first estimate their locations using anchors
and then act as “secondary” references for other nodes. As measurement errors
accumulate along such chains, the error in the estimated location is the larger,
the more iterations are required (i.e., the larger the distance to the anchor is).
Depending on the precision of the ∆, this error can be significant. With some
approaches for measuring ∆ in practice (e.g., measuring Euclidean distance based
on received radio signal strength), the error can be as high as 50% of the true
distance in realistic settings [88].

One particular problem with using a small number of anchors is that collocated
nodes may end up with large relative errors due to using different chains of reference
nodes as depicted in Figure 3.6. This can be problematic, since collocated sensor
nodes often cooperate in observing a nearby physical event and thus may need
a very small relative error. For example, estimates of the distance between the
collocated nodes may include significant errors if the nodes use different paths.
Local refinement procedures as described in [88] can somewhat improve the local
consistency.

To achieve a reasonable precision, typically a large number of anchors is re-
quired, such that the maximum distance of any client node from a sufficient number
of anchors is small. In [88], between 5% and 10% of all nodes, and in [89], between
10% and 20% of all nodes are anchors. An out-of-band mechanism is required to
provide the anchors with precise location estimates. Such an out-of-band mecha-
nism may present a serious drawback, since it typically implies additional hardware
infrastructure, and special hardware must be attached to the sensor nodes. One
typical example for such an out-of-band mechanism is GPS with its satellite in-
frastructure and resulting constraints, where anchor nodes must be equipped with
expensive and energy-intensive GPS receivers.

In order to ensure that each node in the network has a sufficient number of
neighbors which can act as references, the network must have a certain minimum
density. This also implies that nodes at the edge of the network (with a lower

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 63

(a) (b)

d d
d d

1 2 1 2

e
e

1 2

2

1 2

2

Figure 3.7: Localization error depends on the constellation of reference nodes.

number of neighbors) typically experience a reduced precision. Network density
is particularly important if the collected constraints are loose, since then many
constraints are needed to achieve precise location estimates. In [88], for example,
each node must have an average of 7 to 12 neighbors on average in order to achieve
a reasonable precision.

The arrangement of the anchors is also of importance for the achieved precision
of localization in spacetime. Obviously, anchors should be evenly distributed across
the sensor network in order to ensure that any node has a sufficient number of an-
chors in its vicinity. However, also the relative arrangement of anchors with respect
to each other has an influence on the localization accuracy. For example, collinear
anchors (i.e., anchor nodes that fall on a line in 3D space) and also approximately
collinear anchors result in significantly reduced precision for localization in space.
This is illustrated for localization in 2D in Figure 3.7. In part (a), the error e2 in
distance measurement results in a small error in the estimated location (dotted cir-
cle) w.r.t. the actual location of the node (solid circle). In part (b), where anchor
nodes are almost collinear (i.e., fall on a point in 2D), the same error e2 results in
a much larger error in the estimated location.

3.4.2 Energy and Other Resources

As noted in Section 3.2.5, it is quite common that applications do only require a
very limited scope and lifetime of localization, where actual scope and lifetime re-
quirements depend on the occurrence of events in the physical environment. Hence,
a significant amount of resources and energy could be saved if localization is only
performed where and when needed and with the required precision.

However, distributed algorithms for localization in spacetime are often not well
suited for on-demand localization. This is due to two main reasons. Firstly, lo-
calization of a single node typically requires the cooperation of many other nodes
to act as references for obtaining constraints. For on-demand localization, (re-
cursively) providing a sufficient number of reference nodes on-demand would be
needed. However, managing this process is a complex task. For example, as noted
in the previous section, the number and relative arrangement of the anchors must be
considered by such mechanisms, as this is crucial for the achieved precision. More-

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 64

over, such selective localization may induce significant management overheads.
Secondly, many algorithms require a significant amount of convergence time for

achieving the requested precision. For example, [60] reports a convergence time
of 10 minutes in a network of only few tens of nodes. Hence, if a node requests
localization, a significant amount of time will elapse before a location estimate with
sufficient precision can be provided.

3.4.3 Network Dynamics

In Section 2.6.2 we discussed various effects of network dynamics found in sensor
networks. These effects may have a significant impact on the performance and
applicability of localization algorithms.

An important implicit assumption of many localization algorithms is that before
the location of a node can be estimated, the node must obtain constraints involving
a sufficient number of reference nodes. These references in turn must also be able
to obtain constraints from a sufficient number of other reference nodes, and so
on. Overall, in order to locate a node, there must be “constraint paths” from a
client node to a sufficient number of anchors. This typically means that a sufficient
portion of the network must be connected before localization can be performed.

However, a number of application projects (e.g., [48]) explore settings, where
sensor nodes are mobile and network connectivity is sporadic. In such settings,
there may not be a network connection between nodes that require localization
in spacetime with respect to a common coordinate system. Algorithms with the
above implicit connectivity assumption cannot be used for such applications. We
will address this problem in Chapter 4.

As noted in the previous section, many algorithms take a significant amount of
convergence time before delivering the requested precision. It is typically assumed
that the network remains stable during the execution of the algorithm. However,
node mobility and other effects of network dynamics may invalidate this assump-
tion. This may lead to significantly increased convergence times (see, e.g., [98]),
or may also prevent the algorithm from converging at all. In the latter case, the
effective precision may reduce significantly.

Some algorithms construct an explicit overlay topology as noted in Section
3.3.4. Network dynamics may break these topologies or make them inefficient.
Maintaining these topologies under a high degree of network dynamics may become
an unacceptable resource overhead.

3.4.4 Configuration

Localization algorithms may require a number of configuration parameters whose
values differ from node to node. In order to allow unattended operation, configu-
ration must be performed with little or no support from human operators.

Typical examples for configuration parameters are the set of reference nodes to
use, network link calibration parameters (e.g., minimum delay of a wireless link),

CHAPTER 3. SPACE AND TIME IN SENSOR NETWORKS 65

and sensor calibration parameters (e.g., for distance measurements). While some
of these parameters can be automatically configured and adapted, this is not so
easy for other parameters. For example, calibration may be a particularly tricky
issue in sensor networks, because typical low-cost sensors used on sensor nodes are
very sensitive to environmental parameters such as temperature and humidity. If
these sensors are exposed to a harsh and dynamic physical environment, the out-
put of the sensors includes significant errors. In [108], for example, the authors
observed an average error of approx. 75% for distance measurements with uncali-
brated sensors based on time of flight of an ultrasound signal. Additionally, sensor
orientation, wear, and dirt lead to systematic but dynamically changing errors.
Hence, calibration parameters often cannot be statically configured, but must be
dynamically updated to reflect the changing setup.

3.5 Summary

This chapter discussed issues related to time and space in wireless sensor networks.
We presented a common framework that supports a unified view on space and
time. In particular, we presented applications of space and time and classified
these into three broader categories: applications related to interfacing a sensor
network to an external observer, applications related to interfacing a sensor net-
work to the observed real-world, and applications related to coordination among
sensor nodes. We also discussed various requirements and general approaches that
apply both to time synchronization and localization: internal vs. external localiza-
tion/synchronization, local vs. global scales, the use of point estimates vs. bounds
to represent points in time/space, the need for synchronized points vs. distances,
scope and lifetime of synchronization/localization, precision, and other QoS re-
quirements. Then we considered distributed algorithms for synchronization and
localization and pointed out five common structural elements of many algorithms:
bootstrapping, obtaining constraints, combining constraints, selecting constraints,
and maintaining localization/synchronization over time. We then showed that
these algorithms are affected by a number of limitations and trade-offs in four
broader categories: with respect to anchor infrastructures, energy and resource
consumption, network dynamics, and with respect to configuration.

Chapter 4

Time Synchronization

The significance of physical time for sensor networks has been reflected by the
development of a number of time synchronization algorithms in the recent past.
However, most of these approaches have been designed for “traditional” sensor
networks, covering only a small region of the design space discussed in Section 2.2.
We will identify an important region in the design space that is not sufficiently
supported by existing approaches. In order to fill this gap, we present and evaluate
an algorithm called “Time-Stamp Synchronization”.

We begin our discussion in Section 4.1 by studying fundamental system models
and by presenting concrete algorithmic techniques for synchronization. The discus-
sion will be structured according to the common framework we developed in the
previous chapter. Referring to these techniques, we present existing algorithms for
time synchronization in Section 4.2. Our algorithm will be motivated and presented
in Sections 4.3 and 4.4.

4.1 Background

This section reviews models and concepts for time synchronization. The discussion
is structured according to Section 3.3.

4.1.1 Clock and Communication Models

In the following two subsections we discuss models of communication and of hard-
ware clocks. Communication is fundamental for measuring temporal relationships
among nodes. Hardware clocks are an important tool for maintaining synchroniza-
tion over time.

Clock Models

Most computer systems in use today are based on clocked circuits and hence con-
tain so-called digital clocks. Such hardware clocks are a valuable tool for time

66

CHAPTER 4. TIME SYNCHRONIZATION 67

synchronization, since they can be used to maintain synchronization over time as
discussed in Section 3.3.5.

A typical hardware clock consists of a quartz-stabilized oscillator and a counter
that is incremented by one every oscillation period (e.g., upon detection of a falling
or rising edge). If the periodic time T of the oscillator is known, the counter h can
be used to obtain approximate measurements of real-time intervals in multiples of
T .

More formally, the clock counter displays value h(t) at real time t and is in-
cremented by one at a frequency of f . The rate of the counter is defined as
f(t) = dh(t)/dt. An ideal digital clock would have a rate of 1 at all times. How-
ever, the periodic time of the oscillator and hence the clock rate depend on various
parameters such as age of the quartz, supply voltage, environmental temperature
and humidity. This so-called clock drift is formally defined as the deviation of the
rate from 1 or

ρ(t) = f(1)− 1 (4.1)

Since sensor nodes are typically operated under a well-defined ranges of the above
parameters, it is reasonable to assume a maximum possible drift ρmax, such that

|ρ(t)| ≤ ρmax (4.2)

for all t. Typical values for ρmax are 1ppm to 100ppm, where 1ppm = 10−6.
Some researchers make additional assumptions about the clock rate such as

bounded drift variation or constant clock rate. The latter may not be a reasonable
model for sensor networks that are exposed to significant changes of environmental
parameters.

Communication Models

Obtaining temporal constraints (cf. Section 3.3.2) is typically implemented by
communication among sensor nodes. There are three major characteristics of com-
munication that affect time synchronization.

Firstly, a communication network has the multicast/broadcast capability if a
single message can be received by multiple/all nodes within the communication
range of the sender. Since commonly used sensor nodes use radio communica-
tion, message broadcasts are typically supported. Broadcasts can, for example,
be exploited to synchronize an arbitrary number of nodes with a fixed number of
messages.

Secondly, a communication link is said to be symmetrical if it can be used in
both directions. A link is asymmetrical if it can be used in one direction only. For
example, some algorithms rely on the ability to measure round-trip-delays, which
requires symmetrical links (cf. Section 2.6.2).

Thirdly, the latency or delay characteristics of a communication link are of
utmost importance for time synchronization. Known constant delays can be easily
compensated by including a respective constant offsets in time synchronization

CHAPTER 4. TIME SYNCHRONIZATION 68

algorithms. However, the latency of a communication link typically varies over
time (cf. Section 2.6.2). These variable delays can be attributed to four major
sources:

• Send time, lasting from when the application issues a “send” command to the
operating system, until when a raw network message has been constructed
that could be delivered to the communication medium. Variable delays result
from operating system context switches, network protocol processing, and
from hardware interrupts.

• Medium access time. The communication medium is typically shared by
many network nodes, such that immediate access may not be possible, causing
additional variable delays. For example, random backoff mechanisms are
often used to resolve collisions. Since the channel bandwidth is rather low for
sensor networks (few tens of kilobit per second), this delay component may
vary between zero and few tens of milliseconds.

• Propagation time. The time it takes for the radio signal to travel from the
sender to the receiver depends on the distance between the nodes. These de-
lays are often negligible for radio communication due to the high propagation
speed and since the communication range is often rather small (few tens of
meters). Typical values are between zero and few tens of nanoseconds.

• Receive time, lasting from the arrival of the signal at the antenna of the re-
ceiver, until when the application is notified about the arrival of the message.
There is often a variable delay in the order of the duration of one bit until
the radio hardware triggers a receive interrupt to the processor. As for the
send time, additional variable delays are caused by context switches, network
protocol processing, and interrupts.

There are two important approaches to eliminate or to limit the impact of these
variable delays. The first approach is to implement time synchronization in the
MAC layer, thus eliminating send and medium access time, as well as most of the
receive time. Another approach is to synchronize a set of nodes by sending a single
broadcast message to them, such that all nodes experience identical send time and
medium access time.

4.1.2 Obtaining Constraints

As discussed in Section 3.3.2, a client node that is to be synchronized has to obtain
temporal constraints on its local time with respect to a time scale defined by a
reference node. Such a constraint typically involves the state S of the reference
node and a temporal relationship ∆ between the client node and the reference node.
For time synchronization, S typically consists of the local time hr of the reference
node, and ∆ is a delay for sending a message from the reference node to the client
node or vice versa. The client node can also refer to its current local time hc that

CHAPTER 4. TIME SYNCHRONIZATION 69

R C

t 1

t 2

R C

t 1

t 2

t 3

t 2
t 1

(a) (b) (c)

R C

B

Figure 4.1: Obtaining temporal constraints. (a) Unidirectional, (b) round-trip, and
(c) reference broadcast.

is defined by its (unsynchronized) hardware clock. The goal is to derive constraints
on the synchronized time h′

c of the client node.
Figure 4.1 illustrates three basic approaches for obtaining such constraints. In

(a), the reference node R sends a single message to the client node C at real time
t1, which is received by the client node at t2. Note that nodes do not have access to
real time t, only hr(t1) and hc(t2) (i.e., the values of the local clock counters at the
respective real-time instants) is known to them. If the message delay d = t2 − t1
were known, a valid constraint would be h′

c(t2) = hr(t1) + d. Here, hr(t1) would
represent the state information S of the reference node, and d would represent
the temporal relationship ∆. However, d is unknown to both reference and client
nodes. If upper and lower bounds dmin < d < dmax are known, the following would
be possible constraints:

h′
c(t2) > hr(t1) (4.3)

h′
c(t2) > hr(t1) + dmin (4.4)

h′
c(t2) < hr(t1) + dmax (4.5)

h′
c(t2) = hr(t1) (4.6)

h′
c(t2) = hr(t1) + dmin (4.7)

h′
c(t2) = hr(t1) + dmax (4.8)

h′
c(t2) = hr(t1) + (dmin + dmax)/2 (4.9)

Note that constraints 4.3-4.5 are correct bounds, while constraints 4.6-4.9 are only
approximations. Perhaps the most commonly used constraint is 4.6, because it
does not require knowledge of bounds and is a good approximation if MAC layer
techniques are used to eliminate send, medium access, and receive times. Note that
this technique can be used to synchronize an arbitrary number of clients with one
broadcast message.

CHAPTER 4. TIME SYNCHRONIZATION 70

In Figure 4.1 (b), the client node first sends a request message to the reference,
which is immediately answered with a reply (an additional delay between receipt
of the request and sending of the reply can be easily measured and compensated).
Here, some notable constraints are:

h′
c(t3) > hr(t2) (4.10)

h′
c(t3) > hr(t2) + dmin (4.11)

h′
c(t3) < hr(t2) + (hc(t3)− hc(t1)) (4.12)

h′
c(t3) = hr(t2) + (hc(t3)− hc(t1))/2 (4.13)

Note that constraints 4.10 and 4.12 give upper and lower bounds on h′
c(t3) without

knowledge of dmin and dmax. Constraint 4.13 is a good approximation if both
messages have about the same delay (i.e., t2− t1 ≈ t3− t2). Note that the number
of required messages grows linearly with the number of clients.

In Figure 4.1 (c), an additional beacon node B sends a broadcast to both the
reference and the client node. A commonly used constraint with this approach is

h′
c(t2) = hr(t1) (4.14)

This is a good approximation, since both nodes will receive the message almost con-
currently as explained in Section 4.1.1. Note that exact bounds cannot be derived
unless bounds on the message delay are known a priori. A single broadcast message
can be used to synchronize an arbitrary number of clients, but additional message
exchanges are required to transmit hr(r1) from the reference to the client(s).

4.1.3 Combining Constraints

Although a single constraint may be sufficient to derive synchronized time h′
c at

the client node, multiple constraints can significantly improve the achieved pre-
cision. Let us first consider the case where multiple constraints are available on
h′

c(t0) for some real-time instant t0. This might for example be achieved by con-
currently requesting synchronization with multiple reference nodes. As discussed
in the previous section, these constraints are either bounds or approximations.

If bounds are used, each pair of lower and upper bound can be considered
as an interval. The intervals are open at one end if only lower or upper bounds
are available. The combined interval is then computed as the intersection of all
available intervals. If some or all intervals are closed, then this intersection may be
empty. Hence, outlier rejection is often performed to eliminate intervals that would
lead to an empty intersection. In general, different subsets of intervals result in a
non-empty intersection. Various criteria can be applied to select such a subset, for
example, minimizing the number of rejected intervals, or minimizing the length of
the intersection interval.

If approximations are used, the average of all constraints can serve as the com-
bined constraint. Outlier rejection can also be performed in order to reject false

CHAPTER 4. TIME SYNCHRONIZATION 71

h (t)c

h’ (t)c

h (t)c

h’ (t)c

(a) (b)

Figure 4.2: Prediction of synchronized time using a hardware clock. (a) Point
estimates, (b) bounds.

constraints. One criterion for this would be to remove all constraints that deviate
from the average by more than a certain threshold.

Sometimes it is possible to derive a confidence value for each constraint.
The higher the confidence value, the better the constraint. With the round-
trip technique in Figure 4.1 (c), for example, the inverse of the round-trip time
1/(hc(t3) − hc(t1)) could be used as a confidence for the approximation h′

c(t3) =
hr(t2) + (hc(t3)− hc(t1))/2. If such confidence values are available, a weighted av-
erage can be computed. The confidence values can also be used to control outlier
rejection.

4.1.4 Maintaining Synchronization

In the previous section we described how constraints on h′
c(tx) can be obtained for a

real-time instant tx. These constraints directly result in a estimate for the synchro-
nized time of the client node at real time tx. In order to obtain such an estimate
for another instant ty, the procedure of obtaining and combining constraints can
be repeated as discussed in Section 3.3.5. However, there are two problems with
this approach. Firstly, as discussed in Section 3.3.5, such an approach may exhibit
significant overheads in terms of communication and computation. Secondly, the
application may request synchronized time at tx, but due to processing delays the
constraints refer to tx + ε. In Figure 4.1 (a), for example, after the client applica-
tion requests synchronized time at t0, the client node must wait until it receives a
synchronization message from the reference node in order to obtain constraints on
h′

c(t2), where t2 > t0.
In order to approach these problems, the client node may use its local hardware

clock to predict h′
c(ty), where no measured constraints are available for real time

ty. For this, a mapping from hc(t) to h′
c(t) must be derived, given a set of measured

constraints on h′
c(txi

) for different real-time instants txi
as illustrated in Figure 4.2.

In (a), each circle indicates a data point (hc(txi
), h′

c(txi
)) where a point estimate for

h′
c(txi

) is known. In (b), lower (5) and upper bounds (4) for h′
c(txi

) are known.

CHAPTER 4. TIME SYNCHRONIZATION 72

Phase
Detector

Variable
Frequency
Oscillator

Filter

h (t)c

ch’’ (t)
h’ (t)

ixc

Figure 4.3: Using a phase-locked loop to establish a mapping between hardware
clock and synchronized time.

Various methods can be applied to derive the desired mapping of hc(t) to h′
c(t),

given the above sets of constraints. A commonly used approach is to assume a
linear relationship

h′
c(t) = αhc(t) + β (4.15)

Note that α can be interpreted as the relative drift or rate difference between
synchronized time and the hardware clock, and β indicates the offset between
synchronized time and the hardware clock. Once α and β are known, the linear
function 4.15 can be used to derive the current (predicted) synchronized time using
the current hardware clock reading.

Line fitting techniques such as linear regression can be used to obtain estimates
for α and β as illustrated by the line in Figure 4.2 (a). If bounds are used, a
steepest and a flattest line can be fitted as illustrated by the dashed in lines in
(b). The resulting values for α and β for the two lines can then be used as lower
and upper bounds for rate and offset differences between synchronized time and
the hardware clock. Alternatively, the line defined by the average of the α and β
values of the two lines can be used. Yet another approach is the use of convex hulls,
where two lines are fitted such that they cut off minimal half planes that contain
all upper and all lower bounds, respectively. This is illustrated by the solid lines
in Figure 4.2 (b). Note that the latter technique can also be applied if only lower
or upper bounds are available.

An important question with the above techniques is how many data points (i.e.,
constraints) should be included in the line fitting procedure. With small numbers,
few outliers can have a significant impact on the fitting result. This can be diluted
by including a larger number of data points, which, however, results in increased
memory footprint.

In practice, the relationship between synchronized time and hardware clock is
often not linear. By repeating the line fitting procedure frequently, a piecewise
linear approximation of that nonlinear relationship can be achieved. This approx-
imation is the better, the fewer data points are included in each fitting procedure.
Often it is mandatory to ensure that this piecewise approximation is continuous,
which may require the introduction of additional constraints on the fitted lines.

A different approach to derive a mapping of hc(t) to h′
c(t) is the use of phase-

locked loops (PLL). As depicted in Figure 4.3, a PLL consists of at least three

CHAPTER 4. TIME SYNCHRONIZATION 73

(a) (b) (c) (d)

Figure 4.4: Commonly used overlay topologies. (a) Stars, (b) tree, (c) hierarchy,
and (d) clusters.

components. A variable frequency oscillator (VFO) is a component that produces
an estimation h′′

c (t) for synchronized time h′
c(t). The frequency dh′′

c (t)/dt can be
controlled by an input signal of the VFO. The generation of the output signal is
usually based on the hardware clock signal hc(t), which therefore represents the
second input to the VFO. The phase detector (PD) estimates the phase offset of
its two input signals and generates an output signal that is proportional to the
observed phase difference. The first input of the PD is the sequence of estimates
h′

c(txi
), the second input is the output h′′

c (t) of the VFO. The output of the PD is
fed to a filter that integrates the observed phase differences over time and produces
an output signal to control the frequency of the VFO. Overall, a PLL can be
considered as a feedback loop that adjusts the frequency and phase of the VFO
to the discrete input signal h′

c(txi
). Hence, the output h′′

c (t) of the VFO is an
approximation of synchronized time h′

c(t).
In contrast to the line fitting approach, a PLL requires only minimal state

information and does not assume a linear relationship. However, due to the delay
introduced by the filter, it may take minutes before the VFO output converges to
a stable frequency.

Note that both of the above approaches are a combination of prediction and
dead reckoning (cf. Section 3.3.5). The hardware clock can be considered a “time
sensor” that is calibrated using the observed past behavior of synchronized time.

4.1.5 Selecting Constraints

As discussed in Section 3.3.4, there are two basic approaches to control the selection
of reference nodes by a client node: structured and unstructured approaches. With
structured approaches, an overlay topology is constructed and maintained, which
can be interpreted as a subgraph of the network. A client node then only consid-
ers neighbors in this overlay topology as potential references. With unstructured
approaches, a client node may consider any of its neighbors as references.

As depicted in Figure 4.4, commonly used overlay topologies are stars, trees,
hierarchies, and clusters. With stars, a number of anchor nodes (black) are dis-
tributed across the network, such that each client node (white) has one or more
anchors in its one-hop neighborhood. The anchors are synchronized with each

CHAPTER 4. TIME SYNCHRONIZATION 74

other by means of an out-of-band mechanism. With trees, a single anchor node
forms the root of a spanning tree. The nodes in the tree synchronize top-down with
their parents, such that each node has exactly one reference node. Hierarchies are
directed acyclic graphs with one or more anchors at the top. Nodes synchronize
top-down with their parents. With clustering, nodes are grouped into clusters, such
that adjacent clusters share common gateway nodes (gray). The nodes in a clus-
ter are synchronized in some way with each other. Gateway nodes independently
participate in the synchronization process of each adjacent cluster, such that they
can translate between the time scales of the clusters they participate in.

4.2 Related Work

This section presents and discusses existing approaches for time synchronization.
We first discuss related and influential approaches from other domains, pointing out
their shortcomings in the context of sensor networks. Our main focus is, however,
on algorithms which have been specifically developed for sensor networks. These
are based on the models and concepts presented in the previous section.

4.2.1 Logical Time

Logical time [54, 64] provides mechanisms to time-stamp events (e.g., receipt or
sending of a message). For example, C(e1) is the logical time stamp of event e1. If
a second event e2 is causally dependent on e1 (i.e., e1 → e2), then C(e1) < C(e2)
will hold with respect to some ordering relation “<” on time stamps. Two events
are causally dependent if they happened in the same process or if there is a message
path connecting e1 and e2.

In sensor networks, where sensor events are triggered by real-world phenomena,
sensor events are only causally related if they have been generated by the same
sensor node. Hence, temporal reasoning on events originating from different nodes
cannot be supported by logical time. Moreover, it is often necessary to measure the
amount of real-time elapsed between two sensor events, which cannot be achieved
with logical time. Therefore, physical time must be used to relate events in the
physical world.

4.2.2 Offline Time Synchronization

Time synchronization algorithms typically perform synchronization during the ex-
ecution of a distributed application. Offline time synchronization performs syn-
chronization only after a distributed application has finished execution. For this,
each node logs events (e.g., message sent, message received) during the execution
of the application. Each logged event is tagged with the time of occurrence using
the unsynchronized hardware clock of the node. This results in an event log for
each node. These logs are than provided as input to an offline time synchroniza-

CHAPTER 4. TIME SYNCHRONIZATION 75

tion algorithm. For each pair of nodes, the algorithm then computes a coordinate
transformation between the local timescales of the nodes.

Such event logs are collected over extended periods of time (e.g., hours). Exist-
ing algorithms [5, 31] typically assume that the rate difference between the hard-
ware clocks and the message delays are constant during the logging period.

In the context of sensor networks, offline approaches are of limited applicability,
since synchronized time is often required during the execution of an application.
Secondly, both message delays and clock rates may be subject to significant varia-
tion in sensor networks (cf. Section 4.1.1).

4.2.3 Network Time Protocol (NTP)

NTP [68] has been designed for large-scale networks with a rather static topology
(such as the Internet). Nodes are externally synchronized to a global reference
time that is injected into the network at many places via a set of master nodes,
so-called “stratum 1” servers. These master nodes are synchronized out of band,
for example via GPS. Nodes participating in NTP form a hierarchy: leaf nodes are
called clients, inner nodes are called stratum L servers, where L is the level of the
node in the hierarchy. The parents of each node must be specified in configuration
files at each node. A node in the hierarchy uses round-trip measurements to obtain
bounds on synchronized time with respect to its parents. Outliers are removed from
the resulting set of intervals. From the intersection of the remaining intervals, a
point estimate of synchronized time is computed and used as input for a PLL that
eventually outputs synchronized time.

While NTP has been successfully applied in the Internet, it fails to meet many
of the technical challenges discussed in Section 2.6. Many of these limitations are
closely related to the issues discussed in Section 3.4.

Resource and energy constraints. Resource constraints may preclude the use
of GPS or other technologies for out-of-band synchronization of NTP master nodes.
NTP is also not optimized for energy efficiency, simply because this is not an issue
in traditional distributed systems. Energy overhead in NTP results from several
sources. Firstly, the service provided by NTP typically cannot be dynamically
adapted to the varying needs of an application. Hence, with NTP all nodes would
be continuously synchronized with maximum precision, even though only subsets
of nodes might occasionally need synchronized time with less-than-maximum pre-
cision.

Secondly, NTP uses the processor and the network in ways that would lead to
significant overhead in energy expenditure in sensor networks. For example, NTP
maintains a synchronized system clock by regularly adding small increments to the
system-clock counter. This behavior precludes the processor from being switched
to a power-saving idle mode. In addition, NTP servers must be prepared to receive
synchronization requests at any point in time. However, constantly listening is an
energy-wise costly operation in sensor networks; many sensor-network protocols

CHAPTER 4. TIME SYNCHRONIZATION 76

therefore switch off the radio whenever possible.

Network dynamics. The operation of NTP is largely independent of the un-
derlying physical network topology. In the NTP overlay hierarchy, a master and a
client can be separated by many hops in the physical network, even though they
are neighbors in the overlay hierarchy. As discussed in Section 2.6.2, multi-hop
paths may be very unstable and unpredictable in a sensor network. NTP, however,
depends on the ability to accurately estimate the delay characteristics of multi-hop
network links.

NTP implicitly assumes that network nodes that shall be synchronized are
a priori connected by the network. However, this assumption may not hold in
dynamic sensor networks with mobile nodes as discussed in Section 2.6.2.

Infrastructure. In order to improve the precision and availability of synchro-
nization in large networks, reference time is injected at many points into the net-
work. Hence, any node in the network is likely to find a source of reference time
in a distance of only a few hops. However, such an approach requires an external
infrastructure of reference-time sources which have to be synchronized with some
out-of-band mechanism. Where this is not feasible, NTP would have to operate
with a single master node, which uses its local time as the reference time. In
large sensor networks, the average path length from a node to this single master
is long, leading to reduced precision. If collocated nodes end up using different
synchronization paths, they will be poorly synchronized (cf. Section 3.4.1).

Configuration. NTP requires the specification of one or more potential synchro-
nization masters for each node. This is an appropriate solution for networks with
a rather static topology, where configurations remain valid for extended periods
of time. In sensor networks, however, network dynamics necessitate a frequent
adaptation of configuration parameters.

4.2.4 Time Synchronization for Sensor Networks

In this section we review time synchronization approaches that have been specif-
ically devised for sensor networks. Note that most of these algorithms have been
proposed after our work presented in Section 4.4.

Reference-Broadcast Synchronization (RBS)

RBS [33] denotes some nodes as beacons which frequently broadcast messages
to a set of client nodes that should be synchronized as illustrated in Figure 4.1
(c) on page 69. Clients that receive such a broadcast exchange their respective
reception times to obtain mutual constraints. Each client collects multiple such
constraints and uses linear regression to compute relative time offsets and rate
differences to the other client nodes. The offset and rate difference between a pair of

CHAPTER 4. TIME SYNCHRONIZATION 77

client nodes defines a coordinate transformation between the local time scales (i.e.,
coordinate systems) of these nodes. To extend this scheme to multi-hop networks,
the network is clustered such that a single beacon can synchronize all nodes in
its cluster. Gateway nodes that participate in two or more clusters independently
take part in the reference-broadcast procedure of all adjacent clusters. By knowing
offsets and rate differences to nodes in all clusters, gateway nodes can compute
coordinate transformations between all adjacent clusters. Time synchronization
across multiple hops is then provided by transforming clock readings between the
local time scales (i.e., coordinate systems) of the nodes.

In experiments it has been shown that adjacent Berkeley Motes can be synchro-
nized with an average error of 11 µs by using 30 broadcasts. Over multiple hops,
the average error grows with O(

√
n), where n is the number of hops.

Tiny-Sync and Mini-Sync (TS/MS)

Tiny-Sync and Mini-Sync [95] are methods for pairwise synchronization of sensor
nodes. Both Tiny-Sync and Mini-Sync use multiple round-trip measurements and
a line-fitting technique to obtain the offset and rate difference of the two nodes.
For this, a constant clock rate is assumed. To obtain data points for line fitting,
multiple round-trip measurements are performed as depicted in Figure 4.1 (b) on
page 69. Each round-trip measurement is used to obtain lower and upper bounds on
h′

c(t). Then, the line-fitting technique depicted in Figure 4.2 (b) on page 71 is used
to calculate two lines with minimum and maximum slope. Slope and axis intercept
of these two lines then give bounds for the relative offset and rate difference of the
two nodes. The line with average slope and intercept of the two lines is then used
as the offset and rate difference between the two nodes.

Note that each of the two lines is unambiguously defined by two (a priori un-
known) data points. The same results would be obtained if the remaining data
points were eliminated. Since the computational and memory overhead depends
on the number of data points, it is a good idea to remove as many data points as
possible before the line fitting. Tiny-Sync and Mini-Sync only differ in this elimi-
nation step. Essentially, Tiny-Sync uses a heuristic to keep only two data points for
each of the two lines. However, the selected points may not be the optimal ones.
Mini-Sync uses a more complex approach to eliminate exactly those points that
do not change the solution. Hence, Tiny-Sync achieves a slightly suboptimal so-
lution with minimal overhead, Mini-Sync gives an optimal solution with increased
overhead.

Measurements on a 802.11b network with 5000 data points resulted in an offset
of 945 µs (3230 µs) and a rate difference of 0.27 ppm (1.1 ppm) for adjacent nodes
(nodes five hops away).

Lightweight Time Synchronization (LTS)

LTS [101] is a synchronization technique that provides a specified precision with
little overhead, rather than striving for maximum precision.

CHAPTER 4. TIME SYNCHRONIZATION 78

Two algorithms are proposed: one that operates on demand for nodes that ac-
tually need synchronization, and one that proactively synchronizes all nodes. Both
algorithms assume the existence of one or more master nodes that are synchronized
out-of-band to a reference time. The proactive algorithm proceeds by constructing
spanning trees with the masters at the root by flooding the network. In a sec-
ond phase, nodes synchronize to their parents in the tree by means of round-trip
synchronization. The synchronization frequency is calculated from the requested
precision, from the depth of the spanning tree, and from the drift bound ρmax.

The on-demand version also assumes the existence of one or more master nodes.
When a node needs synchronization, it sends a request to one of the masters using
any routing algorithm (this is not further specified). Then, along the reverse path
of the request message, nodes synchronize using round-trip measurements. The
synchronization frequency is calculated as in the proactive version described above.
In order to reduce synchronization overhead, each node may ask its neighbors
for pending synchronization requests. If there are any such requests, the node
synchronizes with the neighbor, rather than executing an independent multi-hop
synchronization with a reference node.

The overhead of the algorithms was examined in simulations with 500 nodes
uniformly placed in a 120 m × 120 m area, a target precision of 0.5 s, and a duration
of 10 hours. The centralized algorithm performed an average of 36 pairwise syn-
chronizations per node. The distributed algorithm executed 4-5 synchronizations
on average per node if 65% of all nodes request synchronization.

Timing-Sync Protocol for Sensor Networks (TPSN)

TPSN [38] provides synchronization for a whole network. First, a node is elected
as a synchronization master (details for this are not specified), and a spanning tree
with the master at the root is constructed by flooding the network. In a second
phase, nodes synchronize to their parents in the tree using round-trip measure-
ments. Synchronization is performed in rounds and initiated by the root broad-
casting a synchronization-request message to its children. Each child then performs
a round-trip measurement to synchronize with the root. Nodes further down in
the tree overhear the messages of their parents and start synchronization when
their parents have synchronized. To eliminate message-delay uncertainties, time-
stamping for the round-trip measurements is done in the MAC layer. In case of
node failures and topology changes, master election and tree construction must be
repeated.

Measurements showed that two adjacent Berkeley Motes can be synchronized
with an average error of 16.9 µs, which is a worse figure than the 11 µs given for
RBS in [33]. However, the authors of [38] claim that a re-implementation of RBS
on their hardware resulted in an average error of 29.1 µs between adjacent nodes,
effectively claiming that TPSN is about twice as precise as RBS.

CHAPTER 4. TIME SYNCHRONIZATION 79

TSync

TSync [26] provides two protocols for external synchronization: the Hierarchy Ref-
erencing Time Synchronization Protocol (HRTS) for proactive synchronization of
the whole network, and the Individual-Based Time Request Protocol (ITR) for on-
demand synchronization of individual nodes. Both protocols use an independent
radio channel for synchronization messages in order to avoid inaccuracies due to
variable delays introduced by packet collisions. In addition, the existence of one or
more master nodes with access to a reference time is assumed.

With HRTS, a spanning tree with the master at the root is constructed. Then,
the master uses the reference broadcasting technique illustrated in Figure 4.1 (c)
on page 69 to synchronize its children. Each child node now repeats the procedure
for its subtree.

Measurements in a network of MANTIS sensor nodes showed a mean synchro-
nization error of 21.2 µs (29.5 µs) for two adjacent nodes (nodes three hops away).
For comparison, RBS was also implemented, giving an average error of 20.3 µs
(28.9 µs).

Interval-Based Synchronization (IBS)

Interval-based synchronization was first proposed in [63], where a bounded-drift
model is assumed. The network nodes perform external synchronization by main-
taining a lower and upper bound on the current time. During communication be-
tween two nodes, the bounds are exchanged and combined by choosing the larger
lower and the smaller upper bound. This amounts to intersecting the time intervals
defined by each pair of bounds. Between communications, each node advances its
bounds according to the elapsed real time and the known drift bounds. In [91], the
model was refined by including bounded drift variation and fault-tolerance.

In [15], the simple approach from [63] was shown to be worst-case-optimal,
where the worst case is the one where all clocks run with maximal drift. A con-
siderable improvement in the synchronization quality can be achieved by having
each node store, maintain, communicate, and use the bounds from its last com-
munications with other nodes. In [65], it was shown that optimal interval-based
synchronization can only be achieved by having nodes store and communicate their
entire history. Obviously, this becomes prohibitive with growing network size and
lifetime. In realistic settings, the value of a piece of history data decreases rapidly
with its age. Therefore, efficient average-case-optimal synchronization can be ob-
tained by using only recent data.

Flooding Time-Synchronization Protocol (FTSP)

FTSP [60] can be used to synchronize a whole network. The node with the low-
est node ID is elected as the anchor whose local time serves as a reference for
synchronization. If this node fails, then the node with the lowest ID in the re-
maining network is elected as the new anchor. The anchor periodically broadcasts

CHAPTER 4. TIME SYNCHRONIZATION 80

a synchronization message that contains its current local time. Nodes which have
not received this message yet use the message contents to derive a constraint and
broadcast the message to its neighbors. Each node collects eight such constraints
and uses linear regression on these eight data points to estimate time offset and rate
difference to the anchor. The algorithm is repeatedly executed to maintain syn-
chronization over time. Time-stamping is performed in the MAC layer to minimize
delay variability.

Measurements were performed in an eight-by-eight grid of Berkeley Motes,
where each Mote has a direct radio link to its eight closest neighbors. With this
setup, the network synchronized in 10 minutes to an average (maximum) synchro-
nization error of 11.7 µs (38 µs), giving an average error of 1.7 µs per hop.

Asynchronous Diffusion (AD)

AD [56] supports the internal synchronization of a whole network. The algorithm
is very simple: each node periodically sends a broadcast message to its neighbors,
which reply with a message containing their current time. The receiver averages
the received time stamps and broadcasts the average to the neighbors, which adopt
this value as their new time. It is assumed that these operations are atomic, that
is, the averaging operations of the nodes must be properly sequenced.

Simulations with a random network of 200 static nodes showed that the syn-
chronization error decreases exponentially with the number of rounds.

Time Diffusion Synchronization (TDP)

TDP [98] supports the synchronization of a whole network. Initially, a set of master
nodes is elected. For external synchronization, these nodes must have access to a
global time. This is not required for internal synchronization, where masters are
initially unsynchronized.

Master nodes then broadcast a request message containing their current time,
and all receivers send back a reply message. Using these round-trip measurements,
a master node calculates and broadcasts the average message delay and standard
deviation. Receiving nodes record these data for all leaders. Then, the receivers
turn themselves into so-called “diffused leaders” and repeat the procedure. The
average delays and standard deviations are summed up along the path from the
masters. The diffusion procedure stops at a given number of hops from the masters.

All nodes have now received from one or more masters m the time hm(t0) at the
initial leader, the accumulated message delay ∆m, and the accumulated standard
deviation βm. A clock estimate is computed as

∑
m ωm(hm(t0) + ∆m), where the

weights ωm are inversely proportional to the standard deviation βm. After all nodes
have updated their clocks, new masters are elected and the procedure is repeated
until all node clocks have converged to a common time.

In a simulation with 200 static nodes with 802.11 radios and a delay of 5 sec-
onds between consecutive synchronization rounds, the deviation of time across the
network dropped to 0.6 seconds after about 200 seconds.

CHAPTER 4. TIME SYNCHRONIZATION 81

1

2

E 1

3

1

2

E 2

3

1

2

3

E 2

1

2

3

E
1

(a) (b) (c) (d)

Figure 4.5: Message transport across partition boundaries. (a-b) Sensor nodes 1
and 2 collect sensor readings while disconnected from the network. (c-d) Later,
sensor nodes 1 and 2 report their findings to node 3 for data fusion. At no point
in time there is a network connection between node 1 and 2.

4.3 Problem Statement

One of the main uses of synchronized time in wireless sensor networks is time-
stamping of events to support data evaluation, aggregation, and fusion as men-
tioned in 3.1. For this, a sensor node i generates a time stamp Si(tE) that rep-
resents the real-time instant tE when event E occurred. This time stamp may
be included in network messages along with other parameters that describe the
observed event. When a sensor node receives many such time stamps from one or
more sensor nodes (including itself), these time stamps should refer to a common
time scale, such that time stamps can be compared, ordered, etc.

One possible approach to the above problem is the use of time synchronization
among all nodes of the network. Then, time-stamping can be implemented by
setting S(tE) := h′(tE). One of the time synchronization algorithms for sensor
networks discussed in Section 4.2 could then be used to provide synchronized time.
However, we will show below that this approach cannot support a relevant class
of applications. Our goal is the development of a time-stamping approach for the
region in the design space we will characterize below.

4.3.1 Intermittent Connectivity

None of the algorithms discussed in Section 4.2 can support networks with intermit-
tent or sparse connectivity, where messages are relayed across temporary partitions
by mobile nodes as discussed in Section 2.6.2.

Consider for example the ZebraNet application discussed in Section 2.4.1, where
nodes are attached to wild animals, forming a network with sporadic connectivity.
Figure 4.5 depicts, from left to right, four snapshots of such a network. At real-
time t1 node 1 detects some event. At t2 node 2 detects another event. At t3 node
2 passes by the mobile base station (node 3), a communication link is established
and E2 is sent to the base station. At t4 node 1 passes by the base station, a link
is established and E1 is sent to the base station.

CHAPTER 4. TIME SYNCHRONIZATION 82

Now the base station wants to determine a temporal relationship among E1 and
E2, for example, it might be necessary to determine whether E1 happened after
E2, or the time between the occurrence E1 and E2 might be of interest.

Note that there has not been a network connection between nodes 1 and 2
before the occurrence of the events E1 and E2, so the clocks of the two nodes
cannot be synchronized with each other in advance to provide synchronized time
for time stamping.

4.3.2 Resource Efficiency

In many applications, relevant events occur rarely. In the bird monitoring applica-
tion described in Section 2.4.1, a relevant event could be a bird leaving or entering
its burrow. Hence, synchronized time is only needed at rare occasions, namely
where and when a relevant event occurs. A cross-layer approach (cf. Section 2.7.6)
to time synchronization that provides synchronized time on demand only where and
when needed can be expected to perform significantly better than using a general-
purpose synchronization algorithm that runs independently of the time-stamping
in the application layer.

4.3.3 Precision for Collocated Nodes

Many physical phenomena have a rather local geographical scope. Typically, only
geographically collocated nodes have to cooperate in order to monitor such a phe-
nomenon. These collocated nodes may require very precisely synchronized time in
order to aggregate or fuse sensory data. As discussed in Section 3.4.1, the precision
of anchor-based algorithms is determined by the placement of the anchors, such
that collocated nodes may end up with an imprecise mutual synchronization. A
localized, anchor-free algorithm (cf. Section 2.7.3) can be expected to give better
precision for collocated nodes.

4.3.4 Correctness

Data fusion is often very sensitive to even small synchronization errors. Correct
ordering of events, for example, may be wrong if the synchronization error is larger
than the time between the occurrence of two events. A time synchronization al-
gorithm that can provide guaranteed bounds on time stamps would be helpful for
such applications.

4.4 Time-Stamp Synchronization

In this section we present an algorithm called “Time-Stamp Synchronization”
(TSS), which is suitable for the time-stamping problem stated in the previous
section. This algorithm enables participating nodes to reason about sets of time

CHAPTER 4. TIME SYNCHRONIZATION 83

stamps (e.g., determine temporal ordering and time spans) received from arbitrary
nodes even in the presence of intermittent network connectivity.

We will consider message flows in ad hoc sensor networks, which can be de-
picted by (time-independent) message flow graphs, where the nodes of the graph
correspond to network nodes, each equipped with its own clock. Paths in the graph
correspond to possibly delayed message flows between the nodes (i.e., connectivity
between the nodes may be intermittent). Without loss of generality, we will only
consider linear graphs as depicted in Figure 4.7. In case a message is broadcast
to many nodes, the resulting graph can be considered as the union of many such
linear graphs.

4.4.1 Algorithm Overview

The basic idea of the algorithm is not to synchronize the local clocks of the nodes,
but instead generate time stamps using unsynchronized local clocks. When such
“local” time stamps are passed between nodes as part of network messages, they
are transformed to the local time scale of the receiving node.

Time stamps are represented as intervals. With each transformation step, the
uncertainty (i.e., length) of these intervals increases due to clock drift and delay
uncertainties (cf. Section 4.1.1). In particular, each transformation between the
time scales of sender and receiver will consist of two steps: a transformation from
sender time scale to real time, and a transformation from real time to the receiver
time scale.

Time-stamp transformation is achieved by determining the age of each time
stamp from its creation to its arrival at a sensor node. On a multi-hop path,
the age is updated at each hop. The time stamp can then be transformed to the
receiver’s local timescale by subtracting the age from the time of arrival. The age
of a time stamp consists of two components: (1) the total amount of time the time
stamp resides in nodes on the path, and (2) the total amount of time needed to
send the time stamp from node to node. The first component is measured using
the local, unsynchronized clocks of the nodes on the path. The second component
is bounded by round-trip measurements.

The synchronization information can be piggybacked to existing messages in
most cases. Therefore, the overhead of the algorithm can be expected to be rather
low.

The remainder of this Section is structured as follows. In Section 4.4.2 we
discuss assumptions of TSS. In Sections 4.4.3-4.4.6 the algorithm is presented in
detail. In Section 4.4.7 implementation details of TSS are given. An evaluation of
TSS can be found in Section 4.4.8. Possible improvements of TSS are discussed in
Section 4.4.9.

CHAPTER 4. TIME SYNCHRONIZATION 84

4.4.2 Assumptions

TSS is based on a number of assumptions. Firstly, we assume that the hardware
clocks of the sensor nodes have a bounded clock drift ρmax (cf. Section 4.1.1).
However, due to heterogeneous node hardware, we support different maximum
drifts for different nodes. We will denote the maximum drift of node i with ρi (or
ρmax where i is obvious) throughout the chapter.

Secondly, we assume that payload message exchanges between adjacent nodes
are acknowledged. This is typically the case due to the relatively high probability
of message loss or corruption in sensor networks. Note that this implies that links
between nodes remain established long enough to allow such a two-way message
exchange. An explicit acknowledgment is not needed if the sender can overhear
the receiver forwarding the message to the next hop, which is typically the case in
broadcast networks.

Besides the above two mandatory preconditions, our algorithm can profit from
two optional assumptions.

Firstly, the precision of TSS can be improved if messages can be time-stamped
in the MAC layer immediately before the first bit of the message is delivered to
the transmitter, and after the first bit has arrived in the receiver, both using the
unsynchronized local hardware clock. If this feature is not available, time-stamping
can be performed at the application level immediately before sending and after
receiving a message. This, however, will result in reduced precision due to the
reasons discussed in Section 4.1.1.

Secondly, the precision of TSS can be improved if a lower bound on the message
delay is known. Due to network heterogeneity, different nodes may have different
bounds. If time-stamping is performed at the application level, this bound may
additionally depend on the size of the message. We will indicate the minimum
delay for node i by Di throughout the chapter, where Di refers to the local time
scale of the receiver node i of the message.

4.4.3 Time Transformation

As we will see in the following section, transforming real-time differences ∆t into
computer clock differences ∆h and vice versa is at the heart of the algorithm.
These transformations cannot be done exactly due to clock drift and message delay
uncertainties as discussed in Section 4.1.1. Hence, the transformation of a time
difference results in lower and upper bounds, or – in other words – in a slightly
enlarged time difference.

From Equations 4.1 and 4.2 it follows immediately that

1− ρmax ≤
∆h

∆t
≤ 1 + ρmax (4.16)

which can be rearranged to give

∆t(1− ρmax) ≤ ∆h ≤ ∆t(1 + ρmax) (4.17)

CHAPTER 4. TIME SYNCHRONIZATION 85

Receiver

Sender

Time in Receiver

Time in Sender

t t t

t t t4 5 6

1 2 3

M MACK ACK1 21 2

Figure 4.6: Message delay estimation using two consecutive acknowldedged message
exchanges.

∆h/(1 + ρmax) ≤ ∆t ≤ ∆h/(1− ρmax) (4.18)

which means that we can approximate the computer clock difference ∆h that cor-
responds to the real-time difference ∆t by the interval [(1−ρmax)∆t , (1+ρmax)∆t].
Accordingly, the real-time difference ∆t that corresponds to the computer clock
difference ∆h can be approximated by the interval [∆h/(1+ρmax) , ∆h/(1−ρmax)].

In order to transform a time difference ∆C from the local time of one node
(with maximum drift ρ1) to the local time of a different node (with maximum drift
ρ2), ∆h is first estimated by the real-time interval [∆h

1+ρ1
, ∆h

1−ρ1
], which in turn is

estimated by the clock interval [∆h1−ρ2

1+ρ1
, ∆h1+ρ2

1−ρ1
] with respect to the local time

scale of node 2.

4.4.4 Message Delay Estimation

As pointed out earlier, the TSS algorithm determines bounds for the lifetime of a
time stamp, which also includes the message delay d for sending the time stamp to
a neighbor node. In Section 4.4.2 we assumed that such a message is acknowledged
by the receiver. Thus, it is possible to measure the round-trip time rtt (time
passed from sending the message in the sender to arrival of the acknowledgment
in the sender) using the local clock of the sender. The message delay can then
be estimated by the lower bound Ds and the upper bound rtt. Now the sender
knows an estimation for the message delay, but in our algorithm the receiver has to
know this approximation in order to transform the received time stamp. Passing
the estimation from the sender to the receiver would take another pair of messages
(one for passing the estimation from sender to receiver and an ack back to the
sender), which would result in 100% message overhead.

Consider Figure 4.6, which shows two consecutive acknowledged message ex-
changes between a pair of sender and receiver. We want to estimate the message
delay d for message M2. Using the technique pointed out above the estimation
would be

Ds ≤ d ≤ (hs(t3)− hs(t2))− (hr(t6)− hr(t5))
1− ρs

1 + ρr

−Ds (4.19)

CHAPTER 4. TIME SYNCHRONIZATION 86

idle 1

rtt 1 rtt 2
idle 2

1 2 3 N

ρ 2 ρ 3 ρ Νρ 1

1

1s
2

2

r

s
3

3

r

s
N

N

r

s

r = h (t)1 E

D1 D2

Figure 4.7: Message flow graph.

in terms of the sender’s clock, where ρs and ρr are the ρ values, and hs and hr are
the hardware clocks of sender and receiver, respectively. A different estimation is

Dr ≤ d ≤ (hr(t5)− hr(t4))− (hs(t2)− hs(t1))
1− ρr

1 + ρs

−Dr (4.20)

in terms of the receiver’s clock that makes use of two consecutive message transmis-
sions. The advantage of this estimation is that the receiver knows an estimation for
d without additional message exchanges since hs(t2) − hs(t1) can be piggybacked
on M2. We will call hr(t5) − hr(t4) the round trip time rtt of the message, which
is measured using the receiver’s clock, and hs(t2)− hs(t1) will be referred to as the
idle time idle of the message, which is measured using the sender’s clock.

However, the second estimation also has two disadvantages. The individual
values for rtt and idle can become quite large if the nodes communicate rarely,
which leads to bad estimations due to the clock drift of the local clocks. This
problem can be relaxed by sending a dummy message if the resulting idle value for
the message would be too large.

The second disadvantage stems from the fact that t4, t1 and t5, t2 are associ-
ated with different message transmissions, forcing both sender and receiver to keep
track of state information between message transmissions (t1 and t4 in figure 4.6,
respectively). This is problematic if a node sends messages to or receives messages
from many different nodes over time. However, this problem can be mitigated by
deleting state information at the cost of a later dummy message exchange to re-
initialize the clock values, for example in a least-recently-used manner. Thus, one
can trade off memory consumption for message overhead.

4.4.5 Time-Stamp Calculation

TSS consists of two major parts. First, a representation of time stamps and rules
for transforming them when they are passed between nodes inside messages, and
second, rules for comparing time stamps.

A time stamp for event E that occurred at real time tE is represented in node
i by the interval [hl

i, h
r
i]. The end points of the interval refer to the time scale

defined by the hardware clock hi of node i. If the event occurred at time hi(tE),

CHAPTER 4. TIME SYNCHRONIZATION 87

then we require that hl
i ≤ hi(tE) ≤ hr

i . In other words, Si(E) is an estimation of
the unknown value hi(tE).

Consider Figure 4.7, where node 1 passes a time stamp on to nodes 2, 3, ..., N
along the depicted chain. Each node i has 3 attributes, the local time ri when
the message containing the time-stamp interval is received, the local time si when
the message containing the time-stamp interval is sent again, and the maximum
clock drift ρi. All values refer to the time scale defined by the local hardware clock.
Each edge in the graph has three attributes: the round trip time rtti (referring
to receiver’s time scale), the idle time idlei elapsed after sending the last message
over this edge (referring to sender’s time scale), and the minimum delay Di for
sending the message (referring to receiver’s time scale). Separate instances of the
attributes rtti and idlei have to be maintained for each message, for simplicity we
only consider a single multi-hop message transmission from node 1 to node N .

The generator of a time-stamped message is a special case, because it does not
receive a message. Instead, r1 is set to the occurrence time h1(tE) of the event E
(cf. Figure 4.7). Consider the time-stamp interval as it is being passed along the
chain from node 1 to node N .

Node 1

[r1 , r1] = [h1(tE) , h1(tE)] (4.21)

Node 2 [
r2 − (s1 − r1)

1 + ρ2

1− ρ1

− (rtt1 −D1 − idle1
1− ρ2

1 + ρ1

) ,

r2 − (s1 − r1)
1− ρ2

1 + ρ1

−D1

]
(4.22)

Node 3 [
r3 − (s1 − r1)

1 + ρ3

1− ρ1

− (s2 − r2)
1 + ρ3

1− ρ2

−((rtt1 −D1)
1 + ρ3

1− ρ2

− idle1
1− ρ3

1 + ρ1

)− (rtt2 −D2 − idle2
1− ρ3

1 + ρ2

),

r3 − (s1 − r1)
1− ρ3

1 + ρ1

− (s2 − r2 + D1)
1− ρ3

1 + ρ2

−D2

]
(4.23)

Node N[
rN − (1 + ρN)

N−1∑
i=1

si − ri + rtti−1 −Di−1

1− ρi

− (rttN−1 −DN−1)

CHAPTER 4. TIME SYNCHRONIZATION 88

+(1− ρN)
N−1∑
i=1

idlei

1 + ρi

,

rN − (1− ρN)
N−1∑
i=1

si − ri + Di−1

1 + ρi

−DN−1

]
(4.24)

The interval for node 1 consists of the single point h1(tE). For node 2 the amount of
time s1− r1 (during which the message was stored in node 1 after being generated
and before being sent) is subtracted from the message arrival time r2. The difference
rtt1 − idle1 between round trip and idle time is used as an upper bound for the
message delay, the minimum delay D1 is used as a lower bound. Transforming time
intervals between the different time scales as described in Section 4.4.3 results in
the interval shown for node 2. Continuing this way with subtracting total node
storage time from message arrival time and using the sum of round trip minus idle
times as the upper bound for message delay, and assuming rtt0 = 0 and D0 = 0,
one will end up with the interval shown for node N .

4.4.6 Interval Arithmetic

Using the algorithm described in the previous sections, we are now able to decide
temporal predicates over time stamps using a variant of the interval arithmetic
described in [2]. To decide whether [hl

1, h
r
1] happened before [hl

2, h
r
2], for example,

the following rule can be used:

[hl
1, h

r
1] < [hl

2, h
r
2] =


YES : hr

1 < hl
2

NO : hr
2 < hl

1

MAYBE : otherwise
(4.25)

To determine whether [hl
1, h

r
1] and [hl

2, h
r
2] happened within a certain real-time

interval T , the following rule is used:

∣∣[hl
1, h

r
1]− [hl

2, h
r
2]

∣∣ < T =
YES : max(hr

2, h
r
1)−min(hl

2, h
l
1) < T (1− ρmax)

NO : max(hl
2, h

l
1)−min(hr

2, h
r
1) ≥ T (1 + ρmax)

MAYBE : otherwise
(4.26)

Note that the real-time interval T has to be transformed to local time first by
multiplying with 1 ± ρmax, since all time-stamp intervals refer to the time scale
defined by the local hardware clock.

The real-time “distance” between two time-stamp intervals can be estimated
using the following formula:∣∣[hl

1, h
r
1]− [hl

2, h
r
2]

∣∣ ≤ (max(hr
2, h

r
1)−min(hl

2, h
l
1))/(1− ρmax) (4.27)

CHAPTER 4. TIME SYNCHRONIZATION 89

Again, the calculated local time difference has to be transformed to real-time by
dividing by 1− ρmax.

When comparing points in time (for example a locally generated h(tx)) with
time-stamp intervals received from other nodes, h(tx) can be treated as a time-
stamp interval [h(tx), h(tx)] and used with the above equations.

4.4.7 Implementation

The basic idea for implementing the algorithm is to incrementally calculate the
three sums in the Formula 4.24 along the message path. The implementation
assumes an asynchronous, reliable communication mechanism but can easily be
extended to unreliable communication mechanisms (e.g., by means of timeouts
and retransmissions).

A time stamp can be represented in the following way using C:

struct TimeStamp {

Time begin, end, received;

Time s1, s2, s3;

};

where begin and end are the left and right ends of the time-stamp interval,
received is the time of arrival, and where s1, s2, s3 are the three sums in For-
mula 4.24 from left to right, which are incrementally calculated as the message
is forwarded from node to node. Note that begin, end, and received are local
variables that don’t need to be transmitted between nodes. One or more instances
of TimeStamp can be contained in an application message.

Time is a representation for points in time and time differences. Computer
clocks are discrete, so an integer type would be appropriate. But care has to be
taken because of time transformations, which may result in fractional values, so
either a floating-point type must be used or the results have to be rounded such
that the integer interval always contains the floating-point interval. Here we assume
floating point values.

The generator of a time-stamped message performs the following actions:

1 Generator:

2 TimeStamp S;

3 S.begin = S.end = S.received = NOW;

4 S.s1 = S.s2 = s3 = 0;

where NOW refers to the current value of the local clock. As explained in the previous
section, the interval is initialized to current time in the node. All other fields are
set to zero.

A time-stamped message is sent using the following actions:

CHAPTER 4. TIME SYNCHRONIZATION 90

1 Sender:

2 TimeStamp S; /* locally generated or received */

3 Time idleend = NOW;

4

5 IF (idlebegin[receiver] == 0 OR

6 idleend - idlebegin[receiver] > max_idle)

7 THEN

8 send <sync> to receiver;

9 receive <ack> from receiver;

10 idleend = NOW;

11 idlebegin[receiver] = idleend;

12 ENDIF

13

14 send <xmit(S, idleend - S.received,

15 idleend - idlebegin[receiver],

16 local_rho)> to receiver;

17 receive <ack(resend)> from receiver;

18 idlebegin[receiver] = NOW;

19

20 IF (resend == TRUE) THEN

21 idleend = NOW;

22 send <xmit(S, idleend - S.received,

23 idleend - idlebegin[receiver],

24 local_rho)> to receiver;

25 receive <ack> from receiver;

26 idlebegin[receiver] = NOW;

27 ENDIF

The sender first checks if the time when the last message was sent to the receiver
(line 5) is unknown or if the idle time is too large (line 6). If suitable values for
rtt and idle are not available, a sync message is sent before waiting for an ack to
initialize idlebegin[receiver]. Then the sender transmits the TimeStamp data
structure to the destination node along with the amount of time the message was
stored in the current node (line 22) and the idle time (line 23) according to the
local time scale with maximum clock drift local rho. Then an acknowledgment
containing a parameter resend is awaited. If resend is true, then the message is
sent again in order to enable the receiver to measure round-trip time.

The receiver of a message performs the following actions:

1 Receiver:

2 IF (receive <sync> from sender) THEN

3 rttbegin[sender] = NOW;

4 send <ack> to sender;

5 ELSEIF (receive <xmit(S, lifetime, idletime,

6 rho)> from sender)

CHAPTER 4. TIME SYNCHRONIZATION 91

7 THEN

8 Time rttend = NOW;

9 IF (rttbegin[sender] == 0) THEN

10 rttbegin[sender] = NOW;

11 send <ack(TRUE)> to sender;

12 ELSE

13 S.s1 += lifetime/(1 - rho);

14 S.s2 += idletime/(1 + rho);

15 S.s3 += lifetime/(1 + rho);

16 S.begin = rttend

17 - S.s1*(1 + local_rho)

18 + S.s2*(1 - local_rho)

19 - (rttend - rttbegin[sender]) + D;

20 S.end = rttend

21 - S.s3*(1 - local_rho)

22 - D;

23 M.s1 += (rttend - rttbegin[sender] - D)

24 * (1 - local_rho);

25 M.s3 += D*(1 + local_rho);

26 rttbegin[sender] = NOW;

27 send <ack(FALSE)> to sender;

28 ENDIF

29 ENDIF

The receiver waits for a sync or xmit message from a sender. If it receives a sync,
it just initializes rttbegin[sender] and returns an ack to the sender.

If an xmit message is received, then the receiver first checks if the time of
arrival of a previous message from this sender is known (line 9). If not so, then
rttbegin[sender] is initialized and an ack(TRUE) message is returned to the
sender, asking for a retransmission.

If rttbegin[sender] is known in the sender, then the fields of the received
time stamp S are updated according to Equation 4.24 and S.begin and S.end

are calculated. Note that the received value for S.s1 (S.s3) does not yet include
the last rtt and D values, so it has to be explicitly subtracted in lines 19 and 22
without time transformation, since rtt and D have been measured with respect to
receiver’s time scale. Only after S.begin and S.end have been calculated, M.s1
(M.s3) are updated accordingly. Finally, an ack is sent back to the sender.

The checks for idlebegin[receiver] and rttbegin[sender] in sender and
receiver, respectively, enable both the sender and receiver to independently drop
entries from the sets idlebegin and rttbegin in order to limit the memory foot-
print as described in Section 4.4.4.

CHAPTER 4. TIME SYNCHRONIZATION 92

4.4.8 Evaluation

In this section we examine the compliance of TSS with the region in the design
space indicated in Section 4.3.

Intermittent Connectivity

If a message can be forwarded from a source node to a destination node (possibly
across temporary partition boundaries), synchronization can be performed as well,
provided that connections between adjacent nodes remain established long enough
for at most two round-trip message exchanges.

Resource Efficiency

In most cases, TSS can piggyback on existing network traffic, resulting in a slight
increase of the size of messages that carry a time stamp. With the implementation
in Section 4.4.7, every message would contain the partial sums s1, s2, s3, lifetime,
idletime, and local rho. Assuming sizeof(Time) = 4 and sizeof(local rho)

= 1, the size of a message would increase by 17 bytes compared to a simple time-
stamp of type Time. Note that local rho could be cached by the receiver. It
might also be worthwhile to use a variable bit-length encoding for the various Time
values, since lifetime and idletime (but also the partial sums) tend to be small
in unpartitioned networks.

Additional messages are only needed when a pair of nodes first communicates or
when two nodes haven’t communicated for a long time. Hence, additional overhead
is only introduced when a pair of nodes has been “idle” before. Under “heavy load”,
when a pair of nodes communicates frequently, no additional messages are required.

Correctness

Since time-stamps are represented as intervals in TSS, temporal predicates can
always be decided correctly or not at all according to the rules in Section 4.4.6.

Precision

In order to get an impression of the precision of the algorithm TSS we performed
some measurements on a cluster of 800 MHz Pentium III Linux PCs connected by
100 Mbit/s Ethernet using TCP and assuming ρ = 10−6. This has to be considered
as a best case scenario, since sensor networks typically use a networking technology
providing a bandwidth well below 1 Mbit/s and embedded processors with no more
than 10 MIPS. However, since the algorithm is neither especially CPU intensive
nor network-bandwidth intensive, the measurements should give a good impression
of the algorithm’s possible precision.

Synchronization inaccuracies show up as time-stamp intervals of increasing
length and stem from two different sources. Firstly, due to the clock drift, in-
terval length increases with the age of a time stamp. Secondly, the interval length

CHAPTER 4. TIME SYNCHRONIZATION 93

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500

3000

3500

4000

Age [s]

In
te

rv
al

 le
ng

th
 [u

s]

Figure 4.8: Precision depending on age.

increases with the number of hops a time stamp has been passed along, due to the
estimation of messages delays.

We performed two measurements, the first of which examines time-stamp in-
terval length as a function of time-stamp age. Since the error resulting from age is
additive over the nodes, we generate a zero-length time stamp interval in node 1,
store it for X seconds before forwarding it to node 2, which prints out the length
of the received time-stamp interval. We repeat this experiment 1000 times and
calculate averages. Figure 4.8 shows the results1, indicating a linear increase of
imprecision with age.

The second measurement examines time-stamp interval length as a function of
the number of hops a time stamp has been passed along. We generate a zero-length
time-stamp interval in node 1 and pass it on to node 2, 3, ..., 7, which all print out
the length of the received time-stamp interval. We repeat this experiment 1000
times and calculate averages. Figure 4.9 shows the results2, indicating a linear
increase of inaccuracy with the number of hops.

Since the two types of inaccuracies are additive, one can interpret the measure-
ments as follows: Passing a time stamp along no more than 5 hops with an age
of no more than 500 seconds, one can expect an inaccuracy of no more than 3ms
in the examined setting. That is, exact results (as opposed to MAYBE) can be
obtained as long as compared time stamps represent points in time which are more

1The exact interval lengths are 195, 585, 982, 1378, 1775, 2170, 2609, 2992, 3369, 3764µs.
2The exact interval lengths are 0, 201, 400, 562, 752, 926, 1113, 1273µs.

CHAPTER 4. TIME SYNCHRONIZATION 94

0 1 2 3 4 5 6 7
0

200

400

600

800

1000

1200

1400

Number of hops

In
te

rv
al

 le
ng

th
 [u

s]

Figure 4.9: Precision depending on number of hops.

than 6ms apart, since then the time-stamp intervals (3ms each) cannot overlap.
With less than 6ms difference, an exact answer may still be obtained, but MAYBE
results are likely.

These measurements indicate that “collocated events” (both in time and space)
can be synchronized with good precision. The larger the distance between the
events in time and space, the lower is the precision.

4.4.9 Potential Improvements

There are several potential approaches to improve the accuracy of the algorithm
(i.e., reduce the probability of MAYBE results), which might be worth further
investigation. In general, these techniques tend to improve precision by introducing
additional overheads.

One idea to avoid MAYBE results when comparing time stamps originating
from the same node is to keep a history of time stamps instead of only one time
stamp. Instead of updating a time stamp upon receipt, the receiving node appends
the updated time stamp together with a unique node identifier i and ρi to the
time stamp history or reuses a time stamp from the history if there is an entry
for node i in the history already. If comparing time stamps results in MAYBE,
then the histories of the compared stamps are searched for common nodes and the
comparison is repeated using the time stamps of these common nodes, transforming
time values if necessary, and using the according ρ values from the histories. This
is likely to give a “better” (i.e., non-MAYBE) answer, since imprecision increases

CHAPTER 4. TIME SYNCHRONIZATION 95

S

S

1

2

h

h

h

h

1 1
r

2
l

2

l

r

Figure 4.10: Overlapping time stamp intervals.

with age and hop count of the time stamps. For the same reason the accuracy of
calculated real-time spans can be improved by using “younger” time stamps from
the history in the same way whenever possible.

A different and more general approach is to replace MAYBE results with a
probability depending on the relative arrangement of the compared time-stamp
intervals. The algorithm would then output “X < Y with probability p” instead
of “Xmaybe < Y ”. To implement this, we have to derive probability distributions
for the exact time instants over the time-stamp intervals.

Consider for example the two overlapping time-stamp intervals S1 and S2 with
hl

1 ≤ hl
2 ≤ hr

1 ≤ hr
2 shown in Figure 4.10, for which the algorithm would output

“S1maybe < S2”. If we knew probability distributions p1(h) and p2(h), such that
pi(hi) is the probability that the exact point in time represented by Si is hi, we
could calculate the probability p for S1 < S2 by “iterating” over the possible h1

values and summing up the probabilities for h1 < h2:∫ hr
1

hl
1

p1(h1)

(∫ tr2

t

p2(h2)dh2

)
dh1 (4.28)

For uniform distributions pi(h)3 this evaluates to

hl
2 − hl

1

hr
1 − hl

1

+
hr

2(h
r
1 − hl

2)− (hr
1
2 − hl

2
2
)/2

(hr
1 − hl

1)(h
r
2 − hl

2)
(4.29)

Assuming, for example, hl
1 = 0, hr

1 = hr
2 = 2, and hl

2 = 1, we can calculate
the probability for S1 < S2 as 0.75. Assuming a uniform distribution, however,
usually is an oversimplification, since due to the characteristics of the algorithm4

the probability in the middle of the interval is much higher than at the ends. It
remains an open task to obtain good probability distributions. Furthermore it
has to be investigated for which cases knowing a probability instead of MAYBE is
advantageous for applications.

3p1(h) = 1/(hr
1 − hl

1) for h ∈ [hl
1, h

r
1] and 0 otherwise; p2(t) likewise.

4We use D and rtt as lower and upper bounds for the message delay. It is much more likely
that the actual message delay is about rtt/2 than D or rtt.

CHAPTER 4. TIME SYNCHRONIZATION 96

4.5 Summary

This chapter is devoted to time synchronization in wireless sensor networks. We
first discussed important models with respect to hardware clocks and communica-
tion. Following the framework developed in Chapter 3, we then presented impor-
tant concepts used by time synchronization algorithms. Referring to these concepts,
we then presented and discussed important existing approaches to time synchro-
nization – both in traditional distributed systems and for sensor networks. We
then identified a region in the design space that cannot be appropriately supported
by these existing algorithms. In particular, we showed that networks with inter-
mittent connectivity are not sufficiently supported. We presented and evaluated
Time-Stamp Synchronization to support this region in the design space. A key
feature of Time-Stamp Synchronization is that rather than synchronizing clocks,
time stamps are transformed between the unsynchronized time-scales of sensor
nodes. We showed that this approach is efficient since time information can be
piggybacked on existing message exchanges. Based on a prototypical implementa-
tion, we evaluated the precision of our approach and found that imprecision grows
linearly with the age of time stamps and with the hop-distance between nodes,
providing an accuracy in the order of milliseconds. Finally, we discussed potential
improvements in settings where precision is more important than efficiency.

Chapter 5

Sensor Node Localization

The significance of physical space for sensor networks has been reflected by the
development of a number of node localization algorithms in the recent past. How-
ever, most of these approaches have been designed for “traditional” sensor net-
works, covering only a small region of the design space discussed in Section 2.2.
We will identify an important region in the design space that is not sufficiently
supported by existing algorithms. In order to fill this gap, we present and evaluate
an approach called “Lighthouse Location System”.

We begin our discussion in Section 5.1 by studying fundamental system models
and by presenting concrete algorithmic techniques for localization. The discussion
will be structured according to the common framework we developed in Chapter 3.
Referring to these techniques, we present existing algorithms for node localization
in Section 5.2. Our algorithm will be motivated and presented in Sections 5.3 and
5.4.

5.1 Background

This section reviews models and concepts for node localization. The discussion is
structured according to Section 3.3.

5.1.1 Signal Propagation and Mobility Models

In the following two subsections we discuss models of signal propagation and of
node mobility. The propagation of signals such as radio or sound are fundamental
for measuring spatial relationships among nodes. Models of node mobility can help
maintain localization over time.

Signal Propagation Models

Many localization approaches for sensor networks assume that sensor nodes are
equipped with hardware for measuring spatial relationships among nodes such as

97

CHAPTER 5. SENSOR NODE LOCALIZATION 98

distance or direction. For this purpose, some systems reuse existing radios orig-
inally intended for data communication, others introduce additional sensors and
actuators to achieve a satisfactory precision. Besides radio, audio is perhaps the
most commonly used signal modality for this purpose.

Two signal propagation features commonly used for measuring spatial relation-
ships are propagation delay and received signal strength, since both are functions of
the distance between emitter and receiver of a signal. Deriving spatial relationships
from a measured propagation delay requires a precise model of the propagation
speed of the signal. The derivation of spatial relationships from received signal
strength requires a precise model of signal attenuation.

Signal propagation speed is mainly a function of the signal modality, its fre-
quency, and of the medium. For example, the propagation speed of radio waves
can diverge significantly from c in vacuum and air. In water (and wet materials),
for example, propagation speed is about c/1.33. The radio propagation speed is
also influenced by ionizing radiation (e.g., solar winds), where the speed reduction
depends on the frequency of the signal. With acoustic waves, the propagation
speed varies between about 60m/s (e.g., rubber) and about 6000m/s (e.g., stone).
In air, propagation speed depends on factors such as temperature, and – to a lesser
extent – humidity and pressure. For example, propagation speed in air at -20◦C is
320m/s, whereas 344m/s are found for +20◦C. A more precise model for speed of
sound in air is:

cair =
√

γRT (5.1)

where T is absolute temperature, R is the gas constant (286 m2/s2/K), and where
γ is the heat capacity ratio (about 1.4 for typical humidity and pressure values).
The effective speed of sound also depends on movements of the medium such as
winds and convection streams.

Typical localization systems use one out of the following three approaches to
model propagation speed. Firstly, a constant speed is assumed that may be cali-
brated under operating conditions using separate calibration equipment. Secondly,
additional sensors may be attached to nodes in order to measure parameters that
influence the propagation speed (e.g., temperature for speed of sound). Thirdly,
the propagation speed is treated as an unknown variable in addition to the sought
location. Additional constraints are required in order to solve for propagation speed
and location.

The received signal strength depends on the emitted signal strength and the
attenuation. Attenuation is a function of the signal modality, frequency, and the
medium. In general, an omni-directional source radiating into free space can be
modeled as

P = kPs/r
e (5.2)

where e = 2, Ps is the emitted power, r is the distance between sender and receiver,
and k is a constant factor. The quadratic relationship stems from the fact that
the emitted power is equally spread over the points on a sphere with radius r.

CHAPTER 5. SENSOR NODE LOCALIZATION 99

In physical structures where signal propagation is limited to certain regions (e.g.,
corridors), smaller attenuation exponents between 1.5 and 2 may be observed.

Additional sources of attenuation are absorption of the medium, interaction
of the signal with reflective surfaces, and interaction of the signal with obstacles
between emitter and receiver. Radio waves, for example, are absorbed by ionized
gases. Sound waves are absorbed in gases due to friction between molecules that
results in heat generation. Reflective surfaces may lead to the situation that a
reflected signal interferes with the unreflected (or another reflected) signal at the
receiver. This can be observed, for example, if emitter and receiver are near the
ground or if the environment is cluttered with reflective surfaces. Radio waves often
experience a phase shift close to 180◦ when reflected, which often leads to destruc-
tive interference. Hence, for near-ground radio communication the exponent e in
Equation 5.2 is close to 4. In highly cluttered environments with many reflections
interfering at the receiver, e may be as large as 6. Sound waves are less susceptible
to such interference effects, since the above mentioned phase shift is typically not
found. For near-ground communication, for example, e is still close to 2.

Additional sources of attenuation for sound in air are meteorological conditions
such as wind-velocity gradients (e.g., due to friction with the ground) and tem-
perature gradients (e.g., due to heat disseminated by the ground). Both result
in gradients in sound velocity which lead to a refraction effect, such that sound
waves are bent upwards or downwards with respect to the ground, depending on
the relative direction of the waves to the gradient. One further source of attenua-
tion of sound in air are random fluctuations of wind and temperature which cause
fluctuations in amplitude and phase of the signal at the receiver.

The above discussion should make it obvious that models for signal attenuation
do heavily depend on the environment where they are used in. Note that even
small changes in the locations of emitter, receiver, or reflective surfaces may cause
significant changes in received signal strength due to changed conditions for multi-
path interference. This is particularly relevant for radio waves, where multi-path
interference can have a significant impact on the attenuation exponent in Equation
5.2. Hence, large errors must be expected if the model does not correctly represent
reality. Typical models used in localization systems are based on Equation 5.2 with
e = 4. Range measurement errors based on such models can be in the order of 40%
and above [88].

The use of signal propagation features for range measurements obviously re-
quires that the signal can travel along the line-of-sight path between the emitter
and the receiver. If the direct line is blocked by non-transparent obstacles, the
signal may reach the receiver due to reflections. Since the effective length of such
reflected paths is longer than the line of sight, the resulting distance estimates will
be greater than the Euclidean distance.

Many of the above signal propagation properties depend on the actual frequency
of the signal. Hence, the use of wide-band signals (which contain many different
frequencies) can help mitigate or compensate errors that are due to frequency-
dependent propagation properties. Also, wide-band techniques are robust to in-

CHAPTER 5. SENSOR NODE LOCALIZATION 100

terference with narrow-band signals emitted by other sources in range (e.g., mi-
crowave ovens, acoustic background noise) [42, 43]. Likewise, the use of different
signal modalities (e.g., sound and radio) can help improve robustness and precision
(cf. Section 2.7.2).

Mobility Models

Mobility models are mechanism to describe possible movements and locations of
mobile entities. They can be a valuable tool for improving the precision of localiza-
tion approaches since they provide hints on the possible locations of a sensor node.
Two very simple mobility models are the “static model” where nodes do not move
at all and the “unconstrained mobility model” where nodes can be at any place
anytime. Between these two extremal models, a number of more realistic models
can be found.

Basically, a mobility model imposes constraints on the possible location, speed,
and acceleration of a mobile entity. These constraints can be either static or dy-
namic. In static models, the same constraints apply always. In dynamic models,
the constraints may be a function of time or of previous system states. If, for ex-
ample, a sensor node is attached to a car, possible node locations are constrained
to roads (with high probability), there are bounds on the speed and acceleration
of the sensor node. While these constraints are static, we can also identify dy-
namic constraints, where future locations of the sensor node are constrained by
its previous locations. For example, a car is very unlikely to leave a crossing via
the same road it entered. Given such a set of constraints, the location of the node
at some time t0 (and possibly also earlier locations of the node), we can derive
a set of possible locations of the node at some time t1 > t0 without making any
measurements.

A number of mobility models are commonly used to study the behavior of mo-
bile systems, for example the random waypoint model (a node chooses a random
destination point and moves there on a straight line with constant speed, stops for
some time before choosing a new destination). Another common class of mobility
models are graph-based, where a node can only move along the edges of an Eu-
clidean graph. At each vertex, one of the outgoing edges is chosen according to
specific rules (e.g., random walks).

5.1.2 Obtaining Constraints

There are two basic types of spatial relationships that are used as constraints for
localization: distances and angles.

Distance Constraints

Distances are used in two variants: absolute distance to a reference node and
distance differences to two or more reference nodes. Absolute distances can be
obtained by measuring time-of-flight or received signal strength, using propagation

CHAPTER 5. SENSOR NODE LOCALIZATION 101

(c)(a) (b) (d) (e) (f)

Figure 5.1: References (black) impose constraints (red regions) on the locations
of a client node (white). (a) Distance estimate, (b) distance bound, (c) distance
difference, (d) closest reference, (e) direction of arrival estimate, and (f) direction
of arrival bounds.

models as described in Section 5.1.1. Note that time-of-flight measurements require
some form of time synchronization between sender and receiver. The precision of
synchronized time is determined by the precision that is required for the distance
estimate. For received signal strength, the emitted signal strength must also be
known. The resulting distance constraint is illustrated in Figure 5.1 (a).

While the above approach typically results in point estimates for distance, there
is also a notable method for obtaining bounds based on network connectivity. If
the communication range of a sensor node is at most R, then two nodes that can
hear each other are at most R apart. The resulting constraint is illustrated in
Figure 5.1 (b). In some cases it is preferable to use a bounding box instead of a
distance constraint as indicated by the dashed rectangle in (b). For example, the
intersection of two bounding boxes is also a bounding box, while the intersection
of two spheres is not a sphere anymore.

Distances and distance bounds can also be combined across multiple hops to
obtain distance bounds for client nodes that are not network neighbors of a refer-
ence node. If two nodes are separated by N hops, their distance is at most NR.
Similarly, if the distances along a path between two nodes are r1, ..., rN , than the
distance between the nodes is at most

∑
ri.

Distance differences can be obtained by measuring the time difference(s) be-
tween the arrival of signals emitted by two or more synchronized reference nodes,
or by measuring the differences between the received strengths of signals emitted
by two or more reference nodes with identical emitted signal strengths. Distance-
difference estimates can then be obtained by applying the propagation models to
the time or signal strength differences. Note that the resulting constraint then
involves multiple reference nodes as exemplified in Figure 5.1 (c). Figure (d) il-
lustrates a bound-based variant of distance differences, where a node determines
to which of a set of references it is closest (i.e., reference with strongest received
signal or reference with earliest time of arrival).

CHAPTER 5. SENSOR NODE LOCALIZATION 102

Angular Constraints

Angles are mainly used in form of direction of arrival. If a node is located at the
origin of a 2D coordinate system, then the direction of arrival can be modeled
as the angle enclosed between the x axis and a line connecting origin with the
reference node. In order to measure direction of arrival, complex hardware is
typically required. One possible approach are sector antennas, where multiple
directional antennas are arranged such that each possible sender can be received
by at least one antenna. Since each antenna has a well-defined angle of beam
spread, bounds on the angle of incidence can be obtained. As illustrated in Figure
5.1 (f), this results in a constraint on the location of the node. Another approach is
the use of multiple omnidirectional receivers with known baselines in between. By
measuring the time difference of arrival at these receivers, the direction of arrival
can be estimated, which results in a constraint on the node location as illustrated
in Figure 5.1 (e).

Note that it is also possible to combine angular and distance measurements.
However, due to the hardware overhead, increased size and cost of sensor nodes,
angle-based approaches are barely used for sensor networks.

5.1.3 Combining Constraints

A single constraint can be interpreted as a set of possible node locations that typ-
ically form a connected region in space as illustrated in Figure 5.1. Combining
multiple constraints is then equivalent to computing the intersection of the respec-
tive regions. In some cases the exact shape of the intersection region is required,
sometimes a single point that lies in the intersected region is computed, and in
some cases a simple shape (e.g., bounding box or sphere) that is enclosed by or
enclosed the intersection region is sought.

Typically an intersection is derived analytically, but there are situations where
this is infeasible or undesirable due to computational overheads. A notable alter-
native is to partition space into pixels or voxels (i.e., 3D pixels), such that the edge
length of a pixel equals the required precision. A single bit is associated with each
pixel, which is initially set to “1”. For each available constraint, the pixels that
are outside the region represented by the constraint are set to “0”. Eventually, the
remaining “1” pixels form an approximation of the intersection region.

Due to measurement errors it may occur that a given set of constraints has an
empty intersection. There are basically two approaches to deal with such cases.
Firstly, outliers can be rejected, such that a set of constraints with a non-empty
intersection is obtained. As for time synchronization, various criteria can be ap-
plied to control selection of these constrains (e.g., minimize number of rejected
constraints, minimize intersection region). Secondly, a solution (typically a single
point) can be computed that minimizes a certain error metric. For example, the
error of a point solution with respect to a single constraint can be defined as the
smallest distance between the solution point and any point contained in the region
defined by the constraint. The sought solution should then minimize the sum of

CHAPTER 5. SENSOR NODE LOCALIZATION 103

the errors for all constraints. If confidence values for the constraints are available,
the terms of this sum could also be weighted according to the confidence values.

Multilateration

One of the most commonly used approaches is multilateration, where multiple
constraints of the type depicted in Figure 5.1 (a) are combined and a point solution
(x, y, z) is sought. Each constraint is then of the form (xi, yi, zi, ri), where (xi, yi, zi)
is the location of a reference node, and where ri is the distance of the client node
from this reference. In general, four constraints are required to define a unique
solution for (x, y, z). If there are no measurement errors, the solution can be
obtained by solving the following non-linear equation system for 1 ≤ i ≤ 4:

(x− xi)
2 + (y − yi)

2 + (z − zi)
2 = r2

i (5.3)

This non-linear equation system can be transformed into a linear equation system
by subtracting the equation for i = 1 from the remaining three equations. This
will eliminate the quadratic terms x2, y2, z2 and yields the following linear equation
system for 2 ≤ i ≤ 4:

2x(x1−xi)+2y(y1−yi)+2z(z1−zi) = r2
i −r2

1 +(x2
1 +y2

1 +z2
1)−(x2

i +y2
i +z2

i) (5.4)

Standard methods can be used to solve for (x, y, z). If more than four constraints
are available, a similar, but over-constrained linear equation system of the form
A·(x, y, z)T = b must be solved. A standard error metric for finding an approximate
solution is to minimize the sum of the squared errors

∑
i(Ai · (x, y, z) − bi)

2. The
according solution can be found by solving the linear equation system

AT A

 x
y
z

 = AT b. (5.5)

Above we noted that time-of-flight measurements require time synchronization
between sender and receiver. This can be either achieved by explicit time synchro-
nization (cf. Chapter 4), or by including the time offset ∆t between sender and
receiver as an additional variable in the equation system 5.3, yielding

(x− xi)
2 + (y − yi)

2 + (z − zi)
2 = (ri −∆tc)2 (5.6)

where c is the (average) propagation speed of the signal. As with Equation system
5.3, a linear equation system can be obtained by subtracting the first equation.
However, at least one additional constraint is needed in order to obtain a unique
solution for (x, y, z, ∆t). Note that the same approach can be used if ∆t is known,
but the propagation speed c of the signal is unknown (e.g., speed of sound in air).

CHAPTER 5. SENSOR NODE LOCALIZATION 104

Figure 5.2: Four references with known locations define unique locations for two
nodes if distances between connected nodes are known. Traditional multilateration
cannot be applied, since there are too few constraints for each individual node.

Collaborative Multilateration

In some node constellations too few constraints may be available to obtain a unique
solution for (x, y, z). However, by including other nodes with unknown locations
into consideration, a unique solution can often be found anyway. As depicted in
Figure 5.2, four black reference nodes define unique locations for two client nodes
if the distances between connected nodes are known. Obtaining a solution for the
locations of two or more client nodes in such situations is referred to as collaborative
multilateration. One possible approach to find a solution for such problems is to
request that a measured distance rij between nodes i and j should be matched
by the distance

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 between the sought location

estimates (xi, yi, zi) and (xj, yj, zj) for nodes i and j. An optimization problem can
be formulated by minimizing the sum of the squared errors over all edges (i, j):

min
∑
(i,j)

(
rij −

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

)2

(5.7)

The resulting non-linear optimization problem typically does not have a closed-form
solution and numerical approximations must be applied to find the solution.

Centroids

This approach considers the problem of finding a point in the intersection of a
number of distance-bound constraints (cf. Figure 5.1 (b)) for a single node. Such
a point can be obtained by computing the average (i.e., centroid) of the locations
of all references that define constraints on the node.

Triangle Test

This approach uses distance-difference constraints (cf. Figure 5.1 (d)) to decide
whether a node is contained in a triangle formed by three reference nodes with
known locations. This test is based on the following property: a node located
outside the triangle can be moved, such that the distances to all references are
either all increased or all decreased simultaneously. In contrast, all movements of
a node located inside the triangle will increase the distance to some references and
decrease the distance to other references simultaneously.

CHAPTER 5. SENSOR NODE LOCALIZATION 105

Based on this observation, the following approximative triangle test can be
used in dense networks: a node is assumed to be in the triangle, if no neighbor
of the node is further from or closer to all three references simultaneously. This
test can be performed for a large set of different triangles, resulting in a set of
“inside” triangles for each node. By intersecting these triangles, bounds on the
node location can be obtained. A point estimate can be computed as the center of
gravity of the intersection region.

5.1.4 Maintaining Localization

If nodes are mobile, the precision of an instantaneous location estimate will degrade
over time. The conceptually simplest approach to maintain up-to-date location
estimates is to re-execute the localization algorithm frequently. There are various
ways to trigger such a re-execution. Firstly, the algorithm can be re-executed after
a fixed amount of time. Secondly, if a certain imprecision can be tolerated, the
maximum amount of time between executions can be calculated using a mobility
model. Thirdly, execution can be triggered whenever the application requests an
estimate of the current location. Fourthly, execution can be triggered whenever
a node moves, which can be detected with simple motion detection sensors or
accelerometers that are attached to sensor nodes. Which of these approaches is
most appropriate depends on various system parameters such as degree of node
mobility, tolerated imprecision, and the frequency with which a node requests a
location estimate. However, as mentioned in Section 3.3.5, the applicability of
repeating execution is limited by the time needed by the execution of the algorithm,
and by available resources.

Dead Reckoning

Another approach to maintain localization is the use of dead reckoning techniques,
where a node is equipped with sensors to measure movements. By integrating these
movements with an earlier location estimate, an estimate of the current location
can be obtained. Common approaches for dead reckoning are the analysis of wheel
rotations (e.g., vehicles and robots) and the use of accelerometers. If position x(t0)
and velocity v(t0) at some time t0 are known, then an estimate of x(t1) can be
obtained by measuring acceleration a(t):

x(t1) = x(t0) +

∫ t1

t0

(
v(t0) +

∫ t

t0

a(t′)dt′
)

dt (5.8)

By using three accelerometers with mutual perpendicular axes, this approach can be
extended to three dimensions. However, due to the quadratic relationship between
a(t) and x(t), small measurement errors in a(t) will accumulate over time and show
up squared in x(t). Hence, the precision of such an approach decreases quickly with
growing t1 − t0.

CHAPTER 5. SENSOR NODE LOCALIZATION 106

(a) (b)

Figure 5.3: Overlay topologies used by localization algorithms. (a) Stars, (b)
clusters.

Prediction

Prediction based on mobility models is another approach to maintain localization
over time. Here, past locations of a node at time t ≤ t0 are used with a mobility
model to obtain constraints on the location of the node at time t1 > t0. With
a mobility model where velocity is limited by 0 ≤ v ≤ vmax, for example, the
following constraint can be derived:

x(t0) ≤ x(t1) ≤ x(t0) + vmax(t1 − t0) (5.9)

Note that depending on the used mobility model, the obtained constraints may
become very loose with growing t1−t0. Overall, both dead reckoning and prediction
are helpful approaches to bridge short gaps between consecutive executions of a
localization algorithm. While prediction and dead reckoning are very commonly
used for time synchronization (cf. Section 4.1.4), they are currently barely used for
localization as far as the domain of sensor networks is concerned.

5.1.5 Selecting Constraints

Most localization algorithms are unstructured, that is, they use any available nodes
in the neighborhood for obtaining constraints. The reason for this is that in order
to achieve a good precision, measurement errors must often be compensated by a
large number of constraints.

Two commonly used overlay topologies are depicted in Figure 5.3. With the star
topology depicted in (a), nodes use all available references in their neighborhood to
estimate their location, but nodes with estimated locations are not used as refer-
ences for other nodes. In (b), nodes in a cluster establish a local coordinate system
and estimate their locations with respect to this reference grid. Adjacent clusters
share a number of nodes to allow for the derivation of a coordinate transformation
between these clusters.

CHAPTER 5. SENSOR NODE LOCALIZATION 107

5.2 Related Work

This section presents and discusses existing approaches for node localization. We
first discuss related and influential approaches from other domains, pointing out
their shortcomings in the context of sensor networks. Our main focus is, however,
on algorithms which have been specifically developed for sensor networks. These
are based on the models and concepts presented in the previous section.

5.2.1 Traditional Localization Approaches

In this section we consider two representative localization systems that have been
developed for applications other than sensor networks.

Global Positioning System

GPS [47] is based on 24 satellites orbiting the earth. All satellites broadcast signals
that are used for time-of-flight measurements and which carry additional informa-
tion such as current time and location of the satellites. The satellites are very
accurately synchronized with each other. A GPS receiver uses a so-called almanac
and the information transmitted by the satellites to maintain precise estimates
of the current locations and time of the satellites. The almanac is essentially a
(mobility) model of the satellite orbits.

In order to obtain a location estimate, a GPS receiver measures time-of-flight
to at least four satellites and uses a variant of Equation system 5.6 to obtain an
estimate of its location and time offset. Only four (instead of five) satellites are
needed since the receiver is expected to be below the satellites.

A precision of (100m horizontal, 156m vertical, 340 nanoseconds) can be
achieved for civilian users and (22m horizontal, 28m vertical, 200 nanoseconds)
for military users 95% of the time. This precision can be further improved by dif-
ferential GPS, where a ground station with known location measures its location
with GPS in order to compute correction signals for all visible satellites. These cor-
rection signals are broadcast and used by receivers to correct their measurements.
Differential GPS can provide a precision of about 1-10m.

Despite its global availability, GPS is of rather limited value for sensor networks
mainly due to resource constraints (GPS receivers are expensive and consume a
significant amount of power) and due to the required free line of sight to at least
four satellites. Some researchers propose to equip anchor nodes with GPS.

Active Bats

Active Bats [104] are in indoor location system that consists of mobile tags (“bats”)
that can be located and a wired infrastructure. Bats are capable of receiving radio
messages and of transmitting ultrasonic signals. The infrastructure mainly consists
of ultrasound receivers mounted on the ceiling in a square grid 1.2m apart. These
receivers are connected by a wired network to a central controller. When a bat is

CHAPTER 5. SENSOR NODE LOCALIZATION 108

to be located, a radio message is sent containing the tag ID. Then the tag emits an
ultrasound signal, that is received by a number of ceiling receivers. For each of these
receivers, the controller computes the distance from the bat using time of flight of
the signal. Using multilateration, the location of the bat is estimated. Since the
radio message travels much faster than the ultrasonic signal, the radio message
can be used to synchronize the bat with the infrastructure for the time-of-flight
measurements.

The precision of a single measurement is about 14cm in 95% of the time. The
average of 10 measurements gives an accuracy of 8cm 95% of the time.

The use of the active bats localization system for sensor networks is limited due
to the excessive hardware infrastructure.

5.2.2 Centralized Localization for Sensor Networks

In this section we consider centralized localization algorithms for sensor networks,
where the location estimation is performed by a central computer. These ap-
proaches generally suffer form limited scalability.

Convex Position Estimation

Convex position estimation [30] considers a problem setup where a number of
anchor nodes with known locations and client nodes with unknown positions are
given. Any node may define a constraint on the positions of other nodes. In
particular, the constraints depicted in Figure 5.1 (b) and (f) are considered. Convex
position estimation is a centralized approach for finding location estimates for the
nodes with unknown locations that satisfy all given constraints.

The approach taken is to derive a semidefinite program (SDP) that represents
all the constraints. An SDP is a relaxation of a linear program, where non-linear
constraints can be given in the form F (x) = F0 + x1F1 + . . . + xnFn ≺ 0, such that
F (x) is a negative definite matrix (i.e., all Eigenvalues of F (x) are negative), Fi are
symmetric matrices, and x is the solution vector. Such constraints are called called
a linear matrix inequality (LMI). Efficient solvers based on interior-point methods
exist for such SDP.

Convex position estimation proceeds by mapping each given convex constraint
to an LMI. By solving the resulting SDP without specifying an objective function
(that would have to be optimized), a solution is found for every unknown node lo-
cation that satisfies all given constraints. As an alternative, the SDP can be solved
four times per client node with different objective functions to find a bounding box
that contains the possible solutions for each unknown node location. The center of
this bounding box may then be used as a location estimate.

In a random network with average node degree 5.8, the above approach with
a distance-bound constraint for each pair of connected nodes provides an average
precision in the order of the communication range if 10% of the nodes are anchors
with known positions.

CHAPTER 5. SENSOR NODE LOCALIZATION 109

Multidimensional Scaling

The algorithm described in [93] considers a setup similar to convex position estima-
tion, where distance estimates are given for pairs of neighboring nodes. Some nodes
are anchors with known locations. Location estimates for the remaining nodes are
sought that approximately satisfy the given constraints.

The algorithm consists of three steps. Firstly, shortest paths between all pairs
of nodes are computed to derive distance constraints for pairs of nodes that are
not network neighbors. Secondly, multidimensional scaling is applied to find an
assignment of locations to nodes that approximates the given distance constraints.
Thirdly, a coordinate transformation is applied to match the given locations of
anchor nodes.

Multidimensional scaling is a technique that first finds an assignment of node
locations in an m-dimensional space, where m > 3. Then, a transformation is
applied to map these locations to three-dimensional space, such that the distance
relationships are retained.

The approach was examined in a network with a distance constraint for each pair
of connected nodes and with 5% of the nodes being anchors. The average precision
varied between 1.5 times the communication range for average node degree 6 and
0.5 times the communication range for average node degree 12.

Spring Relaxation

The system reported in [41] consists of an ad hoc infrastructure formed by ran-
domly deployed PDAs and sensor nodes that should be located. Localization is
based on acoustic time-of-flight measurements, supported by an explicit time syn-
chronization mechanism. In a first step, PDAs are clustered as depicted in Figure
5.3 (b). PDAs then measure pairwise distances and establish a local coordinate
system in each cluster. Nodes that are part of multiple clusters compute a coor-
dinate transformation for adjacent clusters. After the setup has been performed,
sensor nodes can emit acoustic signals that are used by a nearby PDA cluster for
time-of-flight measurements. From the resulting distance estimates, the location
of the node in the cluster’s coordinate system is computed and sent to the sensor
node.

Setup of the coordinate system and node localization is accomplished by a
centralized algorithm that simulates the relaxation of a “spring and mass” model.
For this, nodes are mapped to “masses”. A distance constraint between two nodes
is mapped to a spring between the two masses with a length that is proportional
to the distance. The algorithm then finds an assignment of locations to the masses
that minimizes the total energy of the system.

In a room-scale experiment (about 10m × 10m × 3m), the authors report a
precision of about 20cm in 95% of the time.

CHAPTER 5. SENSOR NODE LOCALIZATION 110

5.2.3 Distributed Localization for Sensor Networks

In this section we consider distributed localization algorithms for sensor networks,
where the location estimation is not performed by a centralized component.

Single-Hop Centroids

This algorithm [17] assumes the existence of anchor nodes that broadcast their
locations regularly. A node estimates its location to be the centroid of the locations
of the anchor nodes it can hear.

In an experiment, four anchors with a communication range of about 9m were
placed at the corners of a 10m × 10m grid. A node was then placed at the 121
corners of a 1m × 1m overlay grid to examine the precision of the approach. It
was found that the precision is better than 4m in 95% of the time.

Ad Hoc Positioning System (APS)

This algorithm [71] is based on the existence of anchors and supports three modes
of operation called DV-HOP, DV-DISTANCE, and EUCLIDEAN. With DV-HOP,
anchors flood their locations through the network, such that each node can obtain
its hop distance from each anchor. Anchors will obtain hop distances to all other
anchors and can thus compute the average hop length by dividing the Euclidean
distance between anchors by the number of hops that separate them. The average
hop length is also flooded through the network. Each node can now compute an
estimate of its distance from each anchor by multiplying the hop distance with
the average hop length. Multilateration is then used to compute an estimate of
the location of a node. DV-DISTANCE is similar to DV-HOP, but instead of
counting hops, the distances between adjacent nodes are measured. The distance
of a node from an anchor is then estimated by the sum of the distances along the
shortest path. Again, multilateration is used to obtain a location estimate. With
the EUCLIDEAN approach, nodes that have a sufficient number of neighbors with
known location and distance perform multilateration to estimate its location. This
process is iterated until all nodes have estimated their locations.

The authors examined the performance of the proposed approaches by simu-
lating of a network with 100 randomly placed nodes with an average node degree
of 7.6. The average precision of DV-HOP varied between 0.5 times the commu-
nication range for 10% anchors and 0.2 times the communication range for 90%
anchors. The precision of the DV-DISTANCE and EUCLIDEAN methods heavily
depends on the precision of the distance measurements. The precision of DV-
DISTANCE varied between 1.2 times the communication range for 90% average
distance precision and 10% anchors and 0.2 times the communication range for
2% average distance measurements precision and 10% anchors. The precision of
EUCLIDEAN varied between the communication range for 90% average distance
precision and 10% anchors and 0.2 times the communication range for 2% average
distance measurement precision and 10% anchors.

CHAPTER 5. SENSOR NODE LOCALIZATION 111

Iterative Multilateration

This algorithm [89] is conceptually similar to the EUCLIDEAN variant of APS.
Initially, only the locations of anchor nodes are known. Client nodes with unknown
positions use multilateration to at least three neighbors with known locations.
After a node has estimated its locations, it can also be used as a reference in
subsequent iterations of the algorithm. In some situations, a node may not have
a sufficient number of neighbors with known locations. In this case, collaborative
multilateration (cf. 5.1.3) may be used.

This algorithm is very sensitive to the number and placement of the anchors.
The authors performed simulations to characterize the effect of the anchor infras-
tructure on the percentage of nodes that can successfully estimate their location.
In a rectangular area of size 100 by 100 units, 200 (300) sensor nodes with com-
munication range 10 were randomly distributed. In order to allow at least 90 % of
the nodes to estimate their locations, 45 % (10 %) of the nodes must be anchors.

Collaborative Multilateration

This algorithm [90] is an extension of earlier work [89] and consists of four phases. In
the first phase, the network is clustered such that each cluster contains anchors and
client nodes, where anchors and distances between nodes define a unique location
for each client node (cf. Figure 5.2). In other words, collaborative multilateration as
discussed in Section 5.1.3 can be used to find unique locations for all client nodes in
such a cluster. Anchors may participate in multiple clusters. “Underconstrained”
client nodes do not participate in any cluster, but will be handled in the fourth
phase.

In the second phase, an initial location estimate is computed for each client
node. For this, distances between nodes are measured and shortest paths between
each pair of (node, anchor) are computed. For each of these pairs, the length of
the shortest path (i.e., sum of the measured distances along the path) is used to
construct a bounding box on the location of the respective node. The node is
located at the center of the intersection of all its bounding boxes.

In the third phase, the initial location estimates are further refined. There is a
centralized and a distributed version of this phase. With the centralized version,
a cluster head is elected per cluster which solves the collaborative multilateration
problem for its cluster (cf. Section 5.1.3). The solution is derived by iteratively
applying a Kalman filter to the initial location estimates, such that the value of the
objective function of the optimization problem is reduced in each step. With the
distributed version, each node uses the initial location estimates of its neighbors
to perform multilateration, resulting in a refined location estimate. This process is
repeated until the distance between old and updated location falls below a given
threshold. These updates are performed in a fixed sequence on the nodes to prevent
them from getting stuck in local minima.

In the fourth phase, locations of underconstrained nodes are further refined.
For this, the client nodes with known location estimates (that were computed in

CHAPTER 5. SENSOR NODE LOCALIZATION 112

phase three) are treated as additional anchors. Using the distributed approach of
the third phase, the locations of underconstrained nodes are then refined.

The algorithm was evaluated by simulation. The communication range was set
to 15m and distance measurement errors were modeled by a zero-mean Gaussian
random variable with a standard deviation of 2cm. With 6 anchors, an average
node degree of 6, the number of client nodes was varied between 10 and 100. The
average precision was 2.8cm with a standard deviation of 1.6cm.

Hop-Terrain

This algorithm [88] also assumes that a certain percentage of nodes are anchors.
The algorithm consists of a start-up phase and a refinement phase. In the start-
up phase, all anchors flood the network to enable all nodes to estimate their hop
distance from all anchors. Anchors can then compute the average Euclidean length
d of one hop by dividing the known Euclidean distance between two anchors by the
number of hops separating them. This average hop length is also flooded through
the network. Eventually, every node can come up with an estimate of its distance
from all anchors by multiplying the hop count with the average hop length. Using
multilateration as described in Section 5.1.3, each node ends up with a first estimate
of its position.

In the refinement phase, each node repeatedly measures distances to its neigh-
bors and performs multilateration to obtain a refined location estimate. This pro-
cess is repeated until the distance between old and updated location falls below a
given threshold. As an extension, each node can assign a confidence to its location
estimate which is calculated from the number of neighbors (more neighbors likely
result in more precise location estimates) and from the local network topology. The
confidence is used to weight the significance of each constraint in the error metric
of the optimization problem.

In simulations with a random network topology with 5% anchors and 5% average
range measurement error, the precision varied between 0.3 times the communication
range for an average node degree of 7 and 0.1 times the communication range for
an average node degree of 15. For average node degrees below 7, large fractions of
nodes remain without a location estimate, since they have less then 4 neighbors.

Precision-Based Iterative Multilateration

The structure of this algorithm [36] is similar to the work presented in [89]. How-
ever, besides a location estimate, this algorithm also calculates and uses the stan-
dard deviation of the estimated location as a measure of the achieved precision.
Also, if a node does not have a sufficient number of neighbors with known positions,
the distance to a remote reference node (and standard deviation) is estimated by
the length of shortest path across multiple hops. After nodes have obtained an ini-
tial location estimate, these estimates are further improved in a refinement phase
similar to the ones described in [88, 90].

CHAPTER 5. SENSOR NODE LOCALIZATION 113

The authors performed simulations to examine the performance of the proposed
algorithm. In a square area of 15 units edge length, 225 nodes with radio range
2.1 units were randomly placed with 5 % of them being anchors. The standard
deviation of the range measurement error was 20 % of the distance. With this
setup, the average location error was about 17 % with a standard deviation of 23
%.

Self-Positioning Algorithm (SPA)

SPA [20] does not require anchors. In a first phase, each node measures distances
to its neighbors and broadcasts these distances to its neighbors. After this, each
node knows the distance to each of its neighbors and the distances between some
pairs of its neighbors. Then each node constructs a local coordinate system using
two of its neighbor nodes as discussed in Section 3.3.1. In the second phase, coor-
dinate transformations are computed between the coordinate systems of adjacent
nodes. In the third phase, a global coordinate system is selected and coordinate
transformations are computed to transform the local coordinate systems to this
global system. For this, a set of nodes called the Location Reference Group (LRG)
is elected such that the degree of mobility of the centroid of these nodes is small
in order to avoid frequent adjustments of the global coordinate system. The global
coordinate system is then defined by the average of the local coordinate systems
of the nodes in the LRG (i.e., origin is centroid of the origins of the individual
coordinate systems, axis vectors are averages of the axis vectors of the individual
coordinate systems).

We are not aware of any results about the precision this approach can provide.

APIT

This algorithm [44] assumes the existence of anchor nodes and is based on the tri-
angle test described in Section 5.1.3. For various triangles formed by combinations
of three anchors, the triangle test is performed to decide whether a node is inside
or outside this triangle. The largest intersection of “inside” triangles for the node
is then computed using the pixel approximation described in Section 5.1.3. The
center of gravity of the intersection region is used as the location estimate for the
considered node.

To implement this approach, anchors broadcast their ID and location. Each
node records the ID, location, and received signal strength for all anchors it can
hear. The resulting anchor table is then broadcast, so that each node knows its own
table and the tables of all neighbors. Each node then locally performs the triangle
test for all combinations of three anchors based on these tables and computes an
estimate of its own location.

In simulations it was shown that the precision of this approach mainly depends
on the number of anchors a node can hear, which in turn depends on the number
of anchors, their distribution, and the communication range of the anchors. In a
random network with an average node degree of 8 and where the communication

CHAPTER 5. SENSOR NODE LOCALIZATION 114

range of anchors is 10 times the communication range of nodes, the average preci-
sion varies between 7 times the node communication range (if a node can hear 3
anchors on average) and 0.5 times the communication range (if a node can hear 25
anchors on average).

5.3 Problem Statement

Our goal is the provision of a scalable and resource-efficient localization approach
for Smart Dust (cf. Section 2.5.3). As we show below, this setup represents a point
in the design space that is not covered by existing approaches.

5.3.1 Device Challenges

The physical characteristics of Smart Dust particles represent a major challenge to
localization approaches. In particular, the available resources for communication,
computation, storage, and energy are severely limited by the small size of these
devices. Hence, the overhead of a localization algorithm must be rather low with
respect to these resources.

These resource limitations are also the reason for the passive optical commu-
nication approach adopted by Smart Dust. While traditional radio-based sensor
nodes can actively communicate with its network neighborhood, Smart Dust par-
ticles can only communicate with a base station. Since communication is directed,
interaction with the base station is only possible if the base station happens to
point its laser beam towards a particular Smart Dust particle.

Most of the localization systems discussed earlier assume direct node-to-node
communication, which is not possible with Smart Dust. In order to match the
stringent resource constraints of Smart Dust, a prospective localization system
would ideally reuse the existing hardware components (i.e., optical transceiver)
instead of requiring additional facilities.

5.3.2 Resource Efficiency

As discussed in Section 3.2.5, a key to achieving resource efficiency is the exploita-
tion of scope and lifetime requirements of the application. In other words, localiza-
tion should be performed only where and when required by the application. Hence,
it would be desirable that each Smart Dust particle could estimate its location on
demand, independent of other particles.

Note that with almost all distributed localization approaches for sensor networks
discussed in Section 5.2, estimating the location of a single node requires support
from a large number of other nodes in the network. Hence, these approaches are
not well-suited for providing localization on demand.

CHAPTER 5. SENSOR NODE LOCALIZATION 115

5.3.3 Minimal Infrastructure

Since Smart Dust is envisioned to be deployed in hostile or unexploited areas, it
is rarely possible to install extensive hardware infrastructure besides the single
base station, which is required for communication. Hence, a localization scheme
for Smart Dust can make use of and extend the existing base station, but should
not require the installation of additional, geographically dispersed infrastructure
elements.

5.3.4 Scalability

It is anticipated that large numbers of Smart Dust particles will be densely de-
ployed for detailed observation of a target area. However, it is likely that portions
of such a deployment are less dense, and some deployments may consist of small
numbers of nodes. A localization approach should ideally support this wide spec-
trum of deployments ranging from a single node or few nodes to dense networks of
thousands of nodes.

This requirement represents a major challenge as indicated by the algorithms
discussed in Section 5.2, where many approaches require a certain minimum net-
work density to provide a reasonable precision.

Also, large networks require that there is no per-node overhead such as for
the calibration of individual nodes. Moreover, centralized approaches should be
avoided since they represent a scalability bottleneck for large networks. Rather,
Smart Dust particles should be able to compute their locations on their own instead
of relying on external infrastructure for computing location estimates.

5.4 The Lighthouse Location System

This section presents the Lighthouse Location System for Smart Dust. In order
to point out the basic ideas behind this system, we will first examine a simplified
idealistic system. This examination will be followed by a more thorough discussion
of a realistic system that can actually be built. We will go on by presenting a
prototype implementation, a set of measurements, and an evaluation of several
aspects of the system.

5.4.1 An Idealistic System

Consider the special lighthouse depicted in Figure 5.4, which has the property that
the emitted beam of light is parallel with a constant width b when seen from top.
When seen from the side, the angle of beam spread of the parallel beam is large
enough so that it can be seen from most points in space.

When this parallel beam passes by an observer, he will see the lighthouse flash
for a certain period of time tbeam. Note that tbeam depends on the observer’s distance
d from the rotation axis of the lighthouse since the beam is parallel. Assuming the

CHAPTER 5. SENSOR NODE LOCALIZATION 116

d1

d2

side view

d2

2

d1

b α 1αtop view

Figure 5.4: Top and side view of an idealistic lighthouse with a parallel beam of
light.

lighthouse takes tturn for a complete rotation, we can express the angle α, under
which the observer sees the beam of light as follows:

α = 2π
tbeam

tturn

(5.10)

Figure 5.4 shows two observers (depicted as squares) at distances d1 and d2 and
the respective angles α1 and α2. We can express d in terms of α and the width b
of the beam as follows:

d =
b

2 sin(α/2)
(5.11)

By combining Equations 5.10 and 5.11 we obtain the following formula for d in
terms of b, tbeam, and tturn:

d =
b

2 sin(πtbeam/tturn)
(5.12)

Note that the distance d obtained this way is the distance of the observer to the
lighthouse rotation axis as depicted in the side view in Figure 5.4. That is, all
the points in space with distance d form a cylinder (not a sphere!) with radius d
centered at the lighthouse rotation axis.

CHAPTER 5. SENSOR NODE LOCALIZATION 117

x

y

z

dy

dx
dz

hz

hy

hx

Figure 5.5: 3D Localization support device consisting of three mutually perpendic-
ular lighthouses.

Based on the above observations, we can build a simple ranging system consist-
ing of a lighthouse and an observer. The observer device contains a photo detector
and a clock. When the photo detector first sees the light it records the correspond-
ing point in time t1. When the photo detector no longer sees the light it records t2.
When it sees the light again it records t3. With tbeam := t2 − t1 and tturn := t3 − t1
the observer can apply Equation 5.12 in order to calculate its distance d from the
lighthouse rotation axis. Note that if tturn is constant it has to be measured only
once since it does not change with distance. Also note that the necessary hardware
resources of the observer device are matched by a Smart Dust node as explained
in Section 2.5.3.

This ranging scheme can be used to build a single beacon device, which allows
observers to autonomously determine their position relative to the beacon in space.
This beacon device consist of three lighthouses with mutually perpendicular rota-
tion axes as depicted in Figure 5.5. Assuming an observer measures the distances
dx, dy, and dz as indicated above, its location can be determined by computing
the intersection point(s) of three cylinders with radius dx, dy, dz centered at the
respective lighthouse rotation axes. Note that there are 8 such intersection points
in general, one in each of the 8 quadrants of the coordinate system. If we can
ensure, however, that all observers are located in a single quadrant (e.g., the main
quadrant defined by the points (hx, hy, hz) with hx, hy, hz ≥ 0), there is a unique
intersection point. This intersection point can be obtained by solving the following
equation system for hx, hy, hz:

d2
x = h2

y + h2
z

d2
y = h2

x + h2
z

d2
z = h2

x + h2
y

(5.13)

CHAPTER 5. SENSOR NODE LOCALIZATION 118

Note that this equation system does not necessarily have a solution, since the val-
ues dx, dy, dz are only approximations obtained by measurements. If there is no
solution, an approximation for the intersection point can be obtained using mini-
mum mean square error (MMSE) methods. The solution (hx, hy, hz) obtained this
way minimizes the sum of the squares of the differences of the left hand and right
hand sides of the Equations 5.13. However, if the equation system has a solution,
it can be directly solved using the following set of equations, again assuming that
the observer is located in the main quadrant of the coordinate system depicted in
Figure 5.5:

hx =
√

(−d2
x + d2

y + d2
z)/2

hy =
√

(d2
x − d2

y + d2
z)/2

hz =
√

(d2
x + d2

y − d2
z)/2

(5.14)

The setup of the complete location system can now be described. The base station
is equipped with three mutually perpendicular lighthouses as depicted in Figure
5.5. At startup, the base station broadcasts certain calibration parameters (e.g.,
the beam width b for each of the lighthouses) to all dust nodes. The latter use a
clock to measure the amount of time during which each of the lighthouses beams
are visible. Using Equations 5.12 and 5.13, nodes can autonomously compute their
location in the reference grid defined by the base station’s three lighthouses.

The description of the system’s principles gives rise to a number of practical
questions. First of all, it is not clear at all whether a system fulfilling the above
requirements (e.g., parallel beam) can actually be built in practice. Moreover, we
did not discuss the problem how a dust node can distinguish the different beams of
the lighthouses, or what happens if a dust node “sees” the beams of two lighthouses
at the same time. We will discuss these issues in the next sections in order to lay
the foundation for an implementation of the system.

5.4.2 A Realistic System

During first experiments it turned out that actually building a lighthouse with a
sufficiently exact parallel beam is very difficult, at least given the limited technical
capabilities that were available to us. This has the unfortunate consequence, that
the model described in Section 5.4.1 cannot directly be used due to the resulting
high inaccuracies. To understand the reason of these inaccuracies, consider the
following example, where we assume a beam width of 10cm. Even if the angle of
beam spread is only 1◦ (instead of 0◦ for an ideal parallel beam), the width of the
beam at a distance of 5m would be about 18.7cm, resulting in an error of almost
90%. The relative error could be reduced somewhat by increasing the width of the
beam. However, a large beam width also results in a large and clumsy base station
device.

Therefore, instead of building a system perfectly matching the requirements of
Section 5.4.1, we have to adapt our model to a system which can actually be built.

CHAPTER 5. SENSOR NODE LOCALIZATION 119

la
se

r

la
se

r

"virtual"
parallel beam

(top view) (side view)
(a) rotating 45 deg. mirror (b) deflectable mirror

Figure 5.6: A rotating lighthouse with a “virtual” parallel beam whose outline is
defined by two parallel laser beams. Rotating (a) or deflectable mirrors (b) are
used make the laser beams scan the northern hemisphere of the lighthouse.

In order to develop such a model, we first have to examine ways of generating
near-parallel beams.

Beam Generation

In order to keep the hardware and energy overhead on the Smart Dust nodes small,
the beam must be easily detectable. Furthermore, the system should work with
high accuracy even if the base station is far away (tens of meters, say) from the
nodes. Therefore we decided to use a laser-based approach. As mentioned above,
the beam should be as wide as possible in order to keep inaccuracies small. In
order to achieve this, we use two lasers to create the outline of a parallel beam
as depicted in the upper half of Figure 5.6. This makes no difference to a single
wide beam, since we are only interested in the edges of the beam (i.e., change from
“dark” to “light” and vice versa) in order to measure tbeam and tturn.

Due to the narrow laser beams, the “virtual” parallel beam generated this way
can only be seen from a single plane, however. In order to ensure that the beam
can be seen from any point in the northern hemisphere of the lighthouse without
defocusing the lasers, the laser beams have to scan this space in some way. The
lower half of Figure 5.6 depicts two ways to achieve this. The first approach uses
a small mirror mounted on a rotating axle under an angle of 45◦. By pointing the
laser at this mirror, the reflected rotating beam describes a plane. With commercial
off the shelf technology we can easily achieve a rotation frequency of about 300Hz.
The second approach uses a small deflectable MEMS mirror similar to the one
used as part of the corner cube retroreflector (CCR). Figure 5.7 shows such a
device [25], which operates at 35kHz and achieves a deflection angle of 25◦. A laser
beam pointed at such a mirror can thus sweep over an angle of 50◦ at a frequency

CHAPTER 5. SENSOR NODE LOCALIZATION 120

Figure 5.7: MEMS deflectable mirror with maximum deflection angle of 25◦ and
resonant frequency of 35kHz [7].

of 35kHz.
Based on this approach, a lighthouse consists of a (slowly) rotating platform, on

which two semiconductor laser modules and two rotating (or deflectable) mirrors
are mounted. However, as mentioned at the beginning of Section 5.4.2, it is next to
impossible to assemble all the pieces such that the resulting “virtual” wide beam
is almost parallel. Therefore, we have to come up with a model which describes
an imperfect but realistic system. The model discussed below is based on rotating
mirrors, since we used this approach in our prototype implementation of the system.
However, the model equally applies to a system based on deflectable mirrors.

The Lighthouse Model

We use Figure 5.8 to explain the lighthouse model. It shows a simplified top
and side view of the lighthouse. Each view shows the two mirror’s rotation axes
and the corresponding reflected rotating laser beams. Note that in general the
angle enclosed by the mirror rotation axis and the mirror will not be exactly 45◦

(i.e., βi 6= 0◦) due to manufacturing limitations. Therefore, the rotating reflected
laser beams will form two cones as depicted in Figure 5.8. Moreover, the two
mirror’s rotation axes will not be perfectly aligned. Instead, the dashed vertical
line (connecting the apexes of the two cones formed by the rotating laser beams)
and the mirror rotation axes will enclose angles γi in the side view and angles δi in
the top view that are different from 0◦. Additionally, the figure shows the rotation
axis of the lighthouse platform and its distances b1 and b2 to the apexes of the
two light cones. The lighthouse center is defined as the intersection point of the
lighthouse platform rotation axis and the dashed vertical line in Figure 5.8. Note
that the idealistic lighthouse described in Section 5.4.1 is a special case of this more
complex model with βi = γi = δi = 0◦ and b1 = b2.

Now let us consider an observer (black square) located at distance d from the
main lighthouse platform rotation axis and at height h over the lighthouse center.
We are interested in the width b of the virtual wide beam as seen by the observer.
Let us assume for this that we can build a lighthouse with b1 ≈ b2 and βi, γi, δi ≈ 0◦,
i.e., we do our best to approximate the perfect lighthouse described in Section 5.4.1.
Then we can express b approximately as follows:

CHAPTER 5. SENSOR NODE LOCALIZATION 121

β1

γ1

b1

β1

δ1

b1 2b

h

side view

b
d

top view

b2

Figure 5.8: Model of a realistic lighthouse based on rotating mirrors. The zoom-ins
show detail for one rotating mirror in the top and side views. The other rotating
mirror has respective parameters β2, γ2, and δ2.

b ≈ b1 + b2 +
√

d2 + h2(sin β1 + sin β2)+
h(tan γ1 + tan γ2) + d(sin δ1 + sin δ2)

(5.15)

The inaccuracy results from the last two terms, which are linear approximations of
rather complex non-linear expressions. For β1 = β2 = 0◦, however, expression 5.15
becomes an equation. We will allow these factors to be built into the error term.

With Cb := b1 + b2, Cβ := sin β1 + sin β2, Cγ := tan γ1 + tan γ2, and Cδ :=
sin δ1 + sin δ2 we can rewrite expression 5.15 as

b ≈ Cb +
√

d2 + h2Cβ + hCγ + dCδ (5.16)

Note that Cb, Cβ, Cγ, and Cδ are fixed lighthouse parameters. We will show below
how they can be determined using a simple calibration procedure. We can express
b also in terms of the angle α obtained using Equation 5.11:

b = 2d sin
α

2
(5.17)

Combining expressions 5.16 and 5.17 we obtain the following expression which
defines the possible (d, h) locations of the observer, given a measured angle α and
the lighthouse calibration values C∗:

2d sin
α

2
≈ Cb +

√
d2 + h2Cβ + hCγ + dCδ (5.18)

Note that for given C∗ and α the points in space whose d and h values are solutions
of Equation 5.18 form a rotational hyperboloid centered at the rotation axis of the

CHAPTER 5. SENSOR NODE LOCALIZATION 122

x

z

z0
x0

y0

hx

hz

hy

y

dy

dx

Figure 5.9: Positions of the lighthouses in the coordinate system. dz is not shown
for clarity.

lighthouse. In the special case βi = γi = δi = 0◦ and b1 = b2 this hyperboloid
becomes a cylinder as in the idealistic model described in Section 5.4.1.

Location Computation

Similar to the idealistic model described in Section 5.4.1, the location of the ob-
server can be obtained by determining the intersection point(s) of the three rota-
tional hyperboloids defined by Equation 5.18. However, since the observed virtual
beam width b now additionally depends on the height h of the observer, we have
to take into account the exact positions of the three lighthouses. Figure 5.9, which
shows an extended version of Figure 5.5, illustrates this. The marks on the co-
ordinate axes show the positions of the lighthouse center (as defined in Section
5.4.2) of each of the three lighthouses. That is, the coordinates of the observer are
(x0+hx, y0+hy, z0+hz) with respect to the origin formed by the intersection of the
three lighthouse rotation axes. In order to obtain approximations for the values
hx, hy, and hz, we have to solve the following equation system:

2dx sin αx

2
= Cb

x +
√

d2
x + h2

xC
β
x + hxC

γ
x + dxC

δ
x

2dy sin αy

2
= Cb

y +
√

d2
y + h2

yC
β
y + hyC

γ
y + dyC

δ
y

2dz sin αz

2
= Cb

z +
√

d2
z + h2

zC
β
z + hzC

γ
z + dzC

δ
z

d2
x = (y0 + hy)

2 + (z0 + hz)
2

d2
y = (x0 + hx)

2 + (z0 + hz)
2

d2
z = (x0 + hx)

2 + (y0 + hy)
2

(5.19)

The indices {x, y, z} indicate which lighthouse the values are associated with. As
with Equation system 5.13, this system does not necessarily have a solution, since
the parameters are only approximations obtained by measurements. Therefore,
minimum mean square error (MMSE) methods have to be used to obtain approx-

CHAPTER 5. SENSOR NODE LOCALIZATION 123

imations for the h∗. However, if the equation system 5.19 has a solution, we can
approximately solve it by simple iteration. For this, we first transform each of the
six equations of equation system 5.19 in order to obtain the following fixpoint form:

hx = f1(dx)
hy = f2(dy)
hz = f3(dz)
dx = f4(hy, hz)
dy = f5(hx, hz)
dz = f6(hx, hy)

(5.20)

Note that we did not show arguments of the fi (i.e., C∗
∗ , α∗, x0, y0, z0) that do not

change during iterative evaluation of the equation system. By using appropriate
values for h0

x, h
0
y, h

0
z, and ∆, we can obtain approximate solutions for hx, hy, hz with

the following algorithm:

hx := h0
x;

hy := h0
y;

hz := h0
z;

while (true) {
h′

x := f1(f4(hy, hz));
h′

y := f2(f5(hx, hz));
h′

z := f3(f6(hx, hy));
if (|h′

x − hx|+ |h′
y − hy|+ |h′

z − hz| < ∆)
break;

hx := h′
x;

hy := h′
y;

hz := h′
z;

}

At first, the h∗ are initialized to the start values h0
∗. Using the fi, new approxima-

tions h′
∗ are computed. We are finished if the new values are reasonably close to

the original h∗. Otherwise we update the h∗ to the new values and do another iter-
ation. For good convergence of this algorithm the partial derivatives of the fi ◦f3+i

in the environment of the solution (hx, hy, hz) should be small, which is typically
true. In our prototype implementation we use h0

∗ := 100cm and ∆ := 0.1cm. With
this configuration, the algorithm typically performs 4-6 iterations.

Calibration

What remains to be shown is how we can obtain values for x0, y0, z0, and C∗
x, C

∗
y , C

∗
z .

Since the values x0, y0, z0 are uncritical for the achieved accuracy, we assume they
are measured directly. The C∗

∗ values, however, are very critical for the accuracy
as was shown with the example at the beginning of Section 5.4.2. Therefore we
have to perform a calibration.

CHAPTER 5. SENSOR NODE LOCALIZATION 124

For each of the three lighthouses we have to determine values for the four vari-
ables Cb, Cβ, Cγ, Cδ. For this, we place the observer at known locations (di, hi)
and obtain the respective αi using Equation 5.10. Doing so for at least four loca-
tions and using equation 5.18, we obtain the following linear equation system in
Cb, Cβ, Cγ, Cδ:

2d1 sin α1

2
= Cb +

√
d2

1 + h2
1C

β + h1C
γ + d1C

δ

2d2 sin α2

2
= Cb +

√
d2

2 + h2
2C

β + h2C
γ + d2C

δ

2d3 sin α3

2
= Cb +

√
d2

3 + h2
3C

β + h3C
γ + d3C

δ

2d4 sin α4

2
= Cb +

√
d2

4 + h2
4C

β + h4C
γ + d4C

δ

(5.21)

As with the other equation systems, this system does not necessarily have a solu-
tion, since the parameters are only approximations obtained by measurements. If
the system has a solution, it can be obtained by Gaussian elimination. For this,
the di and hi have to fulfill certain requirements. One simple rule of thumb is that
both the di and the hi should be pairwise distinct.

Better results can be obtained if the system is calibrated at more than four
points. The resulting over-determined equation system can than be solved using
MMSE methods in order to obtain approximations for the C∗. Formally, we can
rewrite Equation system 5.21 as

1 U1 V1 W1

1 U2 V2 W2

1 U3 V3 W3
...

...
...

1 Un Vn Wn




Cb

Cβ

Cγ

Cδ

 =


T1

T2

T3
...

Tn

 (5.22)

with Ti = 2disin(αi

2
), Ui =

√
d2

i + h2
i , Vi = hi, Wi = di. Rewriting 5.22 as

Ax = b, we can solve the least squares problem by solving the following equation
for x:

AT Ax = AT b (5.23)

which is equivalent to solving the following equation for (Cb, Cβ, Cγ, Cδ) using
Gaussian elimination:


∑

1
∑

Ui

∑
Vi

∑
Wi∑

Ui

∑
U2

i

∑
UiVi

∑
UiWi∑

Vi

∑
ViUi

∑
V 2

i

∑
ViWi∑

Wi

∑
WiUi

∑
WiVi

∑
W 2

i




Cb

Cβ

Cγ

Cδ

 =


∑

Ti∑
UiTi∑
ViTi∑
WiTi

 (5.24)

All summations run over i = 1...n.
Note that calibration has to be performed only once for each base station (as-

suming that the system is stable enough and needs not be re-calibrated) and is
independent of the receiver nodes. Therefore, calibration can be performed using a

CHAPTER 5. SENSOR NODE LOCALIZATION 125

more powerful receiver device than the limited Smart Dust node. As explained in
Section 5.4.1, the base station broadcasts these calibration parameters to the Smart
Dust nodes, which use them to compute their location using Equation System 5.19.

5.4.3 Prototype Implementation

In order to evaluate the concepts developed in Section 5.4.2, we implemented a
prototype system. To keep the hardware overhead small, this prototype system
consists of only two lighthouses and allows observers located on the plane y = 0
to determine their x and z coordinates. From a conceptual point of view, the
differences to a 3D system are minimal.

The Base Station

Figure 5.10 shows a picture of the prototype base station. It consists of two
mutually perpendicular lighthouses. The main lighthouse platform takes about
tturn = 60s for one rotation. The platform is driven by a geared electro motor
manufactured by FTB [120], which has a low flutter of about 0.1% of the rotation
speed. Using an LM317 [124] adjustable voltage regulator, the voltage supply of
the motor and thus the rotation speed of the platform can be adjusted. The two
bars that extend from under the platform are used to move the center of gravity
of the platform to the rotation axis, such that the platform rotates at a constant
speed.

The power supply for the rotating platform is implemented by a stereo jack and
associated plug. While the plug is fixed to the axle of the rotating platform, the
jack is affixed to the chassis using a thin steel wire. This way, the round plug can
rotate in the jack.

Beam generation is based on rotating mirrors as described in Section 5.4.2.
Both rotating mirrors are driven by a single Graupner SPEED 280 electro-motor.
In order to reduce vibrations, we did not use a rigid axle to connect the mirrors
to the motor. Instead, we used small steel springs as axles. The rotating mirrors
are supported by two ball bearings each. Two 1mW 650nm semiconductor laser
modules with adjustable focus point their beam at the rotating mirrors.

The supply voltage of the motor and thus its rotation speed can be adjusted us-
ing an LM317 voltage regulator. The mirror rotation speeds of the two lighthouses
are slightly different (tmirror = 4ms and tmirror = 5ms for one rotation, respectively),
such that the observer can distinguish the two lighthouses based on the time in-
terval between successive light flashes, which will be explained in more detail in
Section 5.4.3. Hence, in order to detect a beam, the observer’s photo detector must
at least be hit twice by the rotating laser beam. Note that due to the fast rotation
of the laser beams, the average light intensity is low enough to be eye-safe.

There is a slight chance that the photo detector is hit by the beams of both
lighthouses at the same time. We will explain in Section 5.4.3 how an observer
can detect and handle this situation. However, since the diameter of the laser
beams is rather small, the likelihood of this event is small. By selecting slightly

CHAPTER 5. SENSOR NODE LOCALIZATION 126

mirror
drive

rotating
platform platform

drive

laser

rotating
mirror

x
y

Figure 5.10: Prototype base station consisting of two lighthouses and the resulting
2D coordinate system.

different platform rotation speeds for the two lighthouses, we can ensure that for
each observer this happens only once in a while. In our experiments this happened
about every 100 lighthouse rotations at a single fixed observer.

The whole device is powered by a 7.2V 2400mAh nickel-cadmium battery, which
lasts for about 3 hours, which equals about 3 watts per lighthouse. Note however,
that almost all of the power is consumed by the motors driving the mirrors, which
operate at 6 volts. Moreover, the voltage converters burn quite some amount of
power, since the lasers and the platform drives operate at 3 volts. We expect a
low voltage design using deflectable MEMS mirrors instead of rotating mirrors to
consume as few as 0.3 watts per lighthouse, since the MEMS mirrors consume
considerably less power than the motors driving the rotating mirrors.

The Nodes

The receiver prototype consists of a small electronic circuit connected to the parallel
port of a laptop computer running Linux. Figure 5.11 shows a schematic diagram
of the receiver hardware. A photo diode converts the intensity of the incident light
into a proportional voltage. The light that is incident to the photo diode mainly
consists of three components:

• direct current (DC) components resulting from slowly changing daylight

• low frequency components resulting from artificial lighting powered with 50Hz
alternating current (AC)

CHAPTER 5. SENSOR NODE LOCALIZATION 127

HPF
parallel

port

Figure 5.11: Schematic diagram of the receiver hardware.

D1

R1

R2

R3

R4

U1 U2

Vcc

Gnd

C1 C2
C3

R5
R6

R7

D1 = BPW 34
R1 = 33k
R2, R3 = 1M

R4, R6 = 100k
R5 = 2M
R7 = 100k

C1 = 15p
C2, C3 = 1p

ACK (pin 10)

GROUND (pin 18)

U1, U2 = LM318 / LM6142

 -

 +

 +

 -

Figure 5.12: Circuit diagram of the receiver hardware.

• higher frequency components resulting from laser light flashes at about
200Hz-300Hz (1/tmirror)

Since we are only interested in the higher frequency laser flashes, we run the
output signal of the photo diode through a high pass filter (HPF) which removes
DC and low frequency components. Due to this, the detector is insensitive to
daylight and artificial light.

The output of the HPF is then amplified using an operational amplifier, whose
output is in turn fed into a Schmitt Trigger. The latter implements a hysteresis,
i.e., when the input voltage level exceeds a certain value V1 it lowers the output
voltage to a minimum. When the input voltage falls below a certain value V2,
the Schmitt Trigger raises the output voltage to a maximum. The output of the
Schmitt Trigger is connected to the parallel port, so that each laser flash on the
photo diode causes a parallel port interrupt to be triggered.

Figure 5.12 shows the complete circuit diagram of the device. D1 and R1 form
the photo diode stage, C1 and R3 implement the HPF. R2 is used to shift the output
from the HPF to about half of the supply voltage as input for the amplifier, which
consists of R4 for reference voltage generation, U1, R5, and C1. U2, R7, and C3
implement the Schmitt Trigger, R6 is used to generate the voltage reference for the
latter. Since the output of the Schmitt Trigger is inverted, we connect the output
to the GROUND pin (pin #18) of the parallel port and Vcc to the ACK pin (pin
#10). The LM318 [124] is a high speed operational amplifier commonly available at
electronics supply stores. The device is powered by a small 9V battery (connected
to Vcc and Gnd), since the used operational amplifiers require a symmetric voltage
supply of at least +4.5V and -4.5V. A later version of this design uses the LM6142
[124] low-voltage low-power dual channel operational amplifier and operates at +1.5
and -1.5V. We connected this device to the BTnodes [116] (cf. Chapter 6).

CHAPTER 5. SENSOR NODE LOCALIZATION 128

vo
lta

ge

time

turn - t beamOR tt beam

tmirror

Figure 5.13: Input voltage at the parallel port as beams pass by the photo detector.

The receiver software consists of two main components, a Linux device driver
which handles the parallel port interrupt, and an application level program which
performs the actual location computation and lighthouse calibration. The device
driver mainly consists of the parallel port interrupt handler, which is implemented
using the parapin [125] parallel port programming library. Moreover, it implements
a Linux special device /proc/location, which provides a simple interface to user-
level applications. By writing simple ASCII commands to this device, a user-level
program can instruct the device driver to do some action.

The supported commands are:

• init: Create a new lighthouse. The driver initializes data structures for
a new lighthouse and autodetects the rotation speed tmirror of a previously
undetected lighthouse.

• reset N: Reset lighthouse N to the initial state.

• clear: Delete all active lighthouses.

• rounds N M: Instruct the driver to take into account M lighthouse turns and
output the mean of the M measurements for lighthouse N.

By reading the /proc/location device, a user-level program can obtain the current
status and measured angle α according to Equation 5.10 of all detected lighthouses.
A sample output line looks as follows:

lh0: seq 1, angle 1857, pulse 4232us, rounds 1

indicating that lighthouse 0 has tmirror = 4232µs, α = 0.01857 (the value is scaled
by 100000), has done one measurement (sequence number 1), and is taking into
account 1 lighthouse turn for each measurement.

In order to measure α, the driver has to evaluate the interrupts it sees. To
understand how this is done, consider Figure 5.13, which shows the input voltage

CHAPTER 5. SENSOR NODE LOCALIZATION 129

at the parallel port over time. As the first rotating laser beam passes by the photo
detector, the parallel port sees a sequence of sharp pulses resulting from the fast
rotating mirror. The pulses stop when the lighthouse platform has turned enough
so that the photo detector isn’t hit any longer by the rotating beam. After some
time, the second rotating beam passes by the photo detector and again generates
a sequence of fast pulses.

Recall that each pulse generates an interrupt, which results in the device driver
interrupt handler being invoked. The handler then uses the system clock (which
has µs resolution under Linux) to determine the point in time when the interrupt
occurred.

The time interval between two successive fast pulses equals the time tmirror

for one rotation of the mirror. Since each lighthouse has a different tmirror, this
value can be used to distinguish different lighthouses. Please note that the pulse
sequences can contain “holes” where the laser beam missed the photo detector due
to vibrations. The driver removes all peaks separated by holes from the beginning
and the end of the sequence of pulses. The time midpoint of the resulting shorter
sequence of pulses without holes is assumed as the detection time of the beam
(indicated by the braces in Figure 5.13).

Recall from Section 5.4.2, that we implemented a “virtual” wide beam by two
rotating laser beams that form the outline of this wide beam. Therefore, the time
passed between the midpoints of two successive packs is either tbeam or tturn− tbeam.
If the actual value is small (e.g., < 1sec) then it is assumed to be tturn. If the
lighthouse has just been initialized the driver also measures tturn− tbeam in order to
obtain tturn. Since the latter does not change, this has to be done only once. Later
on, the driver can output a new α with each round of the lighthouse.

In order to distinguish successive pulses from “holes”, and holes from “beam
switches”, the driver knows tight lower and upper bounds for the possible values
of tmirror and tturn. In Section 5.4.3 we mentioned the possibility that beams from
different lighthouses may hit the photo receiver at the same time. If this happens
the resulting time between successive pulses will fall below the lower bound for
tmirror, such that the driver can detect this situation instead of producing faulty
results.

Using the /proc/location interface of the device driver, the user-level program
implements lighthouse calibration and location computation. The program is more
or less a straightforward implementation of the concepts developed in Section 5.4.2.

A simplified version of this software also runs on the ATMEL microcontroller
of the BTnodes. This setup more closely resembles the limited capabilities of a
Smart Dust node and allows us to study the potential effects of a Smart Dust node
on the location system (cf. Chapter 6).

5.4.4 Evaluation

In this section we examine the compliance of the Lighthouse Location System with
the region in the design space indicated in Section 5.3 and examine additional

CHAPTER 5. SENSOR NODE LOCALIZATION 130

�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

x

x

Figure 5.14: Ensuring mutually perpendicular lighthouses.

aspects of the system, namely factors that influence the precision of the location
estimates, limits on the maximum distance of nodes from the base station, the
effects of node mobility, and the cost of adding localization support to dust nodes.
We begin with examining the calibration of the lighthouse beacon as a prerequisite
for quantifying the precision of our approach.

Calibration

Calibration of the base station involves the following three steps:

• Ensuring that the lighthouses are mutually perpendicular.

• Measuring the offsets of the lighthouse centers x0 and z0.

• Determining Cb, Cβ, Cγ, Cδ for each of the two lighthouses.

In order to ensure that the two lighthouses are mutually perpendicular, we placed
the base station at the corner of a rectangular room as depicted in Figure 5.14,
such that the rotation axes of the two lighthouses are at distance x from the two
perpendicular walls. We disabled the motors that drive the rotating mirrors and
one of the two lasers of each lighthouse. Then we adjusted the mirror so that the
remaining laser beam points at the opposite wall. Due to the rotating lighthouse
platforms, the laser spots draw two circles on the walls. The centers of these two
circles mark the position where the lighthouse rotation axes hit the wall as depicted
in Figure 5.14. Now we adjust the lighthouses on the common chassis such that the
centers of these circles also have a distance x from the walls. In our measurement
setup, we placed the base station at x = 20cm in a room with a size of about 5m
by 5m.

As mentioned in Section 5.4.2, the lighthouse center offsets x0 and z0 from the
origin of the coordinate system defined by the lighthouse rotation axes are not

CHAPTER 5. SENSOR NODE LOCALIZATION 131

[m]

0 1 2 3 4 5

[m]

0

1

2

3

4

5

c c c c c
c c c c c
c c c c c
c c c c
c c c

Figure 5.15: Location estimation benchmark. The ground truth locations are at
the centers of the circles. The mean of the measured locations are at the centers
of the boxes. The edge length of each box is twice the standard deviation in each
axis.

critical for the accuracy of the system. Therefore, we measured them directly at
the base station device.

In order to determine the C∗ values, we placed the observer at the four locations
(x, z) ∈ {(50, 50), (480, 80), (80, 480), (340, 340)} (all values in centimeters) on the
floor in the base station coordinate system. The respective lighthouse distance and
height values are obtained from the (x, z) values as follows:

(dx, hx) := (z, x− x0)
(dz, hz) := (x, z − z0)

(5.25)

At each of the locations, we performed ten measurements of α for each lighthouse
and computed the mean value. For each of the two lighthouses we then solved
Equation System 5.21 in order to obtain the C∗ values.

Precision

For the precision benchmark, we placed the observer at 22 locations on the grid
(80cm + i ∗ 100cm, 80cm + j ∗ 100cm) in the base station coordinate system on the
floor of the room. At each of the locations, we measured the location ten times by
iteratively solving Equation System 5.19 as described in Section 5.4.2.

Figure 5.15 shows the base station coordinate system and the results of these
measurements. Ground truth locations (x, z) are indicated by circles. The mean of
the computed location (x̄, z̄) is at the center of the small boxes. The edge length

CHAPTER 5. SENSOR NODE LOCALIZATION 132

of each box is twice the standard deviation sx (sz) of the measurements in the
respective axis.

Please note that we determined ground truth locations using a cheap 5m tape
measure, resulting in a maximum error of about ±1cm in each axis. Also note that
we did not perform outlier rejection or any other statistical “tricks” to improve the
mean values or standard deviations.

The mean relative offset of the mean locations from ground truth locations
(i.e., |x̄ − x|/x) is 1.1% in the x axis, and 2.8% in the z axis. The overall mean
relative offset of the mean locations from ground truth locations (i.e., |(x̄, z̄) −
(x, z)|/|(x, z)| is 2.2%. The mean relative standard deviation (i.e., sx/x) is 0.71%
in the x axis and 0.74% in the z axis. The overall mean relative standard deviation
(i.e., s|(x,z)|/|(x, z)|) is 0.68%.

Sources of Imprecision

In this section we examine which factors influence the accuracy of the system. For
this, we have to examine errors that can occur during the measurement of tbeam

and tturn. From a measurement point of view, the two are identical, since they are
both an amount of time elapsed between two beam sightings. Therefore we will
use t as a genus for the two and ∆t as the absolute error of t. The following list
contains possible causes for measurement errors:

• Vibrations: Due to their fast rotation, the mirrors and thus the reflected
beams suffer from small vibrations, resulting in a small angle ε of beam
spread, which is about 0.05◦ in our prototype. Assuming sin ε = ε (since ε ≈
0), the resulting error is ∆t ≤ tturn

ε
√

d2+h2

2πd
for an observer located at distance

d from the lighthouse rotation axis and at height h over the lighthouse center.

• Lower bound on time tmirror for one mirror rotation: Since we can measure
elapsed time only when the rotating laser beam hits the photo detector, the
accuracy of tbeam and tturn is limited by the speed of the rotating mirrors (i.e.,
tmirror). The resulting error is ∆t ≤ tmirror.

• Flutter of platform rotation: The relative error in lighthouse rotation speed
ρlh causes an error in t. ρlh is mainly caused by the flutter of the motor driving
the lighthouse platform. The motor used in our prototype has a flutter of
0.1%. The resulting error is ∆t ≤ tρlh.

• Variable delays: There is a variable time offset between the laser beam hitting
the photo detector and the interrupt handler reading the clock. On the path
from the photo detector to the interrupt handler are many sources of variable
delay, such as hardware and interrupt latency. The actual value of this error
pretty much depends on what is currently happening on the computer, but
is typically small compared to the other sources of errors.

CHAPTER 5. SENSOR NODE LOCALIZATION 133

l

d

t 1t 2

Figure 5.16: The photo detector must be hit by the laser beam at least twice.

• Clock resolution: The minimum time unit tmin that can be measured by the
clock limits the time resolution for measurement of t. The Linux laptop
we used has tclockres = 1µs. On the ATMEL we used a 16-bit counter to
implement a clock with tclockres = 50µs. The resulting error is ∆t ≤ tclockres.

• Clock drift: The maximum relative error ρclock in the clock rate also causes
an error in t. A typical value is ρclock = 10−5 both on Linux and the ATMEL.
The resulting error is ∆t ≤ tρclock.

In our prototype system, the clearly dominating errors are caused by vibrations,
limited tmirror, and flutter of platform rotation. The use of deflectable MEMS
mirrors can both drastically reduce vibrations and tmirror. The flutter of platform
rotation can be reduced to about 0.01% by using electronically stabilized motors
as used, for example, in turntable drives. By this, we expect a possible reduction
of ∆t by a factor of about 10.

Note, however, that the errors resulting from these three main sources can
be modeled by a Gaussian noise source. This means that averaging over a large
number of measurements helps to reduce the error.

Range

In this section we examine the maximum range, at which observers can still deter-
mine their location. This maximum range mainly depends on two issues. The first
of these issues is that the photo receiver has to be hit twice by each of the rotating
beams in order for the receiver to identify the lighthouse as explained in Section
5.4.3. Figure 5.16 depicts this situation. It shows a top view of a lighthouse with
only one of the two rotating beams at two points in time t1 and t2. At t1, the
beam hits the photo detector at distance d from the lighthouse rotation axis the
first time. Then, the mirror does one rotation and hits the photo detector a second
time at t2. During t2 − t1, the lighthouse platform has rotated a bit to the left. l
denotes the diameter of the photo detector. Assuming a constant diameter w of
the laser beam, the distance d at which the photo detector is hit at least twice is
given by the following inequality:

CHAPTER 5. SENSOR NODE LOCALIZATION 134

d <
l + w

2 sin(πtmirror/tturn)
(5.26)

With the values of our prototype system l = 5mm, w = 3mm, tmirror = 4ms,
tturn = 60sec we can achieve a theoretical maximum range of about 14m. This
value can be improved by increasing tturn, by decreasing tmirror, or by defocusing
the lasers a bit, such that there is a small angle of beam spread. However, there are
certain limits for each of these possibilities. The angle of beam spread is limited
by the sensitivity of the photo detector and the output power of the laser. tmirror

is limited by the possible maximum speed of the mirrors. With MEMS deflectable
mirrors such as the one presented in [25], we can achieve tmirror = 1/35kHz = 30µs.
tturn is limited by the frequency of location updates needed by the nodes and thus
by the degree of node mobility (see Section 5.4.4).

The second issue that limits the maximum range of the system is the speed
of the photo detector. Using commercial-off-the-shelf technology, the beam has
to stay on the photo detector for about tphoto = 10ns in order to be detected.
Depending on the minimum retention period tphoto of the laser beam on the photo
detector, the maximum distance d is limited according to the following inequality:

d <
l + w

2 sin(πtphoto/tmirror)
(5.27)

With the current values of our prototype tphoto = 200ns, tmirror = 5ms, l = 4mm,
w = 3mm we can achieve a theoretical maximum range of about 27m, giving us an
overall range limit of 14m. Again, this value can be improved by reducing tmirror

and by defocusing the laser with the same limits as above.
The actually measured maximum range, at which the receiver prototype could

still detect the base station is about 11 meters. However, the range can be in-
creased by adjusting certain system parameters. A more elaborate system built
using fast deflectable MEMS mirrors with values l = 1mm, w = 20mm (due to
beam spread), tmirror = 1ms, tturn = 60sec, and tphoto = 10ns, for example, could
achieve a theoretical maximum range of about 210m (the minimum obtained from
Inequalities 5.26 and 5.27). Based on our experience, we would expect a practi-
cal maximum range of about 120-140m of a system with these parameters, which
approximately equals the maximum communication range of 150m during the day
for the Berkeley experiments [49].

Resources

In this section we want to examine how the presented location system fits the
stringent resource restrictions of future Smart Dust Systems. These restrictions
especially apply to the receiver side, i.e., the Smart Dust nodes.

The Berkeley Smart Dust prototype has already demonstrated that a photo
detector similar to the one we are using for our location system is feasible. What
remains to be shown is how the receiver software (i.e., the device driver and the
user-level program) fit onto a Smart Dust node.

CHAPTER 5. SENSOR NODE LOCALIZATION 135

Both the processing overhead and the memory footprint of the device driver
are very low, which is very important for Smart Dust. The first is true because
the driver is interrupt driven, i.e., it does not do any sensor sampling or polling.
Moreover, the interrupt can be used to wake up the processor from a power-saving
mode. Thus, the system has to be woken up only during the short periods when a
beam is hitting the photo detector. The memory footprint is very low because the
driver does not have to store arrays of peak detections. Instead, for each sequence
of peaks it only keeps “first peak” and “last peak” time stamps which are updated
when a new interrupt occurs. The whole data structure for one lighthouse only
requires about 25 bytes.

Similarly, the location-computation part of the user-level program has a very
low memory footprint. It just retrieves the α values from the device driver and ex-
ecutes the approximation program described in Section 5.4.2. Given the relatively
infrequent location updates, speed is not a problem. On computationally very lim-
ited platforms like future Smart Dust nodes, it might be necessary to revert to
fixed point arithmetic and a hardware implementation of the location computa-
tion code in case the provided processing capabilities are too limited. Besides the
basic arithmetic operations (+,−, ∗, /) we need support for sin α and

√
x in order

to solve Equation System 5.19. Note that sin α is easy to approximate since the
values of α obtained from Equation 5.10 are small due to tbeam � tturn. The second
order approximation sin α ≈ α− α3/6 has a maximum error of 0.1% for |α| ≤ 33◦.
There are also fast approximations for y =

√
x. One possible approach is to first

approximate 1/
√

x by iterating y := y(3− xy2)/2 with an appropriate initial value
for y. Multiplying the result by x gives an approximation for

√
x.

The requirements on the clock are also quite relaxed. Note that we don’t need
a real-time clock since we are only interested in the quotient tturn/tbeam. A simple
counter which ticks at a constant rate would also be sufficient. The resolution of
the clock (or counter) just has to be high enough to reliably distinguish the tmirror

values of different lighthouses. Since the tmirror values of our prototype system are
4ms and 5ms, respectively, a clock resolution of 0.5ms would be sufficient.

Please note that dust nodes don’t have to be calibrated due to the following
two reasons. Firstly, the two beam sightings used to measure tbeam and tturn are
identical from a measurement point of view. Any constant hardware and software
delays will subtract out. Secondly, only the quotient tturn/tbeam is used for node
localization, which is independent of the actual clock frequency.

Node Mobility

If nodes change their location over time, they have to update their location esti-
mates frequently in order to avoid inaccuracies resulting from using outdated loca-
tion estimates. Moreover, node movement during the measurement of parameters
needed for location computation can cause inaccuracies in the estimated location.

The time tupdate between successive location updates usually equals the time tturn

required for one rotation of the lighthouse. Thus, the update frequency 1/tupdate

can be increased by decreasing tturn. However, there is an easy way to double the

CHAPTER 5. SENSOR NODE LOCALIZATION 136

update frequency when using rotating mirrors for beam generation, because the
beams are reflected to both sides of the lighthouse as depicted by the dashed laser
beams in Figure 5.8. Thus, we actually have two “virtual” wide beams we can use
for location estimation, effectively doubling the update frequency.

If a node moves during measurement of tbeam (i.e., after detection of the first
beam and before detection of the second beam), the obtained value of tbeam will be
incorrect. Additional errors are caused by the node moving between measurements
of tbeam of the three lighthouses.

There are two ways to detect and reject faulty location estimates resulting from
node movement during measurement. The first compares two or more consecutive
position estimates and rejects them if they differ by more than a small threshold.
The second approach uses accelerometers to detect movement during measurement.
Accelerometers can also be used to estimate node movement (velocity, direction)
during measurements of tbeam. The obtained values can be used to correct tbeam,
such that correct location estimates can also be obtained during node movement.
In fact, the Smart Dust prototypes developed at Berkeley already contain such
sensors.

Line-Of-Sight Requirement

As mentioned in Section 2.5.3, communication between a node and the base station
requires an uninterrupted line of sight (LOS) even for “plain” Smart Dust (i.e.,
without using the Lighthouse Location System). Hence, the presented location
system does not introduce additional restrictions with respect to LOS.

Temporary LOS obstructions can cause wrong position estimates if a dust node
misses one of the laser beams. However, the probability of such errors can be
reduced by comparing two or more consecutive positions estimates and rejecting
them if they differ by more than a small threshold. Reflected laser beams are
typically not detected by the receiver hardware, since diffuse reflection reduces the
laser light intensity drastically.

Note that other localization systems based on ultrasound and radio waves pro-
vide location estimates even in the case of an obstructed line of sight. However, the
resulting location estimates are typically wrong due to relying on signals reflected
around the obstruction. Often it is difficult to detect such situations [42], which
may result in using wrong location estimates unnoticed.

Robustness

We assume that base stations are immobile and mounted in a safe place (with
respect to harmful environmental influences) due to their potential long range (see
Section 5.4.4). On the other hand, dust nodes are subject to mobility and other
kinds of environmental influences (e.g., LOS obstructions), which can cause faulty
location estimates.

However, above we mentioned extensions to the basic system in order to detect
and reject such faulty location estimates with high probability. This leaves us in a

CHAPTER 5. SENSOR NODE LOCALIZATION 137

situation, where dust nodes either obtain good position estimates or none at all.

5.5 Summary

This chapter is devoted to node localization in wireless sensor networks. We first
discussed important models with respect to mobility and signal propagation. Fol-
lowing the framework developed in Chapter 3, we then presented important con-
cepts used by localization algorithms. Referring to these concepts, we then pre-
sented and discussed important existing approaches to localization – both in tra-
ditional distributed systems and for sensor networks. We then identified a region
in the design space that cannot be appropriately supported by these existing algo-
rithms. In particular, we showed that tiny sensor nodes known as Smart Dust are
not sufficiently supported. We presented and evaluated the Lighthouse Location
System to support this region in the design space. A key feature of this approach
is that sensor nodes can autonomously infer their location by observing laser light
flashes emitted by a special lighthouse device. We showed that this approach is
efficient since sensor nodes do not actively emit any signals. Based on a prototypi-
cal implementation, we evaluated the precision of this approach and found that an
accuracy in the order of centimeters can be achieved. We also discussed potential
improvements to further increase the precision.

Chapter 6

Application Experience

In this chapter we present a prototypical application in order to demonstrate the
practical feasibility and usability of the approaches for time synchronization and
node localization we developed in Chapters 4 and 5.

The application supports tracking the location of a mobile object – a remote-
controlled toy car in our example. For this, a number of sensor nodes are deployed
in the area of interest, each equipped with a sensor to detect the proximity of the
mobile object. In order to estimate the current location of the tracked object, the
locations of the sensor nodes in space and time must be known with respect to a
common coordinate system.

In Section 6.1 we describe the general setup of the application, details are given
in Sections 6.2-6.6. The tracking system is evaluated and discussed in Sections 6.7
and 6.8.

6.1 Object Tracking with Smart Dust

The purpose of our prototypical application is to track the location of real-world
phenomena with a network of Smart Dust nodes. We use a remote-controlled toy
car (Figure 6.1) as the tracked object. The current tracking system assumes that
there is only one car. Sensor nodes are randomly deployed in the area of interest
and can change their location after deployment. When they detect the presence
of the car (cf. Section 6.2), they send notifications to a base station. The base
station fuses these notifications (cf. Section 6.3) in order to estimate the current
location of the car. A graphical user interface displays the track and allows to
control various aspects of the system. The data fusion process requires that all
nodes share a common reference system both in time and space, which necessitates
mechanisms for node localization (cf. Section 6.4) and time synchronization (cf.
Section 6.5).

Since Smart Dust hardware has not been available to us, we used BTnodes
[116] to mimic the behavior of Smart Dust (cf. Section 2.5.3). Figure 6.2 shows
a complete sensor node as used in our application. The base station consists of a
Linux laptop computer equipped with a Bluetooth radio. In analogy to the single-

138

CHAPTER 6. APPLICATION EXPERIENCE 139

IR emitter

Figure 6.1: A remote-controlled toy car with an IR emitter is used as the tracked
object.

IR detector
location
sensor

BTnode

Figure 6.2: A BTnode with an IR detector and lighthouse receiver is used as a
Smart Dust surrogate.

hop network topology of Smart Dust, BTnodes do not directly communicate with
each other, but only with the base station. Before communication can take place,
the base station has to set up a so-called Bluetooth Piconet containing no more
than 7 BTnodes. To support more than 7 nodes, the base station has to periodically
switch the Piconet in a round robin fashion, such that eventually every BTnode
gets a chance to talk to the base station. Note the analogy to Smart Dust, where
the base station has to point the (typically slightly defocused) laser beam at a
group of nodes in order to enable communication with them.

6.2 Object Detection

Tracking objects with networks of sensors has been an active research topic for
many years, [23, 55, 103] give a good overview of many tracking algorithms. Most
of the approaches are optimized for sparse networks, where a high tracking accuracy

CHAPTER 6. APPLICATION EXPERIENCE 140

should be achieved despite a relatively low node density. To achieve this, many
approaches make a number of assumptions about the tracked object. Methods
which estimate object distance based on signal strength estimates, for example,
require knowledge of the intensity of the signal emitted by the object in order to
achieve good accuracy. Approaches based on measuring at different sensor nodes
the difference of time of arrival of a signal emitted by the object are typically
limited to sound or other signal modalities with low propagation speed. Signal
modalities with high propagation speeds such as radio waves (e.g., light) would
require distributed clock synchronization with an accuracy of few nanoseconds,
which is typically not feasible. Other approaches require known lower and upper
bounds of the velocity or the acceleration of the tracked object.

While these assumptions help to achieve good tracking accuracy, they also limit
the applicability of the tracking system. In order to make our system applicable to
a wide variety of objects, we tried to avoid making assumptions about the target as
much as possible. In order to achieve a satisfactory tracking accuracy nevertheless,
we exploit the anticipated high density of Smart Dust deployments – which is
expected because of the intended small size and low cost of Smart Dust devices.

Our approach assumes that the presence of the target object can be detected
with an omnidirectional sensor featuring an arbitrary but fixed sensing range r,
that is, the sensor can “see” the target only if the distance to the target is lower
than r. The data fusion algorithm presented in the following section needs to know
an upper bound R of this sensing range. In many applications, the target cannot
be instrumented for tracking purposes (e.g., a cloud of toxic gas, an oil slick, fire).
The remote-controlled car we used as a sample target in our tracking system emits
a characteristic acoustic signature which could be used for detection. However,
this signature depends on the velocity of the car. To avoid the intricacies with
detecting this variable signature, we chose in our experiment a different solution
based on infrared (IR) light, leaving detection based on the car’s acoustic signature
as future work.

In the current version of the prototype, we equipped the car with an omni-
directional IR light emitter consisting of eight IR LEDs mounted on top of the
car (Figure 6.1). Accordingly, the sensor nodes are equipped with an omnidirec-
tional IR light detector consisting of three IR photo diodes (Figure 6.2). The
used IR photo diodes include a filter to cancel out visible light. The output of
the IR detector is connected to an analog-to-digital converter (ADC) of the BTn-
ode’s microcontroller. If the output value of the ADC exceeds a certain threshold,
the presence of the car is assumed. Using a low-pass filter, the threshold value is
adopted to slowly changing daylight, which also contains IR components. With this
setup, the BTnodes can detect the car at a distance of up to approximately half
a meter. When a node first detects the car, it sends a “detection notification” to
the base station, containing its node ID as well as its time and location at the time
of detection. When the node no longer sees the car, it sends a “loss notification”
to the base station, which contains its node ID and its current time. If the node
changes its location during the presence of the car, a loss notification is emitted,

CHAPTER 6. APPLICATION EXPERIENCE 141

1
1

2
2

Figure 6.3: Estimating object location by centroids.

followed by a detection notification with the new node location.

6.3 Data Fusion

Following the argumentation at the begin of the Section 6.2, we try to avoid making
assumptions about the target as much as possible. Therefore, the base station
has to derive the current location of the tracked object solely based on detection
notifications and loss notifications received from the sensor nodes.

We use an approach that estimates the car’s location at time t by the centroid of
the locations of the sensor nodes that “see” the car at time t. The centroid of a set of
N locations {li = (xi, yi, zi)} is defined as l̂ := 1

N

∑
li =

(
1
N

∑
xi,

1
N

∑
yi,

1
N

∑
zi

)
.

Consider Figure 6.3 for an example. Depicted are three sensor nodes (black squares)
with their respective sensing ranges, and two car locations (black circles). The
hollow circles indicate the respective estimated locations (i.e., centroids).

Figure 6.4 illustrates an algorithm to calculate the car location estimates given
the detection and loss notifications received from the sensor nodes as described in
Section 6.2. The figure shows sensor nodes 1 and 2, their respective sensing ranges,
and the trajectory of the car (dotted arrow). When the car enters the sensing range
of node i, a detection notification di is emitted, containing time di.t and location
di.l of node i at the time of detection. Accordingly, node i emits a loss notification
li when the car leaves the sensing range. In a first step, all notifications are sorted
by increasing time stamps di.t (li.t) as depicted on the time axis in the lower half
of Figure 6.4. In a second step, we iterate over these sorted notifications from left
to right, recording the active nodes (those that currently see the car) in a set S.
If we come across a loss notification li, we remove i from S. If we come across
a detection message di, we add i to S. Additionally, we remove all nodes j from
S, whose sensing ranges do not overlap with the detection range of node i, that
is, for which |di.l − dj.l| > 2R holds. This is necessary to compensate for missed
loss notifications, which would otherwise permanently affect the accuracy of the
tracking system by not removing the respective entries from S. A missing enter
notification will lead to a temporarily decreased tracking accuracy, but will not

CHAPTER 6. APPLICATION EXPERIENCE 142

1 2

d

d 2

l1

l2

1

time
d .t1 d .t2 l .t1 2

estimated
location

2

2
d .l1 d .l2

d .l + d .l1

l .t

Figure 6.4: Data fusion algorithm.

otherwise permanently affect the system.
The location of the car during the time interval starting at the currently consid-

ered notification and ending at the next notification is estimated by the centroid Ŝ
of the locations of the nodes in S (i.e., d1.l during [d1.t, d2.t), (d1.l + d2.l)/2 during
[d2.t, l2.t), and d2.l during [l1.t, l2.t)).

The localization accuracy of a similar centroid-based algorithm was examined
in [17] in a different context under the assumption that nodes are located on a
regular grid. We can interpret their results for our setting as follows. The local-
ization accuracy depends on the sensing range r of the nodes (about 50 cm in our
case) and the distance d between adjacent nodes. For r/d = 2 (i.e., d ≈ 25 cm
in our case) the average and maximum localization errors are 0.2d (i.e., 5 cm) and
0.5d (i.e., 12.5 cm), respectively. In general, larger r/d values yield better accu-
racy. Therefore, the accuracy can be improved by increasing the node deployment
density, since that reduces d while keeping r constant.

6.4 Node Localization

In order to derive the location of the tracked car from proximity detections as
described in Section 6.2, the locations of the sensor nodes have to be estimated.
We used the Lighthouse Location System for this purpose. The receiver hardware
described in Section 5.4.3 was connected to a digital input pin of the ATMEL
microcontroller, such that every light flash triggers an interrupt. A simplified
version of the receiver software (omitting support for calibration) has been ported
to the ATMEL.

CHAPTER 6. APPLICATION EXPERIENCE 143

6.5 Time Synchronization

The car location estimation described in Section 6.3 assumes that the timestamps
contained in notification messages refer to a common physical time scale. We used
Time-Stamp Synchronization for this purpose. We implemented a slight variation
in order to relief the base station from keeping state information for every node
(cf. Section 4.4.4). This can be achieved by sending this state information to the
node as part of the acknowledgment message. A node must then include this state
information in the next event notification to make it again available to the base
station. This way, every node is responsible for storing its own state.

6.6 Message Ordering

The data fusion algorithm described in Section 6.3 requires sorting notifications
by their time stamps. The time transformation approach described in Section
6.5 enables us to compare and sort time stamps originating from different nodes.
However, we still have to ensure that a notification message is not processed by the
data fusion algorithm until all earlier notifications have arrived at the base station.
This is of particular importance for Smart Dust, since messages are subject to long
and variable delays as described in Section 2.5.3.

One particularly attractive approach to message ordering is based on the as-
sumption that there is a known maximum network latency D. Delaying the evalu-
ation of inbound messages for D will ensure that out-of-order messages will arrive
during this artificial delay and can be ordered correctly using their time stamps.
That is, message ordering can be achieved without any additional message ex-
changes. The literature discusses a number of variants of this basic approach
[59, 70, 94].

However, there is one major drawback of this approach: the assumption of
a bounded and known maximum network latency. Since communication requires
that the base station points its laser at a node, Smart Dust suffers from long and
variable network delays. Using a value for D which is lower than the actual network
latency results in messages being delivered out of order. Using a large value for D
results in long artificial delays, which unnecessarily decreases the performance of
the tracking system.

We therefore introduce a so-called adaptive delaying technique that measures
the actual network delay and adapts D accordingly. Doing so, it is possible that
the estimated D is too small and messages would be delivered out of order. Our al-
gorithm detects such late messages and deletes them (i.e., does not deliver them to
the application at all). Recall that the data fusion algorithm presented in Section
6.3 was specifically designed to tolerate missing detection and loss notifications.
Hence, deleting a message only results in a less accurate track, since the affected
Smart Dust node simply does not contribute to the estimation of the target loca-
tion. We argue that this slight decrease of accuracy is acceptable since deleting
a message is a rare event, which only occurs at startup or when the maximum

CHAPTER 6. APPLICATION EXPERIENCE 144

network latency increases during operation (i.e., when the value of D is lower than
the actual maximum network latency). The expected high density of Smart Dust
deployments can also compensate this decrease of accuracy. Additionally, our al-
gorithm includes a parameter which can be tuned to trade off tracking latency for
tracking accuracy.

Specifically, the adaptive delaying algorithm executed in the base station main-
tains a variable D holding the current estimate of the maximum delay, a variable
tlatest holding the time stamp of the latest message delivered to the application,
and a queue which stores messages ordered by increasing time stamps. Initially, D
is set to some estimate of the maximum network latency, tlatest is set to the current
time tnow in the base station, and the queue is empty.

Upon arrival of a new notification n with time stamp (interval) n.t, the actual
message delay d := tnow − n.tl is calculated1. D is then set to the maximum of D
and c · d. The constant factor c influences the chance of having to delete an out-
of-order message and can thus be tuned to trade off tracking latency for tracking
accuracy. We use c = 1.2 in our prototype. Now we check if tlatest < n.tl holds, in
which case n can still be delivered in order. If so, n is inserted into the queue at
the right position according to n.t. Otherwise, n is deleted.

The first element n0 of the queue (i.e., the one with the smallest time stamp)
is removed from the queue as soon as the base station’s clock (tnow) shows a value
greater than n0.t

r + D. Now tlatest is set to n0.t
r and n0 is delivered to the data

fusion algorithm.

6.7 Evaluation

In order to assess the precision of the proposed tracking system, we performed a set
of measurements. Figure 6.5 shows the setup of our measurements. The lighthouse
beacon (“LH” in the picture) was placed in the upper left corner and defines the
origin (0,0) of a 2D coordinate system. Six sensor nodes (numbered rectangles in
the figure) were placed in an area of about one square meter. The car moved then
through the sensor field from right to left on a straight line. Location estimates were
obtained at 12 positions of the car (indicated by the black squares in the picture).
We performed the whole experiment 10 times and calculated averages. The sensor
nodes as well as the car locations are annotated with coordinates (x± ex, y ± ey),
where (x, y) are the ground truth positions in centimeters obtained by a tape
measure. ±ex and ±ey indicate the average errors of the output of the tracking
system relative to the ground truth position on the x and y axis, respectively.
The average error of the sensor node location estimates is ēx = 4.16 cm and ēy =
1.83 cm. We attribute the larger ēx value to mechanical problems with one of the
lighthouses. The average error of the car location estimates is ēx = 12.5 cm and
ēy = 3.5 cm. The maximum error of the sensor node location estimates is êx = 5 cm
and êy = 2 cm. The maximum error of the car location estimates is êx = 28 cm

1tr (tl) refers to the right (left) end of the time interval t.

CHAPTER 6. APPLICATION EXPERIENCE 145

LH
(0,0)

(77+4,73-2) (114+4,73-1) (154+4,73-2)

1 2 3

4 5 6

(61+4,131-2) (98+5,131-2) (134+4,131-2)

(4
5-

28
,1

03
-3

)

(5
5+

18
,1

03
-3

)

(6
5+

18
,1

03
+

6)

(7
5+

16
,1

03
-3

)

(8
5+

6,
10

3-
3)

(9
5+

6,
10

3+
3)

(1
05

+
5,

10
3-

3)

(1
15

-5
,1

03
-3

)

(1
25

+
4,

10
3-

3)

(1
35

-6
,1

03
-3

)

(1
45

-1
6,

10
3-

3)

(1
55

-2
2,

10
3+

6)

Figure 6.5: Measurement setup (not drawn to scale).

and êy = 6 cm. The difference between the values for the x and y axis is due to the
asymmetry of the node arrangement.

The tracking latency is defined as the delay after which the state of the real
world is reflected by the output of the tracking system. This delay depends on
the following additive components: (1) the sampling interval of the sensors, (2)
processing delays in the sensor nodes, (3) the network latency, (4) delays caused
by the message ordering algorithm, and (5) delays caused by the algorithm used to
compute the target location estimate. The minimum value of (1) heavily depends
on the sensor and processor hardware. In our implementation, (1) is limited to
about 0.1ms by the analog-to-digital converter. Components (2) and (4) are small
in our system due to the simplicity of the used algorithms.

To evaluate the tracking latency of our system, we measured the sum of (2), (3),
(4), and (5) by calculating the age of each notification after it has been processed
by the location estimation algorithm. During the course of our experiment, the
average age was 56ms. We also monitored the value of D used by the message
ordering algorithm. We used an initial guess of D = 20ms. At the beginning
of the experiment, this value was quickly adapted to 52ms. Recall from Section
6.6 that messages may be dropped by the ordering algorithm if the value used
for D is lower than the actual maximum network latency. Surprisingly, during our
experiments not a single message was dropped. This is due to the fact that the time
between arrival of successive notifications at the base station was always greater
than the network latency in our experiment. However, this is typically not the case
for a real deployment, where the network latency can be significantly larger and
where many densely deployed nodes may detect the target almost concurrently and
generate according notifications in short intervals.

Figure 6.6 shows the above measurement setup as depicted by the graphical user

CHAPTER 6. APPLICATION EXPERIENCE 146

Figure 6.6: Measurement setup as shown by the graphical user interface.

interface. In the top left, a number of controls are shown to lookup sensor nodes
(“Lookup”), to disconnect from the sensor nodes (“Disconnect”), to adjust the
frequency of sensor readout (“Rate”), to control the detection threshold (“Gap”),
and to clear the displayed track (“Clear track”). The table below the controls con-
tains one line for each sensor node, showing x and y position, the current detection
threshold, number of detections, the currently detected signal strength, and the
time of the last detection. On the right, a display of the tracking area is shown,
depicting the sensor nodes (larger rectangles) and some of the location estimates
of the car (smaller squares) moving from right to left.

6.8 Discussion

In the presented tracking system, we make use of the scalability of Time-Stamp Syn-
chronization and Lighthouse Location for a tracking application. This is achieved in
part by strictly avoiding inter-node communication. Additionally, the algorithms
employed in the base station are designed to perform independent of the actual
number of nodes in the network. Instead, the overhead of the base station algo-
rithms depends on the number of active nodes – those that currently “see” the
tracked target. Also, the base station only has to store state information for active
nodes.

Despite some similarities in the communication scheme (both true Smart Dust
and our prototype use a single-hop network topology), there is one important
difference between our prototype and a system based on true Smart Dust. While in
our system nodes can send messages to the BST at any time, communication with
a Smart Dust node requires that the BST points its laser beam at that particular

CHAPTER 6. APPLICATION EXPERIENCE 147

node. Even though a slightly defocused laser beam would enable the base station
to communicate with many Smart Dust nodes at a time, the laser has to sweep over
the deployment area to give each node a chance to talk to the base station. We
deal with the resulting long and variable network delays by proposing a message
ordering technique which adapts to the actual maximum network latency.

The data fusion algorithm used in our system might seem somewhat simplistic
compared to many approaches described in the literature. However, it achieves
a reasonable accuracy while only making a minimum of assumptions about the
tracked object. The loss of precision can be compensated by increasing the node
density – which is possible due to the expected small size and low cost of Smart
Dust nodes.

The tracking system has been designed to tolerate node failures, since these are
likely to happen. Messages lost due to node failures will only affect the accuracy of
the estimated track. Again, this can be compensated by a higher node deployment
density.

6.9 Summary

This chapter shows the practical feasibility of our approaches for time synchroniza-
tion and node localization using a concrete application. In particular, we showed
how Time-Stamp Synchronization and Lighthouse Localization can be used to im-
plement a scalable tracking system based on Smart Dust. We also presented an
approach to implement message ordering for networks with long, variable delays
such as Smart Dust. We also evaluated the precision of our prototype and found
that it provides a precision in the order of tens of centimeters.

Chapter 7

Conclusions and Future Work

In this final chapter, we summarize the contributions of our work and discuss some
limitations of our approaches. We also sketch potential future work, both with
respect to the proposed algorithms and in the broader context of our work.

7.1 Contributions

We prosed a design space to replace the narrow definition of wireless sensor net-
works that is currently assumed by most research papers. The selection of the
dimensions of the design space was based on an extensive study of existing proto-
typical applications. It was shown that these applications do indeed cover different
points in the design space. The identified dimensions of the design space deploy-
ment, mobility, resources, heterogeneity, communication modality, infrastructure,
network topology, coverage, connectivity, network size, and QoS requirements typ-
ically have a significant impact on the design of specific solutions. We examined
this impact on algorithms for time synchronization and node localization. In par-
ticular, we identified important regions in the design space which are not covered
by existing solutions.

With respect to time synchronization, we showed that existing algorithms do
not appropriately support intermittent and sporadic network connectivity. We pro-
posed Time-Stamp Synchronization to overcome this lack. In contrast to existing
schemes, this approach does not synchronize clocks. Rather, each unsynchronized
clock defines its own local time scale. Time-Stamp Synchronization transforms
time stamps between these time scales as they are passed from node to node, also
across temporary network partitions. Moreover, synchronization can be performed
on demand, where and when needed. Our approach uses intervals to represent
time stamps. Therefore, reasoning about time stamps does not suffer from prob-
lems due to synchronization errors. Also, our approach is efficient because it can
often piggyback time information on existing network traffic.

With respect to node localization, we showed that existing algorithms do not
appropriately support tiny sensor nodes known as Smart Dust. We proposed the
Lighthouse Location System to overcome this lack. This approach is based on a

148

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 149

new cylindrical lateration scheme, which allows Smart Dust nodes to autonomously
estimate their locations with high precision using only a single external beacon
device that can be integrated with an existing base station. Since nodes do not
require the support of other nodes for localization, this approach can scale to very
dense networks, and localization can be performed on demand where and when
needed.

We demonstrated the practical feasibility of the proposed solutions by imple-
mentations that have also been used in a common prototypical application that
supports tracking of mobile objects with a sensor network.

As one further contribution, we developed a common framework for discussing
time synchronization and node localization. In particular, we showed that many
existing distributed algorithms for synchronization and localization share five com-
mon structural elements: bootstrapping, obtaining constraints, combining con-
straints, selecting constraints, and maintaining localization over time.

The major contributions of this thesis have also been published, most notably
in [34, 80, 82, 83, 84, 85, 86].

7.2 Limitations

The approaches to time synchronization and localization we proposed are tailored
to specific regions in the design space as discussed in Sections 4.3 and 5.3. Naturally,
our approaches are less suited for other regions in the design space, resulting in a
number of limitations.

7.2.1 Time-Stamp Synchronization

Traditional time-synchronization schemes proactively synchronize clocks using a
separate protocol before the application may request synchronized time. Hence,
these protocols can spend significant effort into achieving good precision. For
example, they may perform multiple measurements to obtain many constraints. In
contrast, our scheme is designed to be performed on demand at the instant when
the application requests synchronized time. To make such an approach feasible, the
overhead of synchronization must be kept to a minimum. For example, performing
multiple measurements is disadvantageous here, effectively limiting the precision
of time-stamp synchronization.

Time-Stamp Synchronization provides synchronization only for selected time
instants. This is not sufficient for applications that require continuous synchro-
nization over longer periods of time (e.g., performing periodic actions at a certain
rate).

7.2.2 Lighthouse Location System

Localization with our approach requires a free line of sight between the lighthouse
beacon and sensor nodes, which limits the applicability of this approach. Note,

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 150

however, that the basic communication scheme of Smart Dust does also impose
this restriction. Hence, our localization system does not introduce an additional
constraint here.

The geographical scale of networks that can be supported with our approach
is limited by the range of the lighthouse beacon. The Lighthouse Location System
uses range measurements to multiple lighthouses as a basic element. To obtain
correct results, the sensor node must not move during the measurement. Hence,
this approach cannot directly support nodes which are in constant movement unless
additional sensors (e.g., acceleration) are used to compensate for movements during
measurement.

7.3 Future Work

There are a number of potential improvements with respect to our algorithms for
time synchronization and localization. However, we also discuss future work in the
broader context of our work, in particular with respect to the design space.

7.3.1 Time-Stamp Synchronization

For some applications it might be reasonable to strive for improved precision at
the cost of increased runtime overhead. Some directions which might be worth
further investigation have been sketched in Section 4.4.9. Probability distributions
instead of pure intervals would allow probabilistic reasoning about overlapping
time intervals. Such distributions could perhaps be constructed by taking into
account past message exchanges between a pair of nodes. A time-stamp history
could be included in each message to improve reasoning with time stamps that
passed through a common node. However, this may result in significantly increased
messages size.

7.3.2 Lighthouse Location System

It would be interesting to examine the use of deflectable MEMS mirrors or steerable
lasers instead of rotating mirrors, since this could not only significantly improve
the precision of localization, but would also lead to a simplified and more robust
lighthouse hardware. On the node side, an implementation on true Smart Dust
would gain significant insights into the feasibility of our approach on this hardware
platform.

For networks with a large geographical extension, a single lighthouse beacon
may not be sufficient to cover the whole network. Here, multiple lighthouse bea-
cons could be used. Future work would include an examination how a consistent
coordinate system could be established across a large network with multiple bea-
cons. A natural approach would be to use clustering. Each lighthouse beacon would
define a cluster, such that all nodes in the cluster can receive the respective beacon.
Each cluster uses the coordinate system defined by its lighthouse beacon. Nodes

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 151

that are contained in multiple clusters could compute coordinate transformations
between adjacent clusters.

Another issue for future work is better support for mobility. As a first step,
movement detectors could be used to detect faulty measurements, caused by a node
moving during measurement. A second step would include movement compensa-
tion, so that localization becomes also possible if a node is in constant travel. Such
an approach would require some form of dead reckoning (e.g., by means of acceler-
ation sensors) to compensate the error in the sweep time measurement caused by
node movement.

7.3.3 Service Interfaces

Time synchronization and node localization can be considered as two basic services
that each provide one major function at its interface to the application: What is
the current time/location? However, as we have illustrated in this thesis, different
points in the design space may require vastly different approaches to provide this
basic function in an adequate way. Also, concrete application requirements (e.g.,
precision, scope, lifetime, mobility model) may necessitate different approaches for
time synchronization and node localization.

Despite these different requirements, modular programming could be greatly
enhanced if time synchronization and node localization services could be considered
basic building blocks that provide a common interface across the design space. This
would, however, require the inclusion of methods into the interface that allow a
specification of the concrete requirements on the services, which might also change
during the lifetime of the application. This raises the important question of how
such an extended interface should look like. Broadly speaking, such an interface
should include methods to specify the exact point in the design space and additional
application requirements.

7.3.4 Service Selection and Adaptation

Different points in the design space and different application requirements typically
necessitate different solutions for time synchronization and node localization. In
some cases, a single algorithm may provide parameters for adaptation to different
requirements. In any case, an application developer is faced with the problem of
selecting an appropriate solution and/or appropriate parameters. If these require-
ments change during the lifetime of an application, this choice may have to be
updated every now and then.

To relief application developers from these issues, frameworks and tools should
provide support for service selection and adaptation. Such system support is facil-
itated by a common service interface as discussed in the previous section. By this,
different service implementations become interchangeable. The interface elements
that allow a user to specify application requirements and a point in the design space
could then be used by the system to automatically select an appropriate service

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 152

implementation.

7.3.5 Calibration

We can consider localization in both time and space as sensor calibration problems.
Generally speaking, a sensor is a device that takes a certain physical quantity as
input and produces a variable electrical signal as output that is usually converted to
a digital number using an analog-to-digital converter. Calibration then consists of
enforcing a certain mapping of the observed physical quantity to the sensor output.
For example, if a sensor is exposed to a temperature of T ◦C, then the sensor should
output T (in some reasonable digital encoding). Localization in space can then be
considered as the task of calibrating a location sensor to a given coordinate system.
Localization in time can likewise be considered as the task of calibrating a time
sensor (e.g., a hardware clock) to a given coordinate system.

It would be worthwhile to examine the use of known techniques from time
synchronization and node localization in the more general context of calibration.
It particular, it is quite likely that many of the observations in Chapter 3 could
be generalized to calibration. For example, the classification in Section 3.2 can be
directly transferred to calibration. It is also conceivable that distributed calibration
algorithms could consist of structural elements similar to those we identified in
Section 3.3.

7.4 Concluding Remarks

In this thesis we showed that applications of wireless sensor networks cannot be
characterized by a single, narrow definition, and we proposed a multi-dimensional
design space of Wireless Sensor Networks. We examined the implications of this
design space on methods for time synchronization and node localization and found
that existing techniques do not appropriately support important regions in the de-
sign space. We proposed novel approaches to fill this gap, yielding a more compre-
hensive understanding and solution space of localization and time synchronization
in sensor networks.

Bibliography

[1] H. Abelson et al. Amorphous Computing. CACM, 43(5):74–82, March 2000.

[2] J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communica-
tions of the ACM, 26(11):832–843, November 1983.

[3] S. Antifakos, F. Michahelles, and B. Schiele. Proactive Instructions for Fur-
niture Assembly. In Proc. Ubicomp 2002, Gothenburg, Sweden, September
2002.

[4] A. Aoe, A. Bell, and S. Rodriguez. Multi-Modal Mobile Security Sensing.
Technical report, University of California, San Diego, 2003.

[5] P. Ashton. Algorithms for off-line clock synchronization. Technical Report
TR COSC 12/95, Department of Computer Science, University of Canter-
bury, December 1995.

[6] H. Baldus, K. Klabunde, and G. Muesch. Reliable Set-Up of Medical Body-
Sensor Networks. In Proc. EWSN 2004, Berlin, Germany, January 2004.

[7] S. Bapat. Object–Oriented Networks, Models for Architecture, Operations,
and Management. Prentice–Hall International, 1994.

[8] P. Basu and T. D. C. Little. Networked Parking Spaces: Architecture and
Applications. In VTC Fall, Vancouver, Canada, September 2002.

[9] M. Bauer, L. Jendoubi, and O. Siemoneit. Smart Factory Mobile Computing
in Production Environments. In WAMES 2004, Boston, USA, June 2004.

[10] P. H. Bauer, M. Sichitiu, R. S. H. Istepanian, and K. Premaratne. The Mobile
Patient: Wireless Distributed Sensor Networks for Patient Monitoring and
Care. In ITAB-ITIS 2000, Arlington, USA, November 2000.

[11] R. Beckwith, D. Teibel, and P. Bowen. Pervasive Computing and Proactive
Agriculture. In Adjunct Proc. PERVASIVE 2004, Vienna, Austria, April
2004.

[12] M. Beigl, H.W. Gellersen, and A. Schmidt. MediaCups: Experience with
Design and Use of Computer-Augmented Everyday Objects. Computer Net-
works, Special Issue on Pervasive Computing, 25(4):401–409, March 2001.

153

BIBLIOGRAPHY 154

[13] M. Beigl, A. Krohn, T. Zimmer, C. Decker, and P. Robinson. AwareCon:
Situation Aware Context Communication. In Ubicomp 2003, Seattle, USA,
October 2003.

[14] J. Beutel, O. Kasten, F. Mattern, K. Römer, L. Thiele, and F. Siegemund.
Prototyping Sensor Network Applications with BTnodes. In EWSN 2004,
Berlin, Germany, January 2004.

[15] P. Blum, L. Meier, and L. Thiele. Improved interval-based clock synchroniza-
tion in sensor networks. In Proceedings of the Third International Symposium
on Information Processing in Sensor Networks (IPSN ’04), 2004.

[16] BP. Smart Surrogates. Frontiers - The BP Magazine
of Technology and Innovation, (9), 2004. Online at sub-
sites.bp.com/company overview/technology/frontiers/fr09apr04/-
fr09sensors.asp.

[17] N. Bulusu, J. Heideman, and D. Estrin. GPS-less Low Cost Outdoor Local-
ization for Very Small Devices. IEEE Personal Communications, 7(5):28–34,
October 2000.

[18] Z. Butler, P. Corke, R. Peterson, and D. Rus. Networked Cows: Virtual
Fences for Controlling Cows. In WAMES 2004, Boston, USA, June 2004.

[19] V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak. A Collaborative
Approach to In-Place Sensor Calibration. In IPSN, Palo Alto, USA, April
2003.

[20] S. Capkun, M. Hamdi, and J. P. Hubaux. GPS-free Positioning in Mobile Ad
Hoc Networks. In 34th International Conference on System Sciences, Hawaii,
January 2001.

[21] S. Capkun and J. P. Hubaux. Secure positioning of wireless devices with
application to sensor networks. In Infocom, Miami, USA, March 2005.

[22] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat
Monitoring: Application Driver for Wireless Communications Technology. In
2001 ACM SIGCOMM Workshop on Data Communications in Latin America
and the Caribbean, San Jose, Costa Rica, April 2001.

[23] J. C. Chen, K. Yao, and R. E. Hudson. Source Localization and Beamforming.
IEEE Signal Processing Magazine, 19(2):30–39, 2002.

[24] S. Coleri, S. Y. Cheung, and P. Varaiya. Sensor Networks for Monitoring
Traffic. In Allerton Conference on Communication, Control, and Computing,
Urbana-Champaign, USA, October 2004.

BIBLIOGRAPHY 155

[25] R. Conant, J. Nee, K. Lau, and R. Muller. A Fast Flat Scanning Micromirror.
In 2000 Solid-State Sensor and Actuator Workshop, Hilton Head, USA, June
2000.

[26] H. Dai and R. Han. Tsync: A lightweight bidirectional time synchronization
service for wireless sensor networks. ACM SIGMOBILE Mobile Computing
and Communications Review, 8(1):125–139, January 2004.

[27] K. A. Delin. The Sensor Web: A Macro-Instrument for Coordinated Sensing.
Sensors, 2(1):270–285, 2002.

[28] K. A. Delin, R. P. Harvey, N. A. Chabot, S. P. Jackson, M. Adams, D. W.
Johnson, and J. T. Britton. Sensor Web in Antarctica: Developing an Intel-
ligent, Autonomous Platform for Locating Biological Flourishes in Cryogenic
Environments. In Lunar and Planetary Science Conference, League City,
USA, March 2003.

[29] A. Dey. Providing Architectural Support for Building Context-Aware Appli-
cations. PhD thesis, College of Computing, Georgia Tech, 2000.

[30] L. Doherty, K. S. J. Pister, and L. E. Ghaoui. Convex Position Estimation in
Wireless Sensor Networks. In Infocom 2001, Anchorage, Alaska, April 2001.

[31] A. Duda, G. Harrus, Y. Haddad, and G. Bernard. Estimating global time
in distributed systems. In 7th International Conference on Distributed Com-
puting Systems (ICDCS’87), Berlin, Germany, September 1987. IEEE.

[32] N. Eagle and A. S. Pentland. Social Network Computing. In Ubicomp 2003,
Seattle, USA, September 2003.

[33] J. Elson, L. Girod, and D. Estrin. Fine-Grained Network Time Synchroniza-
tion using Reference Broadcasts. In OSDI 2002, Boston, USA, December
2002.

[34] J. Elson and K. Römer. Wireless Sensor Networks: A New Regime for
Time Synchronization. ACM SIGCOMM Computer Communication Review
(CCR), 33(1):149–154, January 2003.

[35] D. Estrin, D. Culler, K. Pister, and G. Sukhatme. Connecting the Physical
World with Pervasive Networks. IEEE Pervasive Computing, 1(1):59–69,
January 2002.

[36] L. Evers, S. Dulman, and P. Havinga. A distributed precision based local-
ization algorithm for ad-hoc networks. In PERVASIVE 2004, pages 269–286,
Vienna, Austria, April 2004.

[37] M. Fedak, P. Lovell, B. McConnell, and C. Hunter. Overcoming the Con-
straints of Long Range Telemetry from Animals: Getting More Useful Data

BIBLIOGRAPHY 156

from Smaller Packages. Integrative and Comparative Biology, 42(1):3–10,
2002.

[38] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for
sensor networks. In Proceedings of the First ACM Conference on Embedded
Networked Sensor Systems (SenSys), November 2003.

[39] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker.
Complex Behavior at Scale: An Experimental Study of Low-Power Wireless
Sensor Networks. Technical Report CSD-TR 02-0013, UCLA, February 2002.

[40] D. Ganesan, S. Ratnasamy, H. Wang, and D. Estrin. Coping with Irregu-
lar Spatio-Temporal Sampling in Sensor Networks. SIGCOMM Computer
Communication Review, 34(1):125–130, 2004.

[41] L. Girod, V. Bychkovskiy, J. Elson, and D. Estrin. Locating Tiny Sensors in
Time and Space: A Case Study. In International Conference on Computer
Design (ICCD) 2002, Freiburg, Germany, September 2002.

[42] L. Girod and D. Estrin. Robust range estimation using acoustic and multi-
modal sensing. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS) 2001, Maui, Hawaii, October 2001.

[43] M. Hazas and A. Ward. A Novel Broadband Ultrasonic Location System. In
Ubicomp 2002, Goteborg, Sweden, September 2002.

[44] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher. Range-
free localization schemes for large scale sensor networks. In Mobicom, San
Diego, USA, September 2003.

[45] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru,
T. Yan, and L. Gu. Energy-Efficient Surveillance System Using Wireless
Sensor Networks. In Mobisys, Boston, USA, June 2004.

[46] J. Ho, B. Ramasamy, and R. Stecey. Portable Air Vent Calibration System.
Technical report, University of California, San Diego, 2003.

[47] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. Global Positioning
System: Theory and Practice, 4th Edition. Springer-Verlag, 1997.

[48] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein.
Energy-Efficient Computing for Wildlife Tracking: Design Tradeoffs and
Early Experiences with ZebraNet. In Proc. ASPLOS X, San Jose, USA,
October 2002.

[49] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Emerging Challenges: Mo-
bile Networking for Smart Dust. Journal of Communications and Networks,
2(3):188–196, September 2000.

BIBLIOGRAPHY 157

[50] C. Kappler and G. Riegel. A Real-World, Simple Wireless Sensor Network
for Monitoring Electrical Energy Consumption. In Proc. EWSN 2004, Berlin,
Germany, January 2004.

[51] V. A. Kottapalli, A. S. Kiremidjian, J. P. Lynch, E. Carryer, T. W. Kenny,
K. H. Law, and Y. Lei. Two-Tiered Wireless Sensor Network Architecture
for Structural Health Monitoring. In SPIE Symposium on Smart Structures
and Materials, San Diego, USA, March 2000.

[52] M. LaFiandra, K. Ragay, and W. Mulyadi. Fast Information Response Envi-
ronment (FIRENet). Technical report, University of California, San Diego,
2003.

[53] A. Lamarca, W. Brunette, D. Koizumi, M. Lease, S. Sigurdsson, K. Sikorski,
D. Fox, and G. Borriello. PlantCare: An Investigation in Practical Ubiquitous
Systems. In Ubicomp, Gothenburg, Sweden, September 2002.

[54] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM, 21(4):558–565, July 1978.

[55] D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed. Detection, Classification,
and Tracking of Targets. IEEE Signal Processing Magazine, 19(2):17–29,
2002.

[56] Q. Li and D. Rus. Global clock synchronization in sensor networks. In IEEE
InfoCom, Hong Kong, China, March 2004.

[57] B. Liskov. Practical Uses of Synchronized Clocks in Distributed Systems.
Distributed Computing, 6(4):211–219, 1993.

[58] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wire-
less Sensor Networks for Habitat Monitoring. In WSNA, Atlanta, USA,
September 2002.

[59] M. Mansouri-Samani and M. Sloman. GEM – A Generalised Event Monitor-
ing Language for Distributed Systems. IEE/IOP/BCS Distributed Systems
Engineering Journal, 4(25), February 1997.

[60] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time synchro-
nization protocol. In SenSys, Baltimore, USA, November 2004.

[61] I. W. Marshall, C. Roadknight, I. Wokoma, and L. Sacks. Self-Organizing
Sensor Networks. In UbiNet 2003, London, UK, September 2003.

[62] K. Martinez, R. Ong, J. K. Hart, and J. Stefanov. GLACSWEB: A Sensor
Web for Glaciers. In Adjunct Proc. EWSN 2004, Berlin, Germany, January
2004.

BIBLIOGRAPHY 158

[63] K. Marzullo and S. Owicki. Maintaining the time in a distributed system. In
Proceedings of the second annual ACM symposium on Principles of distributed
computing, pages 295–305. ACM Press, 1983.

[64] F. Mattern. Virtual Time and Global States in Distributed Systems. In
Workshop on Parallel and Distributed Algorithms, Chateau de Bonas, Octo-
ber 1988.

[65] L. Meier, P. Blum, and L. Thiele. Internal synchronization of drift-constraint
clocks in ad-hoc sensor networks. In Proceedings of the Fifth ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc
2004), 2004.

[66] W. M. Meriall, F. Newberg, K. Sohrabi, W. Kaiser, and G. Pottie. Collabo-
rative Networking Requirements for Unattended Ground Sensor Systems. In
Proc. IEEE Aerospace Conference, March 2003.

[67] F. Michahelles, P. Matter, A. Schmidt, and B. Schiele. Applying Wearable
Sensors to Avalanche Rescue. Computers and Graphics, 27(6):839–847, 2003.

[68] D. L. Mills. Improved algorithms for synchronizing computer network clocks.
In Conference on Communication Architectures (ACM SIGCOMM’94), Lon-
don, UK, August 1994. ACM.

[69] A. Nasipuri and K. Li. A directionality based location discovery scheme for
wireless sensor networks. In WSNA, Atlanta, USA, September 2002.

[70] G. J. Nelson. Context-Aware and Location Systems. PhD thesis, University
of Cambridge, 1998.

[71] D. Niculescu and B. Nath. Ad hoc positioning system (aps). In GLOBECOM,
San Antonio, USA, November 2001.

[72] Parliamentary Office of Science and Technology. Intelligent Transport. Post-
note, 2002(187), 2002.

[73] C. Plessl, R. Enzler, H. Waldner, J. Beutel, M. Platzner, L. Thiele, and
G. Tröster. The Case for Reconfigurable Hardware in Wearable Computing
Nodes. In ISWC 2002, Piscataway, USA, October 2002.

[74] D. D. Polityko, M. Niedermayer, S. Guttowski, W. John, and H. Reichl.
Drahtlose Sensornetze: Aspekte der Hardwareminiaturisierung. In Fachge-
spräch Sensornetze, Karlsruhe, Germany, March 2004.

[75] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket
Location-Support System. In Mobicom 2000, Boston, USA, August 2000.

[76] C. Rathakumar, J. Mohamed, R. Raffaelli, and S. Walsh. A Downhole Noide
Sensor Network. Technical report, University of California, San Diego, 2003.

BIBLIOGRAPHY 159

[77] J. A. Rice. Undersea Networked Acoustic Communication and Navigation for
Autonomous Mine-Countermeasure Systems. In Intl. Symposium on Tech-
nology and the Mine Problem, Monterey, USA, April 2002.

[78] R. Riem-Vis. Cold Chain Management using an Ultra Low Power Wireless
Sensor Network. In WAMES 2004, Boston, USA, June 2004.

[79] H. Ritter, J. Schiller, and T. Voigt. Demand-based Location Determination
in Wireless Sensor Networks. In Adjuct Proc. EWSN 2004, Berlin, Germany,
January 2004.

[80] K. Römer. Time Synchronization in Ad Hoc Networks. In MobiHoc 2001,
Long Beach, USA, October 2001.

[81] K. Römer. Temporal message ordering in wireless sensor networks. In
IFIP Mediterranean Workshop on Ad-Hoc Networks, pages 131–142, Mad-
hia, Tunisia, June 2003.

[82] K. Römer. The Lighthouse Location System for Smart Dust. In MobiSys
2003, San Franscisco, USA, May 2003.

[83] K. Römer. Tracking Real-World Phenomena with Smart Dust. In EWSN
2004, Berlin, Germany, January 2004.

[84] K. Römer, P. Blum, and L. Meier. Time Synchronization and Calibration
in Wireless Sensor Networks. In I. Stojmenovic, editor, Handbook of Sensor
Networks : Algorithms and Architectures. Wiley and Sons, September 2005.

[85] K. Römer and F. Mattern. The design space of wireless sensor networks.
IEEE Wireless Communications, 11(6):54–61, December 2004.

[86] K. Römer and F. Mattern. A unified view on space and time in sensor
networks. Elsevier Computer Communications, 2005. To appear.

[87] J. S. Sandhu, A. M. Agogino, and A. K. Agogino. Wireless Sensor Net-
works for Commercial Lighting Control: Decision Making with Multi-Agent
Systems. In AAAI Workshop on Sensor Networks, San Jose, USA, July 2004.

[88] C. Savarese, J. M. Rabaey, and K. Langendoen. Robust Positioning Algo-
rithms for Distributed Ad-Hoc Wireless Sensor Networks. In USENIX Annual
Technical Conference, Monterey, USA, June 2002.

[89] A. Savvides, C. C. Han, and M. Srivastava. Dynamic Fine-Grained Local-
ization in Ad-Hoc Networks of Sensors. In Mobicom 2001, Rome, Italy, July
2001.

[90] A. Savvides, H. Park, and M. B. Srivastava. The n-hop multilateration prim-
itive for node localization problems. MONET, 8:443–451, 2003.

BIBLIOGRAPHY 160

[91] U. Schmid and K. Schossmaier. Interval-based clock synchronization. Real-
Time Systems, 12(2):173–228, 1997.

[92] L. Schwiebert, S. K. S. Gupta, and J. Weinmann. Research Challenges in
Wireless Networks of Biomedical Sensors. In Mobicom 2001, Rome, Italy,
July 2001.

[93] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz. Localization from Mere
Connectivity. In ACM MobiHoc 2003, Annapolis, USA, June 2003.

[94] Y. C. Shim and C. V. Ramamoorthy. Monitoring and Control of Distributed
Systems. In First Intl. Conference of Systems Integration, pages 672–681,
Morristown, USA, 1990.

[95] M. L. Sichitiu and C. Veerarittiphan. Simple, accurate time synchroniza-
tion for wireless sensor networks. In IEEE Wireless Communications and
Networking Conference (WCNC’03), March 2003.

[96] F. Siegemund, C. Floerkemeier, and H. Vogt. The Value of Handhelds in
Smart Environments. In ARCS 2004, Augsburg, Germany, March 2004.

[97] G. Simon, A. Ledezczi, and M. Maroti. Sensor Network-Based Countersniper
System. In Proc. SenSys, Baltimore, USA, November 2004.

[98] W. Su and I. F. Akyildiz. Time-diffusion synchronization protocol for sensor
networks. IEEE/ACM Transactions on Networking, 13(2):384–397, April
2005.

[99] M. Sung and A. S. Pentland. LiveNet: Health and Livestyle Networking
Through Distributed Mobile Devices. In WAMES 2004, Boston, USA, June
2004.

[100] BEA Systems. MIUGS Proves Worth to U.S. Navy. Information and Elec-
tronic Warefare Systems News, 3(20), 2002.

[101] J. v. Greunen and J. Rabaey. Lightweight time synchronization for sensor
networks. In 2nd ACM International Workshop on Wireless Sensor Networks
and Applications, pages 11–19, September 2003.

[102] E. Vildjiounaite, E. J. Malm, J. Kaartinen, and P. Alahuhta. Location Esti-
mation Indoors by Means of Small Computing Power Devices, Accelerome-
ters, Magnetic Sensors, and Map Knowledge. In PERVASIVE 2002, Zurich,
Switzerland, August 2002.

[103] R. Viswanathan and P. Varshney. Distributed Detection with Multiple Sen-
sors: I. Fundamentals. Proceedings of the IEEE, 85(1):54–63, 1997.

[104] A. Ward, A. Jones, and A. Hopper. A New Location Technique for the Active
Office. IEEE Personal Communications, 4(5):42–47, October 1997.

BIBLIOGRAPHY 161

[105] B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A.
Chediak, J. M. Kahn, B. E. Boser, and K. S. J. Pister. An Autonomous 16
cubic mm Solar-Powered Node for Distributed Wireless Sensor Networks. In
IEEE Sensors, Orlando, USA, June 2002.

[106] M. D. Weiser. The Computer for the 21st Century. Scientific American,
265(3):94–104, September 1991.

[107] G. Wener-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh. Monitoring Vol-
canic Eruptions with a Wireless Sensor Networks. In EWSN 2005, Istanbul,
Turkey, January 2005.

[108] K. Whitehouse and D. Culler. Calibration as Parameter Estimation in Sensor
Networks. In WSNA, Atlanta, USA, September 2002.

[109] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govin-
dan, and D. Estrin. A Wireless Sensor Network for Structural Monitoring.
In Sensys 2004, Baltimore, USA, November 2004.

[110] Y. Xu, J. Heidemann, and D. Estrin. Geography-Informed Energy Conser-
vation for Ad-Hoc Routing. In MobiCom, Rome, Italy, July 2001.

[111] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC Protocol
for Wireless Sensor Networks. In IEEE Infocom 2002, New York, USA, June
2002.

[112] ARGO - Global Ocean Sensor Network. www.argo.ucsd.edu.

[113] ARGUS - Advanced Remote Ground Unattended Sensor.
www.globalsecurity.org/intell/systems/arguss.htm.

[114] Autarke Verteilte Mikrosysteme.
www.pb.izm.fhg.de/hdi/020 projects/020 avm.

[115] Berkeley Motes. www.xbow.com/Products/Wireless Sensor Networks.htm.

[116] BTnodes. www.inf.ethz.ch/vs/res/proj/smart-its/btnode.html.

[117] CarTalk 2000. www.cartalk2000.net.

[118] Contaminant Transport. cens.ucla.edu/Research/Applications/ctm.htm.

[119] FleetNet. www.fleetnet.de.

[120] FTB Feintechnik Bertsch. www.ftb-bertsch.de.

[121] Intel Proactive Healthcare. intel.com/research/prohealth.

[122] Microclimate Monitoring.
cens.ucla.edu/Research/Applications/habitat sensing.htm.

BIBLIOGRAPHY 162

[123] Monitoring Marine Microorganisms.
cens.ucla.edu/Research/Applications/momm.htm.

[124] National Semiconductors. www.national.com.

[125] Parapin - a Parallel Port Programming Library for Linux.
www.circlemud.org/∼jelson/software/parapin/.

[126] Raumcomputer. www.raumcomputer.com.

[127] Seal Monitoring.
calvin.st-andrews.ac.uk/external relations/news article.cfm?reference=316.

[128] Seismic Monitoring.
cens.ucla.edu/Research/Applications/seismic monitor.htm.

[129] SEWING - System for European Water Monitoring. www.sewing.mixdes.org.

[130] Shooter Localization.
www.isis.vanderbilt.edu/projects/nest/applications.html.

[131] Spec Mote. www.jlhlabs.com/jhill cs/spec.

[132] Speckled Computing Consortium. www.specknet.org.

[133] Structural Health Monitoring of the Golden Gate Bridge.
www.cs.berkeley.edu/∼binetude/ggb.

[134] The 29 Palms Experiment: Tracking vehicles with a UAV-delivered sensor
network. tinyos.millennium.berkeley.edu/29Palms.htm.

[135] The Hogthrob project. www.hogthrob.dk.

[136] Vibration Monitoring.
intel.com/research/exploratory/wireless sensors.htm#vibration.

[137] Whale Shark Monitoring. www.mcss.sc/whale.htm.

[138] WiseNet. www.csem.ch/wisenet.

