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Abstract
Facilitating the interaction of human users and machines
with smart devices is important to drive the successful
adoption of the Internet of Things in people’s homes and
at their workplaces. In this paper, we present a system
that helps users control their smart environment, by
embedding semantic metadata in the representations of
smart things. The system enables users to specify a
desirable state of their smart environment and produces a
machine-readable description that details which steps are
necessary to reach this state, where each step corresponds
to a Web request to a smart device. A client application
that, for instance, runs on the user’s smartphone, then
implements these steps to reconfigure the user’s smart
environment. We report on our experiences when
integrating semantic technologies with smart devices and
on two use cases from the home and office automation
domains that we implemented in our office space.
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Introduction
The emerging Web of Things (WoT) is a concrete
implementation of the Internet of Things (IoT) vision that
focuses on establishing application-level connectivity
between heterogeneous devices [3]. It is based on
protocols and patterns that have proven to be successful
in the World Wide Web such as caching, load balancing,
and searching as well as the stateless nature of the HTTP
protocol. By applying these to physical devices and thus
creating “smart things” that are modeled in a
resource-oriented fashion and according to the
Representational State Transfer (REST) constraints, it is
possible to construct lightweight applications that leverage
large amounts of real-time data and physical functionality.

The ability for people, devices, and software to find and
connect with other information resources and physical
artifacts is a crucial factor for the successful integration of
the IoT with people’s homes and working environments.
Especially when considering densely populated smart
environments, it is difficult to find and utilize relevant
services in a fast and user-friendly way. We claim that the
problem of finding and using smart devices that provide
services relevant to the task a user wants to achieve in a
given setting (e.g., displaying pictures from a networked
digital camera on an ambient display) can be solved in
WoT environments by embedding information about the
capabilities of a smart device within its representation.
This description of what services a device provides can
then be integrated with its REST program interface, i.e.
information about how the provided services can be used
by clients.

In this paper, we describe a mechanism that integrates
semantic technologies with the WoT. Our system enables
human users and machines to find relevant devices and

utilize their services on demand. It allows users to specify
goals using interface devices (e.g., smartphones) which
encode a user’s desired state of his smart environment, for
instance, to regulate the ambient temperature at his
current location. The system then uses a reasoning service
to determine whether these goals can be reached given
the set of services available to the user. If the reasoner
finds a path from the current state of the smart
environment to the goal state, it produces a proof which
details why it believes that the goal state can indeed be
reached. From this proof, our system distills the necessary
steps to reach the goal where one such step corresponds
to a single Web request to a device or service. The client
interface then executes these requests and thereby
gradually modifies the user’s environment to reach the
desired goal state. We have deployed this system in our
research group’s office space, where we considered several
use cases. We present two of these in this paper: Music
Escort enables users to create music streams that follow
them from room to room when they roam our office
space. Room Configurator allows users to input their
preferences regarding their current whereabouts and then
tries to configure their environment accordingly.

Related Work
The basis of our system is formed by metadata that is
embedded in the Web representations of smart devices
and integrates a description of devices’ Web APIs with
semantic information about the capabilities of the
described smart things. This data thus allows to specify
the program interface for using services offered by
Web-enabled devices and provides the necessary
information for reasoning about the capabilities of
environments that contain one or multiple smart things.



The problem of specifying a program interface for Web
services, and using such a specification to create mashups
of interlinked services has, for instance, been approached
in the JOpera project [6]. JOpera provides a visual
language to define control and data flow graphs and an
execution engine for such workflows. In [1], more
emphasis is placed on the linking of Web resources to
guide RESTful machine-to-machine interaction by fully
exploiting the REST “hypermedia as the engine of
application state” (HATEOAS) constraint to coordinate
interacting services. This approach is also increasingly
being adopted by industry, where emerging REST
frameworks require application designers to satisfy
HATEOAS as a primary goal [5].

Regarding the description of device capabilities, our goal
is to enable a semantic reasoner to deduce a possible path
to a defined goal from the user’s inputs and semantic
metadata provided by devices. To achieve this, we build
on the RESTdesc language [7] which integrates services’
REST interface descriptions with metadata that is
required to reason about device capabilities. The required
information is encoded in the Notation3 (N3) format,
which extends the RDF data model by adding assertion
and logic capabilities.

As an example of other approaches that tackle the
problem of supporting end users in smart environments,
we mention the MIT Oxygen project, and especially its
GOALS and MetaGlue [2] components. Our approach is
distinguished from these systems as it avoids tight
coupling of the involved smart things: Any device that
provides appropriate semantic metadata can join our
system without any reconfiguration, and can immediately
be discovered and used by human users and machine
clients. As a consequence of this decoupling, our system

remains easy to setup and maintain, as all involved smart
things can function by themselves, without any supporting
infrastructure. Rather than tightly integrating the services
provided in a smart environment, we thus use the
embedded semantic metadata as a common ground for
enabling automatic collaboration between smart devices.

System Design
In this section, we give details about the semantic
metadata that is embedded in the Web representations of
our smart things and the discovery of these descriptions.
We also discuss the reasoning process and the
implementation of the reasoner’s proof by the client
interface.

System Context
Our system leverages multiple services that are deployed
in our research group’s office space. All devices that are
connected to our group’s network have access to a
Web-based management infrastructure [4] that provides a
look-up service to search for smart devices and also keeps
track of their location. For instance, a user can contact
this system to find every device of type
dbpedia.org/resource/Thermostat on a specific level
of our building, or request it to deliver all devices that are
located in a particular room on that level. Devices can be
localized in our office space due to a custom-built indoor
localization system with room-level accuracy.
Alternatively, device locations can be set to a fixed value
– this is especially useful to integrate services that are not
deployed on a physical device but rather can be run on
any server (e.g., as a cloud service). One example for such
a service is the reasoning software that we use to collect
and analyze the semantic descriptions of deployed devices.



In the following, we will frequently reference two use cases
that were implemented on top of our system. The first,
Music Escort, tracks users’ locations (i.e., their mobile
phones) and automatically adjusts audio streams to have
their favorite music follow them around in our office
space. This mashup involves many devices and complex
interactions between them, including the on-the-fly
creation and deletion of Web resources. We use it to
exemplify how our system deals with more dynamic
situations where information can also become invalid
(e.g., as a user’s location is updated) and the client has to
compensate for such changes. Apart from the look-up and
reasoning services, Music Escort makes use of several
more devices and services:

• Multiple stream receivers1 that can render audio
streams and are distributed among different rooms
in our office space.

• A single stream transmitter that can be configured
to stream an audio track to one or multiple
receivers.

• The client application that is running on the user’s
smartphone and can track his location in real time
using a custom indoor localization system.

The second use case, Room Configurator , extends Music
Escort to enable users to configure not only the currently
playing music, but rather enter several comfort parameters
(e.g., their comfort temperature) into the client interface,
which has also been implemented as a smartphone
application. This device in turn communicates with the
surroundings to try and configure the user’s whereabouts

1We use VLC (videolan.org/vlc) to stream media files.

to match these settings. Our setup includes several
different kinds of devices:

• Several smart thermostats are used to control the
temperature within a room. They run the
Constrained Application Protocol (CoAP), a
protocol similar to HTTP, albeit for very
resource-constrained devices. To communicate with
the thermostats, a HTTP/CoAP cross-proxy is used.

• Sun SPOT sensor nodes, more powerful devices that
can run their own Web server, are used to sense and
report the ambient lighting level in a room.

• Mock-up implementations of smart alarm clocks
enable users to configure alert signals and ambient
reminders.

Embedded Semantic Metadata
All considered devices feature semantic descriptions of
their program interface and the functionality they provide
to enable automatic interaction between them. For
instance, the look-up service provides a description that
holds information about what requests to send to it to
find an instance of a service of a specific type at a
specific location2. The semantic metadata serves to
decouple the different components of our system: For
instance, the functioning of the whole system is not tied
to using our own lookup service. Rather, any Web service
that can be sent a semantic type and a location and will
return URLs of devices of that very type at the given
location automatically integrates with our system. To give
another concrete example, the stream transmitter provides

2We use the semantic categories type and location as defined
by the Dublin Core Metadata Initiative (purl.org/dc/elements/1.1)
and the W3C WGS84 Geo Positioning vocabularies, respectively.



information that tells clients how to set its associated
stream to a Playing or Paused state, or how to add
receivers to a stream. Finally, the reasoner has an
associated semantic description that tells clients how to
request a proof. An example of what the sematic data
that is provided by our smart things (in this case, the
stream transmitter) looks like is given here:

@prefix dc: <purl.org/dc/elements /1.1/ >.

@prefix http: <www.w3.org /2011/ http#>.

@prefix headers: <www.w3.org /2011/ http -

headers#>.

@prefix dbpedia: <dbpedia.org/resource/>.

{

_:media dc:title ?songTitle.

}

=>

{

_:request http:methodName "GET";

http:requestURI (</media?media=>?

songTitle);

headers:accept "text/plain";

http:resp [ http:body ?path ].

?path a dbpedia:Path.

}.

From this information (a logical implication), the reasoner
distills that it is possible to obtain an instance of a
dbpedia:Path from the response message body of an
HTTP GET to the resource at
http://[...]/media?media=songTitle . The HTTP
Accept request-header is set to text/plain and the
variable songTitle is replaced by an instance of dc:title.
An instance of dbpedia:Path is in turn accepted by the
stream transmitter when creating a resource of type
musicontology.com/#term Stream which then can

serve as an input when a client wants to reach the goal
Playing (the semantic descriptions corresponding to
these interactions are not produced in this paper).

To describe and classify devices in our office environment,
we made use of well-known public ontologies such as the
Dublin Core Metadata Initiative and DBpedia3 whose goal
it is to extract structured information from Wikipedia and
make it accessible for machines. To describe HTTP
requests, we used ontologies published by the World Wide
Web Consortium (e.g., w3.org/2011/http). Devices
advertise their semantic descriptions by including links to
these documents in their responses to HTTP OPTIONS

requests, as part of the HTTP Link entity-header. A
reasoning service can thus use OPTIONS requests on
well-known URLs to obtain the semantic descriptions of
the respective devices and use this information for
constructing proofs that show if and how a specific goal
can be reached.

Reasoning
The reasoner is a software component that generates
proofs from (i) the types of available inputs, (ii) a goal
and (iii) links to the semantic descriptions of currently
available devices (such as the description shown above).
The inputs correspond to values that the client already
knows about (e.g., the title of a song) and the goal defines
what it would like to achieve (e.g., an audio stream in
Playing-state and a corresponding stream receiver at the
user’s location). As reasoning engine, we use the
(Prolog-based) Euler Yap Engine (EYE), an open-source
backward-forward-backward chaining4 reasoner. Given
inputs and a goal, EYE produces a proof in the N3 format

3dublincore.org and dbpedia.org, respectively.
4Prolog backward chaining to reach inputs from goal; forward

meta-level reasoning to avoid exploring unnecessary branches of the
induction tree; backward construction of the proof.



from which the necessary HTTP requests to reach the
goal can be extracted. The main reason for selecting the
EYE engine is its high efficiency, which allows our system
to do reasoning in-between user interaction steps and
without having a great impact on the system performance
as a whole: to produce a proof that contains the
necessary information for a client to configure the devices
involved in Music Escort, the reasoner requires
approximately 5ms (excluding network communication).

For the system presented here, we modified an
out-of-the-box EYE implementation by creating a Java
wrapper that augments the software with a REST
interface. We also added a semantic description to the
reasoner itself, which specifies that it takes rules and a
query as input and returns an object of the semantic type
dbpedia:Formal proof as output. This means that
agents, when entering our smart environment, are only
required to know that they need a service that returns
formal proofs to find out how to obtain a proof from the
reasoner. Thus, our system does not depend on the
concrete implementation of the reasoning engine – any
service that returns compatible proofs will do.

Implementation of Reasoning Results
Upon receiving a proof from the reasoner, it is the
responsibility of the client application to implement the
proof by executing all contained requests and thereby
modifying its smart environment to reach the desired goal.
We decided to have the client implement the proof rather
than letting the reasoner do this because the alternative
would raise privacy and security issues by requiring the
reasoner to have full access to all devices involved in an
interaction. Furthermore, we want the client to stay in
control of the interaction, especially when a request does
not produce the expected result – for instance, a request

for a song that does not exist in the database of the
stream transmitter would return a HTTP 404 Not Found

response. How to handle such failures must remain
entirely under the control of the client, as it is not the
reasoner’s responsibility to implement client logic.

In the case of Music Escort, to create an audio stream at
her location, the user enters a song title and presses the
Play-Button of the client application (cf. Figure 1). The
application fetches the user’s current location and uses
the management infrastructure to find all devices in the
system. It sends their semantic descriptions to the
reasoner, together with the goal (a media stream that
renders the specified song at the user’s current location)
and inputs (the song title and location). The reasoner
then tries to find a proof that links the inputs to the
client’s goal. If successful, it transmits the proof to the
client which executes the requests contained therein. In
this use case, the client sends a total of 23 requests to 4
different devices to configure the system when first
initializing an audio stream at his location. These include
using the given song title to find the corresponding audio
file and then creating a stream transmitter (by means of
an HTTP POST request). The transmitter must then be
configured to stream the file to a stream receiver at the
client’s location, which must also be created and
configured to listen for media streams. Apart from the
inputs, none of the values used in these interactions are
known to the client in advance. The only information that
the client knows from the beginning is the song title, its
own location, the desired goal, and the network addresses
of the reasoner and the look-up service.



Figure 1: Screenshots of our client application. Left: The user
interface for Music Escort lets the user specify the name of the
song to be played as well as the state of the stream (Playing/
Paused/Stopped). Furthermore, the user’s current location is
used as input for the reasoning service. Right: The list of goals
that are satisfiable by the stream transmitter given the client
inputs.

Hypertext-driven Reasoning Multiple Web resources
must be created by means of HTTP POST requests in the
course of implementing a proof and are therefore not
available from the beginning of an interaction. It is thus
necessary that our system iteratively discovers new
resources and re-requests a proof from the reasoner to
include information about each newly discovered resource.
This behavior is what we refer to as hypertext-driven
reasoning. The process of requesting new proofs is
repeated until a proof has been found for the given goal,
or until no more new resources were created.

Invalidation of Local Values Whenever the client
application obtains a new value for a variable that is used
as an input during reasoning (e.g., upon a location change
of the user for Music Escort), it must invalidate all
variables and resources that logically depend on this
variable – in the case of Music Escort, this would be the
stream receiver that had been created at the user’s (now
invalidated) location. To find all such entities, the client
again makes use of the reasoner. First, it fetches the
semantic descriptions of all devices in the environment
and removes all input variables that occur in these
descriptions, except the invalidated variable. The modified
descriptions are then passed to the reasoner with the
invalidated variable as input and every potentially invalid
variable as goal. If the reasoner can find a proof that links
the invalidated variable to any other variable or a created
resource, this entity is deemed invalid as well and deleted.
Else, it can still be used as input in subsequent
interactions. An example of an entity that stays valid in
the case of the Music Escort application even though a
user’s location changes is the stream transmitter.

Discussion and Evaluation
Using the described semantic descriptions to facilitate the
interaction with Web-enabled smart things was successful.
However, reasoning software like EYE has not been
created to target ubiquitous computing applications such
as the use cases described in this paper. It is thus not
fully straightforward to integrate semantic technologies
and Web-enabled smart environments.

First, it can be difficult to find suitable ontologies that
accurately describe the functionality of a smart thing.
However, selecting a suboptimal ontology might lead to
conflicts with other described concepts. Our use cases
also highlight a trade-off between the ease of creating



semantic descriptions for smart devices and the
extensibility of the system. Using simple types such as
dbpedia:Temperature to describe an input value of the
interaction with a smart thermostat can cause problems if
there are other services that work with temperature
values. This can lead to peculiar behavior of the system
as a whole especially when dealing with coupled sensors
and actuators, for instance, if a smart thermostat offers a
service to set the desired temperature and another one to
sense the current temperature. In this case, the reasoner
will conclude that the output of the latter service can be
used as input to the former and therefore propose two
requests that do not have any combined effect at all. This
problem of underspecification can, of course, have major
implications when dealing with many more devices that all
have their own specific version of generic semantic types
like “temperature”. In our system, this problem was
solved by providing more detailed specifications of the
input and output values, and using the semantic markup
to express combinations of individual concepts. For
instance, the temperature that is sensed by the thermostat
is combined with its location information, and thus
expressed as describing the state of a specific location. In
contrast, the API that the thermostat provides to set the
temperature is described as inducing a state change at a
location. We can recommend this approach to solve the
problem at hand. However, this requires that the author
of the semantic description of a smart thing already
anticipates such problems, and similar dependencies
between services offered by different devices, to guarantee
the extensibility of the system. This, in turn, makes it
increasingly harder to create new semantic descriptions
and might lead to the implementation of isolated semantic
systems that cannot interact with each other at all.

Second, proofs generated by EYE sometimes contain too
many requests, or even duplicate requests, which then
have to be filtered before they can be implemented by the
client application. The reason for this is that the reasoner
outputs all potential goals that are reachable from a set
of inputs rather than focusing on the goal specified by the
user. A further disadvantage is that the reasoner requires
both, inputs and goals, to be defined in each query. This
makes it impossible to obtain certain information directly,
for instance, to find the necessary inputs for a given goal.
Such queries therefore require more requests than would
be necessary on a reasoning system that is tailored to the
applications at hand, which adds to the complexity of our
system.

The Music Escort use case exemplifies an application that
requires many interactions between devices to configure
the system as wished by the user. Especially the iterative
discovery of resources leads to a high number of requests

Figure 2: The execution time for different goals. Play refers to
a transition of the stream transmitter from the Paused to the
Playing state. Play & Setup additionally involves setting up
the stream transmitter and receiver. Play & Invalidation refers
to a context change that triggers an invalidation of variables
and resources, in this case following a change in the song title.



between the reasoner and other entities in the system.
The number of requests necessary to implement a proof
can furthermore vary between a single request and many,
for instance when initializing a new stream receiver. The
amount of time required to reach a user’s goal therefore
also fluctuates heavily, depending on the goal itself and
the environment context before the interaction. Figure 2
shows the required amount of time in three different
situations. The first is a Play request when all services
are already set up and the system is paused. The second
is again a Play request, but this time involving a full
setup of the system. The third situation shows how much
time it takes to react to a change in the song title, which
includes finding out which other variables were
invalidated. In the described setting, the considered smart
environment consisted of a total of 11 devices including
the stream receivers and transmitter, the reasoner, the
client application and the management infrastructure.
Much time is spent communicating via the network, which
is mostly due to the reasoner searching for devices and
fetching their semantic descriptions. Our tests with up to
100 simulated smart things showed that the reasoner
represents no bottleneck in our current implementation,
but that the network latency in such scenarios is too high
for meaningful interaction with smart things. In the next
implementation of the software, we will therefore focus on
reducing the induced network communication.

Conclusions
We have presented a system that brings together semantic
technologies and Web-enabled smart environments to
facilitate interactions between smart devices and human
users. The biggest advantage of our approach is that
adding a new device to an already running system is fast
and straightforward. New services will seamlessly interact
with other services in the system, given that their

semantic descriptions are correct and sufficiently detailed.
Another advantage is that the use of semantic
descriptions greatly reduces the amount of information
that smart things and user interface devices must have to
interact with other devices in smart environments. For
instance, a smartphone application that lets the user
control the ambient temperature requires the definition of
a single goal, along with the network address of the
look-up service and the notion that a semantic reasoner is
required. Given these pieces of information, the
application can deduce all steps necessary to modify
previously unknown environments on behalf of their user.

Tests with up to 100 simulated smart things that offered
semantic descriptions revealed that the EYE reasoning
engine can deal with much more complexity than shown in
our example use cases. Still, we plan to implement more
and more complex use case scenarios in the future, which
will allow us to explore the scalability of the reasoning
service in more real-life situations. We are furthermore
confident that we will be able to significantly reduce the
time requirements to execute goals in future
implementations of our system. To do this, we plan to
have the reasoner take a more active part rather than
merely responding to client requests. For instance, it
could load and buffer semantic device descriptions locally,
and also pre-calculate paths and reachable goals for faster
reference.
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