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Abstract

Wireless sensor networks consist of so-called sensor nodes – small com-
puting devices which integrate processing, storage, sensing, and wireless
communication capabilities and an autonomous power source. Due to
their decreased dependency on a wired infrastructure, wireless sensor net-
works can be used to monitor environmental phenomena on an unprece-
dented scale.

This thesis considers approaches for in-situ configuration of wireless
sensor networks. In-situ configuration is a prominent challenge of wire-
less sensor networks: On the one hand, network nodes typically cannot
be configured manually due to the large scale of such networks. On the
other hand, nodes cannot be configured automatically prior to deploy-
ment because their runtime properties are unknown at deployment time
and node failures (e.g., due to depleted battery power) require frequent
re-configuration of the network during its lifetime.

Consequently, it is common that, right after deployment, a wireless sen-
sor network is in a homogeneous software state. In this property, wire-
less sensor networks differ from classic infrastructure-based networks in
which some nodes are custom-built or pre-configured for a certain task
(e.g., a router used for routing). Therefore, a main purpose of config-
uration is to break the initial symmetry and to realize and maintain the
desired structure of the network in face of runtime properties that change
with time.

The contributions of this thesis approach such configuration tasks by
assigning roles to network nodes based on their runtime properties (i.e.,
based on the nodes’ remaining battery power, location, or network neigh-
bors). Such automatic role-based network configuration is part of many
applications and also present in classic configuration protocols developed
for wireless sensor networks. For example, the coverage problem aims
to exploit redundancy in the network by assigning the roles sensing and
idle such that the selected sensing nodes suffice to collect data on the
area of interest. Similarly, clustering aproaches select cluster leaders as
sole communication partners for slave nodes in their vicinity which al-



iv Abstract

lows slave nodes to save energy by synchronizing to the communication
schedule of their cluster leaders. Finally, the construction of a data gath-
ering tree made up of adequately chosen aggregator nodes can also be
interpreted as a role-based configuration problem.

In this context, this thesis claims that generic system support for such
role-based configuration tasks can significantly reduce the effort required
for programming wireless sensor network applications and yet be imple-
mented efficiently. We sustain this claim by providing generic support
for role-based configuration problems occuring in a set of heterogeneous
application domains and by showing that in each domain adequate sys-
tem support can significantly simplify the configuration of an application.
Further, our evaluations demonstrate that the involved overhead is propor-
tional to the “hardness” of the task that is formulated by the programmer
at the provided configuration interface. The observed overhead is some-
times even comparable to application-specific implementations that have
been optimized for the specific configuration task.

In a wider context, this thesis’ contributions provide advances toward
plug and play sensor network systems that can be flexibly parameterized
for a certain application-specific task without requiring the expertise of a
highly specialized engineer for this purpose. Such out of the box usabil-
ity, often presumed a key prerequisite to wide-spread usage of wireless
sensor networks, would finally enable the economies of scale commonly
associated with the wireless sensor network vision.



Kurzfassung

Drahtlose Sensornetze basieren auf miteinander kommunizierenden Sen-
sorknoten, die auf engem Raum einen Mikroprozessor, Speicherplatz, ei-
ne autonome Energiequelle und die Möglichkeit zur drahtlosen Kommu-
nikation vereinen. Da Sensornetze nicht von vorhandener Infrastruktur
abhängig sind, können sie Umweltphänomene kostengünstiger und gross-
flächiger als bestehende Methoden erfassen.

Diese Arbeit beschäftigt sich mit der Konfiguration von bereits in ei-
ner Arbeitsumgebung installierten Sensornetzen. Solche Konfiguration
der Sensorknoten vor Ort ist häufig unumgänglich: Einerseits können we-
gen der zu erwartenden Grösse solcher Netze die einzelnen Sensorkno-
ten nicht manuell konfiguriert werden, andererseits kann die automatische
Konfiguration der Knoten erst nach deren Installation erfolgen, da die für
die Konfiguration erforderlichen Knoteneigenschaften (wie zum Beispiel
deren Ort) erst zur Laufzeit des Systems bekannt sind. Zudem verlangen
häufig auftretende Ausfälle einzelner Knoten, bedingt durch Umweltein-
flüsse oder aufgebrauchte Batteriekapazität, Anpassungen in der Konfigu-
ration der Knoten während des laufenden Betriebs.

Deshalb befinden sich die Knoten eines Sensornetzes direkt nach des-
sen Inbetriebnahme zunächst in einem homogenen Zustand. In dieser Ei-
genschaft unterscheiden sich Sensornetze von klassischen infrastruktur-
basierten Computernetzen, in denen Knoten entweder für eine bestimmte
Aufgabe (zum Beispiel, um Nachrichten weiterzuleiten) gebaut wurden
oder zumindest vor der Inbetriebnahme auf eine bestimmte Aufgabe hin
vorkonfiguriert werden können. Ein Hauptaugenmerk bei der Konfigurati-
on von Sensornetzen muss deshalb sein, den anfänglichen symmetrischen
Zustand in die gewünschte Struktur des Netzes zu überführen und diese
Struktur trotz Änderungen der Knoteneigenschaften über die Laufzeit des
Netzes hinweg aufrechtzuerhalten.

Diese Disseration nimmt sich Konfigurationsaufgaben in Sensornetzen
an, indem sie Sensorknoten, basierend auf deren Eigenschaften (wie zum
Beispiel deren Ort, deren verbleibende Batteriekapazität oder Eigenschaf-
ten der jeweiligen Nachbarn in der Kommunikationstopologie), Rollen
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zuweist. Solche automatische Konfiguration mittels Zuweisung von Rol-
len ist Teil vieler klassischer Konfigurationsprotokolle, die für drahtlo-
se Sensornetze entwickelt wurden. Zum Beispiel hat das sogenannte Co-
verage-Problem zum Ziel, die Redundanz von Sensorknoten zu nutzen:
Die Rolle Sensor an wird an eine Untermenge aller Knoten zugewiesen,
die für die Abdeckung des untersuchten Gebietes ausreicht, wohingegen
die Knoten mit der Rolle Sensor aus in einen energiesparenden Zustand
wechseln können. Ähnlich wird im Clustering-Problem ein Knoten als
Zentrum einer Gruppe von Knoten ausgewählt, während die verbleiben-
den Randknoten Energie einsparen, indem sie nur mit dem ihnen zugewie-
senen Zentrum kommunizieren und daher keine Nachrichten für andere
Knoten weiterleiten müssen. Schliesslich lassen sich auch Baumstruktu-
ren, die häufig zur Datengewinnung in Sensornetzen verwendet werden,
auch als Rollenzuweisungsproblem interpretieren.

In diesem Zusammenhang vertrete ich in dieser Arbeit die These, dass
generische Systemunterstützung für rollenbasierte Konfiguration die Pro-
grammierung von Applikationen für drahtlose Sensornetze beträchtlich
vereinfacht und dass solche Unterstützung auch effizient implementiert
werden kann. Diese These wird durch die Bereitstellung verschiedener
rollenbasierter Konfigurationsdienste gestützt, welche in ihrer jeweiligen
Anwendungsdomäne die Lösung von Konfigurationsaufgaben signifikant
erleichtern. In Experimenten wird aufgezeigt, wie der Kommunikations-
aufwand der bereitgestellten Dienste sich proportional zur “Schwere” des
vom Programmierer spezifizierten Konfigurationsproblems verhält. Zu-
dem erfordern die generischen Dienste häufig nicht mehr Aufwand als
Dienste, die auf spezifische Applikationen hin optimiert wurden.

In einem weiter gefassten Kontext kann diese Dissertation als ein Bau-
stein auf dem Weg zu komponentenbasierten Sensornetzsystemen ange-
sehen werden, in denen eine gewünschte Applikation aus bestehenden
Diensten flexibel zusammengesetzt werden kann, ohne dass die Hilfe ei-
nes Spezialisten dafür nötig wäre. Solch einfache Nutzbarkeit von Sen-
sornetztechnologien wird oft als eine Schlüsselvoraussetzung für die An-
wendung von Sensornetzen in Fachgebieten ausserhalb der Informatik an-
gesehen. Eine grössere Verbreitung von Sensornetzen würde wiederum
auch die häufig genannte Vision der Massenproduktion von Sensorknoten
und die damit verbundene Wirtschaftlichkeit grosser Sensornetze näher
rücken lassen.
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1 Introduction

Wireless sensor networks consist of so-called sensor nodes – small un-
tethered computing devices equipped with sensors, a wireless radio, a
processor, and autonomous power supply. Large and dense networks of
these devices can be deployed unobtrusively in the physical environment
in order to monitor a wide variety of real-world phenomena with unprece-
dented quality and scale while only marginally disturbing the observed
physical processes [ASSC02, KW05].

Various research projects have involved wireless sensor network de-
ployments. These include examining the nesting behavior of otherwise
elusive seabirds [MPS+02], monitoring the micro-climate of redwood
trees [TPS+05], observing the structural integrity of bridges [XRC+04],
and assisting firefighters and help workers with real-time information on
their current environment [LMFJ+04].

Each of the deployments, however, has required considerable program-
ming and maintenance effort by highly-specialized engineers and re-
searchers working in the sensor network field. Key for the wide-spread
applicability of wireless sensor networks, however, is that non-experts can
easily set up a network for a task at hand. To achieve this, system sup-
port for the core issues that re-appear in many wireless sensor network
applications must be available, in order to provide non-experts high-level
levers for specifying the network’s behavior.

In this context, the aim of this thesis is to provide specification tech-
niques, algorithms, and tools to support developers with one common
need that re-appears in applications for large-scale wireless sensor net-
works: The configuration of the nodes in the network.

1.1 Motivation

Configuration is a prominent challenge in wireless sensor networks based
on an intrinsic property in which these networks differ from traditional
distributed systems. In classic infrastructure-based networks, many nodes
are manufactured and installed with a certain purpose (such as a router,
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a hub, a server, or a client device). Typically, the nodes’ physical loca-
tion and their place in the communication topology are pre-determined or
manually assigned by network administrators. Moreover, single purpose
devices, such as routers, come with pre-installed software dedicated to
performing the specific task. Multi-purpose devices, such as servers or
clients, can also be set up by hand or in batches by a network administra-
tor who distributes software to a number of nodes from a central location.

In contrast, in wireless sensor networks, many node properties on which
configuration decisions are regularly based either cannot be known in ad-
vance or change with time. One such property is the nodes’ physical lo-
cation: Some applications require that nodes are deployed at random, i.e.,
dropped out of the air to the areas of interest [CHP+04]. Others involve
mobile sensors attached to animals [JOW+02, BLM05] or carried by peo-
ple [EAL+06, FBRK07]. Similar considerations apply to other runtime
properties such as the nodes’ battery power or the quality of their mea-
surements. Moreover, node failures are common as nodes may become
dysfunctional due to depleted battery power or environmental damage.

Based on these observations, a sensor node cannot specialize on a cer-
tain task before the network is in operation. Instead, the network starts out
in a homogeneous software state and the configuration of the network, in
terms of specialized roles such as clients, hubs, routers and servers, must
be computed and maintained based on the network’s runtime parameters.

This thesis provides system support for such in-situ configuration of
wireless sensor networks. First, a generic framework which allows to state
the desired network structure by means of a simple declarative interface
is presented together with efficient algorithms for its implementation.

The interface of the presented framework allows programmers to for-
mulate a variety of network configuration problems focusing on ease of
use for application-domain experts. In this regard, the provided interface
cannot express every conceivable configuration task.

Therefore, we also elaborate on two specific configuration problems
which require more advanced features. The first approach supports de-
velopers with computing near-optimal clustering configurations, which
involve selecting a few nodes as hubs providing certain services to their
network neighbors. The second approach supports developers with a spe-
cific form of the coverage problem by selecting a set of nodes, which are
likely to provide useful data on a phenomenon of interest, as data sources,
while the remaining nodes may keep their sensors off and thus save power.

We detail each of these contributions in the following three sections.
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1.2 Generic Role Assignment

In Chapter 2, we present a programming framework concerned with as-
signing specific roles to individual sensor nodes if certain conditions are
met. These conditions can be formulated in terms of runtime properties
of a node (e.g., its location or battery level) and in terms of properties of
nodes in the network neighborhood [RFMB04, FR05]. As the network
and node properties change over time, role assignments must be updated
to reflect these changes. Based on the assigned roles, sensor nodes may
adapt their behavior accordingly, establish cooperation with other nodes,
or even download specific code for the selected role.

A number of research projects have stated the need for such role-
based configuration in sensor networks (e.g., [HMCP04, MLM+05,
UWMG05]). Moreover, even classic network configuration problems can
be considered instances of generic role assignment. To illustrate the con-
cept consider the coverage problem [XHE01]. Here, two roles on and
off are defined such that every geographic spot falls within the observa-
tion range of at least one on node. Based on this definition, off nodes do
not contribute to sensor coverage and thus may switch to a power-saving
sleep mode. Once an on node fails, e.g., due to depleted battery power,
redundant off nodes would switch their role to on such that the coverage
condition is satisfied.

Similar roles and conditions for their assignment can be found for other
network configuration problems. For example, to obtain a clustered con-
figuration [KG02], the roles clusterhead and slave are assigned to
each node such that clusterheads can act as hubs and represent sole com-
munication partners for associated slave nodes, while gateway nodes
forward data between clusterheads. Similarly, a data aggregation tree can
be implemented by assigning the roles source and aggregator in a
manner that allows aggregators to efficiently compress the data provided
by source nodes while forwarding it to the network base station.

While a number of specialized algorithms for these problems have
been developed, these are typically hard to adapt to different applica-
tions, where varying criteria for assigning the above roles may have to
be applied. Driven by these observations, the presented role assignment
framework provides specification techniques and algorithms that support
generic role assignment, a programming abstraction applicable to a wide
variety of role-assignment problems similar to the ones described above.
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Moreover, the results of our work may be integrated as a fundamental
service into programming frameworks such as [HMCP04, MLM+05].

Generic role assignment can be considered a programming abstraction
that partially shields application developers from the complexity of pro-
gramming sensor networks at the system level. Rather than implementing
low-level protocols and node functions, the developer can now specify
parts of the system behavior using a high-level configuration language.
Such programming abstractions have recently gained significant attention
(e.g., [ABC+04, WM04]) and can be interpreted as a step towards mak-
ing sensor networks more accessible for users who are not experienced
system-level programmers (e.g., typical application-domain experts).

The presented role assignment framework consists of three elements.
To configure a sensor network, the programmer may issue a set of role
specifications containing a set of roles and conditions for their assign-
ment. At the network base station, a role compiler translates the speci-
fication into a compact abstract representation. This representation may
be either pre-installed on sensor nodes prior to deployment or injected
into the network by the network base station. On the nodes, a property
directory provides transparent access to node properties and capabilities
such as a node’s location or remaining battery power. Based on the nodes’
properties and a given specification, a decentralized role assignment algo-
rithm assigns roles to sensor nodes. The assignment of a given role may
then trigger role-specific code to be executed, for example, enabling a
certain routing component once the node has become clusterhead or
trigger a download of additional role-specific code from the network base
station. Finally, the role compiler has been enhanced with a tool for offline
specification analysis [FR06] which allows to examine various aspects of
role specifications, such as feasibility and optimality, before distributing
them to the network.

In our evaluation, we show that the overhead induced by the distributed
role assignment algorithm is small and moreover proportional to the hard-
ness of the specified configuration problem. Moreover, we discuss how
the semantics of role specifications executed by our generic algorithms
are comparable to highly specialized algorithms designed for the same
problems. Finally, we demonstrate how offline specification analysis can
provide further valuable insights into the runtime behavior of certain role
specifications.
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1.3 Distributed Facility Location

The general focus of generic role assignment is more on ease of use than
on computing an optimized configuration. In particular, while the dis-
tributed role assignment algorithms attempt to find a feasible configura-
tion based on a given role specification, they do not employ any means
for choosing an optimal role assignment (for example, with a minimum
number of clusterhead nodes) among multiple assignments that are
feasible.

We therefore examine an important subclass of role-assignment prob-
lems for which optimality guarantees can be provided in Chapter 3. This
subclass requires that certain nodes are selected as servers such that ev-
ery network node can access a server node within a (preferably) small
network distance from itself. Several application examples mentioned in
the previous section belong to this class, for example clustering and ag-
gregator placement. We use the facility location problem to model such
network configuration decisions which require choosing a subset of server
nodes (also known as facilities) to act as service providers for their net-
work neighborhood (the remaining nodes are called clients).

The facility location problem deals with finding an optimal trade-off
between two different costs of network operation. On the one hand, so-
called opening costs model the costs for operating server nodes. For ex-
ample, these may represent a node’s increased communication load if it
were to forward traffic for its neighbors or, generally, a measure of the
node’s suitability as a clusterhead or service provider. On the other hand,
communication costs model the overhead involved when clients commu-
nicate with their closest server, for example, based on the quality of the
observed network paths. Given a graph and a set of opening and com-
munication costs, the distributed facility location algorithms described in
Chapter 3 assign the roles server and client to network nodes with
the objective to obtain a configuration whose sum of opening and com-
munication costs is minimal.

While the presented algorithms address a smaller set of configuration
problems than generic role assignment, they provide near-optimal solu-
tions for problems that are part of this subset. Compared to existing clus-
tering approaches, the presented algorithm is more generic. Specifically,
by defining the opening costs of each node and respective communica-
tion costs between nodes, the presented approach can be parameterized
to compute a minimum dominating set [Mos07] as well as configura-
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tions in which clients and servers may be an arbitrary number of hops
apart [Fra07]. Moreover, the communication cost parameters, which are
usually derived from link quality indicators observed in the network, may
even account for asymmetric links.

Further, integration with the generic role assignment abstraction is pos-
sible: First, the generic role assignment system of Chapter 2 can deter-
mine the suitability of a node to assume a server role based on local
properties of the node (e.g., its battery level or its location). The node’s
suitability can then be encoded into the respective node’s opening cost
parameter and used as an input to the facility location algorithm. The al-
gorithm will then obtain a configuration in which the most suitable nodes
are selected as servers but at the same time total connection costs between
servers and clients remain low.

Based on an existing centralized algorithm [JMM+03], we devise
equivalent distributed formulations which, to our knowledge, represent
the first distributed approximations of the facility location problem that
can be practicably implemented in multi-hop networks. Although the dis-
tributed re-formulation requires a high worst-case runtime, we demon-
strate through experimental evaluation that in typical instances derived
from sensor-network configuration problems the algorithms terminate in
only few communication rounds, the runtime does not increase with the
network size, and finally, that our implementation requires only local
communication confined to small network neighborhoods [FR07].

1.4 Query Scoping

Similar to Chapter 3, Chapter 4 also deals with a specific subclass of
role assignment problems. This class requires selecting a set of nodes as
data sources which are likely to provide useful data on a phenomenon of
interest.

More specifically, in the considered applications, configuration must
take place every time users issue a query for certain information to the
network. The approach is based on the observation that, in such settings,
it is prohibitively inefficient to send a user query to all nodes of a large
network or, alternatively, to let all nodes report all their readings to the
network base station to be queried later by users. Instead, a certain sub-
set of nodes must be activated for a given sensing task, nodes which,
based on their runtime properties, are likely sources of the desired infor-
mation [FRNK06]. For such settings, we propose a query scoping system
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which chooses a set of nodes which are expected to adequately cover a
phenomenon of interest.

Note the analogy of query scoping and the coverage problem which
we used as an introductory role-assignment example: While the latter
chooses a subset of all nodes to cover a selected area, the former chooses
a subset of all nodes that are likely to cover the desired information, for
example, by determining the area that must be covered to obtain this in-
formation.

In terms of a role-based configuration problem, it is required that the
roles sensing and idle are assigned to certain nodes based on their
runtime properties. Once a query scope is defined, e.g., consisting of
nodes with role sensing, it can be used to limit the propagation of cer-
tain queries.

Compared to other role assignment tasks, which are performed in a dis-
tributed manner by every node inside the network, query scoping is partic-
ularly beneficial if it can be performed offline at the network base station,
which allows to leave idle nodes completely unscathed by the query (as
otherwise, the effort of letting every network node evaluate whether it is
a sensing node would be comparable to distributing the query to all
nodes).

As a motivation, in Chapter 4, we present an object search system in
which query scoping is a prominent challenge [FBRK07]. The application
allows users to locate everyday items by means of a large array of sensor
nodes. Sensor nodes are implemented by means of mobile phones, which
are augmented with the capability to detect the presence of electronically
tagged items in their vicinity, and thus act as object sensors.

In the context of this application, we provide an approach for using an
arbitrary dataset of application knowledge to assign the roles sensing
and idle to sensor nodes. Criteria for selecting sensing nodes include
past reports on certain objects or the mobile network cell to which nodes
(implemented by mobile phones) are associated at a certain point in time.
In the considered case study, this information is in fact available at the
network base station and therefore it is feasible to perform query scoping
offline before a query is sent.

The presented approach exports yet another parameterization interface
to the application developer or user. The query scoping algorithm takes
as input a data model of the application domain (e.g., consisting of users,
their current and previous locations, associations between befriended
users, or previous object “sightings”) and uses them to return a set of
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sensing nodes which are likely to find a certain object. By means of
weight parameters that can be annotated to the edges of the data model,
the user may specify which strategies the algorithm should use for query
scoping.

In this contribution, a configuration abstraction that is custom-tailored
to the application domain was required. Yet, a suitable abstraction level,
lying close to the application domain, and effective and efficient means
for its implementation were found. Although rather specialized, the pre-
sented contribution underlines the claim that role-based configuration is a
prominent problem class in wireless sensor networks for which adequate
system support should be defined.

1.5 Background

In this section, we place the three contributions of this thesis, summarized
above, in the context of related literature. Although specific related work
will be discussed next to each contribution in the respective chapter, in
this section we attempt a more high-level view on classes of related litera-
ture. Depending on the taken point of view, these may be associated with
various research domains as shown in Figure 1.1.

On the one hand, generic role assignment provides a programming
framework for wireless sensor networks. We will discuss programming
frameworks in detail in Section 1.5.1. At the same time, it can be viewed
as a highly parameterizable network configuration algorithm, for which
the role assignment specification provides a succinct parameterization in-
terface. While all three contributions share this dual view, we will argue
that the provided contributions are more generic than existing literature
on configuration algorithms in Section 1.5.2. Finally, as the assignment
of a role to a node usually implies assigning a certain task to the node (or,
vice versa, allocating the node’s resources for a task), our contributions
on role-based configuration are related to approaches for task assignment
and resource allocation, as we will describe in Sections 1.5.3 and 1.5.4.

1.5.1 Programming Frameworks

We subclass approaches that provide programming support for wireless
sensor networks using two attributes: The first is their comprehensive-
ness. Comprehensive programming frameworks focus on replacing ex-
isting low-level programming approaches. In this regard, their aim is to
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Figure 1.1: Classes of background literature

allow developers to formulate every conceivable application. In contrast,
domain-specific approaches are custom-tailored to a certain sub-class of
applications or functionality which they support.

Domain-specific approaches have two subclasses, regarding their com-
pleteness: Complete approaches allow to specify an entire application in
all of its parts (comprehensive frameworks are typically complete). In
contrast, services only support certain functionality that re-occurs in a
range of applications – yet, an application cannot be composed of a prop-
erly parameterized service alone.

We will in the following give examples from the resulting three classes
of literature: Comprehensive (and complete) programming frameworks,
complete domain-specific approaches, and services.

An orthogonal dimension, discerning approaches in each of the above
classes, is the provided level of abstraction, that is, the degree to which
implementation details are hidden from the application developer by high-
level primitives. A high level of abstraction has the purpose of a reduced
programming effort, but (usually) comes at the cost of lower expressive-
ness of the provided programming interface. For example, the fact that
message passing details of an application are dealt with by a program-
ming framework might involve the drawback that application-specific op-
timizations of the messaging protocol cannot be expressed in such frame-
works. This is why the provided level of abstraction level varies among
the frameworks mentioned in the literature.
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Comprehensive Programming Frameworks

The focus of comprehensive programming frameworks is to replace ex-
isting sensor network programming approaches, and, typically, allow de-
velopers to implement every conceivable application using the provided
framework.

The front-end of such programming frameworks are programming ab-
stractions, which define the set of primitives that can be used by devel-
opers to formulate the task at hand. The user program is then translated,
either by a compiler or by adequate run-time support, into node-level in-
structions that aim to implement the semantics of the program efficiently.

At the highest level of abstraction, so-called macroprogramming ap-
proaches shield developers from the complexity of programming individ-
ual nodes. Instead, developers issue high-level programs that specify the
desired global behavior of the application in terms of resources of the net-
work. Typically, such programs make use of various high-level constructs
such as data structures managing sets of nodes, variables implicitly shared
among nodes, and specifications of the global data flow required for the
application, which, so the authors argue, can more effectively express the
desired application logic than node-level programs. These programs are
then translated into a set of commands for individual nodes.

Typical macroprogramming systems are Regiment [NW04, NMW07] –
which uses functional programming constructs that operate over individ-
ual events, over streams of events, and over groups of nodes that gener-
ate them – and the Kairos [GGG05] system, which provides a procedu-
ral interface for specifying global application behavior. Other examples
are ATaG [BPRL05], whose specification combines custom-implemented
modular tasks with a graph-based specification of the flow of informa-
tion between tasks, and spatial programming [BIK+04] which allows
programmers to express the desired computation in terms of geospatial
references to the resources of the network.

At lower levels of abstraction, programming frameworks typically pro-
vide a greater expressiveness but come with increased programming com-
plexity. In such frameworks, it is often required to program on the level
of individual nodes, for example, one must specify which data a node
should sample and which messages to send or receive. One such exam-
ple is SensorWare [BS03], whose input are node-level scripts supported
by a script migration and replication middleware. A second example is
FACTS [TWS06], in which developers specify data-processing rules con-
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sisting of trigger conditions (usually in terms of incoming data) and asso-
ciated actions (a set of operations manipulating or sending data once the
rule fires).

On the lowest and most expressive abstraction level, several approaches
provide novel node-level programming paradigms [KR05], intermedi-
ate languages [NAW05], or virtual machines [LC02] that improve over
certain deficiencies that are present in the most wide-spread node-level
operating systems such as [TOS]. Such approaches may also serve as
compilation targets onto which compilers map more high-level abstrac-
tions. Other examples, Impala [LSZM04], SOS [HKS+05], or Con-
tiki [DGV04], provide “enhanced” operating systems integrating node-
level programs with middleware support, e.g., for component manage-
ment and code-deployment.

Complete Domain-specific Approaches

Domain-specific approaches, in turn, can be divided up in two subclasses
(cf. Figure 1.1) . In the first class, complete approaches allow to specify
applications in all their parts.

Perhaps the most wide-spread members of this class provide a
database view on sensor networks and on the data they sample (e.g.,
Cougar [BGS01] or TinyDB [MFHH03, MFHH05]). By means of a
declarative query interface, these systems support various classic data
gathering applications by allowing users to subscribe to a desired stream
of sensor data.

Complementary systems focus on supporting various other application
classes. For example, DSWare [LSS03] allows users to specify events
that should be detected by a network (such as a fire), IrisNet [GKK+03]
adds functionality for managing data generated by sensor networks inter-
connected by a wide-area backbone, and, finally, EnviroTrack [ABC+04]
provides primitives for implementing applications that deal with tracking
moving real-world phenomena. Recently, EnviroTrack has been embed-
ded into a more comprehensive programming framework called Enviro-
Suite whose abstractions revolve around real-world entities observed by
the network [LAHS06].

Services

In contrast, a second subclass of domain-specific systems, which we refer
to as services, supports certain functionality that manifests itself in many
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applications. While a wider range of applications may benefit from such
services, these cannot be used to specify an application completely. This
is the case even when a service is rather generic and exports a certain pro-
gramming interface for specifying its behavior. Consequently, some parts
of the application must either be implemented on the operating system
level or provided by complementary services.

Compared to the previous two classes, the benefit of employing ser-
vices for developing wireless sensor network applications is twofold. On
the one hand, composing an application from a choice of services allows
application developers to benefit from high-level abstractions for address-
ing certain functionality (if the service’s abstraction semantics match the
developer’s intention well) but at the same time they are free to revert to
any lower but more expressive level of abstraction for other domains of
functionality (e.g., implementing a novel localization protocol that is par-
ticularly suitable in the application or a driver for a specific sensor board).
That is, integrating services into an application (or, alternatively, into a
programming framework) provides developers with increased flexibility,
as applications can be programmed on a heterogeneous abstraction level,
custom-tailored to an application’s needs.

Generic role assignment belongs to this class: It supports developers
solely with network configuration tasks. By means of role specifica-
tions, developers may specify the desired network structure. The rest of
the application is expected to be implemented by custom-made software
components. An event-based architecture provides the glue between the
role assignment system and other application components executed on the
nodes.

As a member of this class, generic role assignment co-exists with other
approaches that provide services addressing various domains of func-
tionality on various abstraction levels. For example, neighborhood man-
agement services such as HOOD [WSBC04], but also [WM04, MP06,
SFCB04], alleviate programmers from the details of message passing and
data sharing within certain local network neighborhoods. Each of the
above includes functionality to manage the membership in these neigh-
borhoods, a functionality which is often referred to as scoping.

Such scoping is often provided as a distinct service, which can be imple-
mented either topologically, e.g., by constraining neighborhoods to a cer-
tain number of hops in the network communication graph or by providing
custom-implemented neighborhood definitions such as trees [WM04], or
generically, e.g., based on conditions formulated in terms of various other
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node properties that define a node’s membership in a certain neighbor-
hood [SFCB04, MP06]. The fact that the latter approaches use techniques
that are similar to role assignment to evaluate a node’s membership in the
scope (dual to the way role assignment evaluates the node’s membership
in the set of nodes which are assigned a certain role) implies that generic
role assignment can also be viewed as a scoping approach. Our query
scoping contribution (described in Chapter 4) provides a similar service
but for a different class of applications which require that scoping deci-
sions are performed before network nodes (in particular nodes outside of
the computed scope) are involved in any communication or computation.

Other examples of this class are the TinyLime [CGG+05] middleware
providing the notion of a transparent tuple space in which sensor data can
be stored. Similarly, geographic hash tables provide for in-network stor-
age of gathered data [GEG+03]. The seminal Directed Diffusion [IGE00]
system provides a content-based routing service allowing nodes to sub-
scribe to arbitrary data provided by the network. A subscription, so-called
interest, specifies the data that should be delivered at the node by means
of attribute value pairs.

Numerous other services exist in the literature supporting various func-
tionality. We used the above services as examples, as they (like generic
role assignment) export programming abstractions which can be used to
implement a certain behavior of the service. These abstractions, from a
different point of view, provide efficient and succinct interfaces for pa-
rameterizing the execution of the provided service. The underlying im-
plementation is a highly parameterizable configuration algorithm.

1.5.2 Configuration Algorithms

In contrast to our generic approaches, many algorithms address specific
role-based network configuration problems. We have mentioned clus-
tering [Lub85, HCB00, KG02], data aggregation [BB03], and cover-
age [XHE01, MKPS01, GZDG05].

Apart from role-based configuration, many other specialized configu-
ration algorithms exist. Examples include channel assignment [Ram99]
(based on distributed graph coloring approaches) and topology control al-
gorithms [WZ04, San05] (which regulate the transmit power used when
communicating with neighbors).

Some of these algorithms provide interfaces to parameterize their exe-
cution. These interfaces can differ in their expressiveness. For example,
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[KG02] allows to set two parameters which determine the number of gate-
way nodes which are used to join clusterheads into a connected topology.

Compared to existing role-based configuration algorithms, the three
contributions of this thesis provide more powerful parameterization in-
terfaces which make them applicable to a wider range of configuration
tasks. Making use of the provided interfaces, developers may install one
algorithm and afterwards rapidly re-configure the network’s behavior in a
variety of ways by issuing new parameters to these algorithms.

Each contribution targets a different application domain and therefore
provides a different parameterization interface. The generic role assign-
ment framework, described in Chapter 2, extracts the parameters deter-
mining algorithm execution from a given role assignment specification.
The distributed facility location algorithm, described in Chapter 3, is per-
haps the most specific configuration algorithm. Its parameterization is
performed by adequately chosen opening costs (assigned to nodes) and
connection costs (assigned to links). Finally, the query scoping system of
Chapter 4 uses an annotated data model for parameterizing its execution.

1.5.3 Task Assignment

Last but not least, we would like to mention a couple of adjacent research
areas out of which some aspects are addressed by the contributions pro-
vided in this thesis.

For example, we mentioned in the above that it is sometimes desirable
to obtain a role assignment that minimizes the overall costs of communi-
cation between nodes of different roles. Our distributed facility location
algorithms, for instance, select a cost-optimal set of servers while taking
into account the cost of communication between clients and their closest
server. More generally, one might consider taking larger structures of de-
pendencies between roles into account. For example, the placement of
different aggregator roles should minimize total communication cost of
the whole aggregation tree.

In the distributed systems field, this problem setting is known as task
assignment. The task assignment problem is motivated by the need to
distribute a set of program modules (or computation tasks) to a set of
processors while minimizing the cost of communication between them.
Our systems also assign modules to sensor nodes by means of the role
abstraction: The assignment of a role to the local node typically triggers
the execution of program modules previously associated with the role.
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Solving the task assignment problem for arbitrary communication de-
pendencies between different modules is hard. An early approach [Sto77]
described a set of centralized network-flow-based algorithms that solved
task assignment in polynomial time for two processor nodes (proces-
sors correspond to sensor nodes in our models). While flow-based tech-
niques were extended to three processors, for four and more processors
the problem was shown to be NP-hard [Bok87]. What proved to be easier
is solving task assignment when communication dependencies between
different modules have the form of a tree. Here, a centralized algo-
rithm [Bok81] solves the task assignment problem based on finding short-
est paths in a graph generated from the network communication graph and
the dependency graph between modules.

An example task assignment approach adapted for wireless sensor net-
works is [BB03], which assigns a tree of query operators (generated from
a declarative database query) to network nodes. The approach attempts to
minimize data traffic between operators – and therefore provide for effi-
cient query execution. It is based on a hill-climbing technique that, given
an initial placement of the operator tree, moves operators to neighboring
nodes if these can perform the operator function more efficiently.

Similarly, the MagnetOS system [LRW+05], aims to assign the mod-
ules of a global program to the nodes of a network graph. The approach
evaluates various heuristics to place modules. Such heuristics include to
move a module to the neighbor with which it communicates most, or to a
more suitable node based on a partial view of the network aggregated at
the local node.

1.5.4 Resource Allocation

The resource allocation problem [Lyn81] goes beyond selecting nodes for
executing certain modules but allocates goods (such as sensor time on a
node, node computation, or bandwidth) for a certain global task. Simi-
larly, role assignment can be considered to allocate a node’s processing
power, sensors, and transceiver to a certain task implied by the role.

One example of a resource allocation approach [MPW05] for sensor
networks uses virtual-market oriented heuristics for this purpose build-
ing on similar approaches for distributed systems [Cle96]. Here, nodes
attempt certain actions (such as listen, sense, or send) each of which are
associated with a certain cost in terms of consumed energy – and a certain
reward if the taken action was successful. Developers may parameterize
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the reward for each action, which, as nodes aim to optimize their reward
based previous actions, provide high-level levers for controlling the net-
work’s behavior.

Summing up, both, task assignment and resource allocation approaches
explore functionality complementing the role-based configuration ap-
proaches considered in this thesis. Task assignment additionally opti-
mizes the configuration based on the communication involved between
nodes with different roles. Resource allocation expands the considered
functionality in the time dimension, as it allows to assign node resources
to different tasks over time.

While such functionality is intriguing, both problem classes are very
demanding in terms of computing complexity. For example, the above
approaches for wireless sensor networks [MPW05, BB03] both involve
resource-intensive trial phases in which improvements of the current so-
lution are explored. In [BB03], all neighbors of an operator simulate the
operator’s function (including the involved communication) in order to
evaluate the benefit of a possible re-location of the operator. In [MPW05],
nodes “attempt” certain actions at random in order to evaluate whether the
execution of such actions is beneficial.

1.6 Summary

In this chapter, we have provided an introduction to the three contributions
of this thesis and overviewed the corresponding background literature.

In summary, we claim that role-based network configuration is an im-
portant challenge which re-appears in heterogeneous wireless sensor net-
work applications and network models. For the domain at hand, suitable
configuration algorithms must be found. This thesis therefore provides ef-
fective system support for such role-based configuration, first in a generic
approach and then for two subclasses of problems. In its contributions,
this work sheds light on a range of configuration approaches, each con-
sisting of a parameterization interface and an underlying implementation.
In this, the presented thesis examines three different points in the trade-
off between, on the one hand, the simplicity and the expressiveness of
the configuration interface and, on the other hand, the performance and
the efficiency of the underlying implementation. Taken together, the pro-
vided configuration support represents a step forward on the path towards
plug and play sensor network systems. Such improved usability, often
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presumed a key prerequisite to wide-spread usage of wireless sensor net-
works, would finally enable the economies of scale commonly associated
with the wireless sensor network vision.

Parts of this thesis have been published in proceedings of international
conferences and workshops, most notably in [RFMB04, FR05, FR06,
FR07, FRNK06, FBRK07].

1.7 Outline

This thesis is structured as follows. We first present the role assignment
abstraction, its implementation, and its extensions in Chapter 2. In the
following two chapters, we then address two subclasses of role assign-
ment problems. In Chapter 3, we describe an approach concerned with
computing near-optimal clustering decisions in a distributed manner. In
Chapter 4, we discuss an approach for offline query scoping in a large-
scale mobile-phone-based sensor network.

A set of aspects will re-appear in each of these chapters: The interface
of the configuration service, examples for its use, the algorithms that con-
stitute the implementation of this interface, and an evaluation regarding
the efficiency and feasibility of the approach.

Based on the contributions detailed in Chapters 2, 3 and 4, we extract
common guidelines for the development of future programming support
for wireless sensor networks and conclude our work in Chapter 5.



18 Chapter 1. Introduction



2 Generic Role Assignment

In this chapter, we present a programming framework called generic role
assignment that allows users to define a list of roles which will be assigned
to sensor nodes if certain conditions are met. Above, we mentioned that
several classic network configuration problems can be viewed as instances
of generic role assignment. As an introduction to this chapter we sketch
three role assignment problems and list the involved roles together with
possible conditions for their assignment.
Coverage. A certain area is said to be covered if every physical spot
falls within the observation range of at least one sensor node. In dense
networks, each physical spot may be covered by many equivalent nodes.
The lifetime of the sensor network can be extended by turning off these
redundant nodes and by switching them on again when previously active
nodes run out of battery power [XHE01]. Essentially, this requires proper
assignment of the roles ON and OFF to sensor nodes.
Clustering. Clustering is a common technique to improve the efficiency
of data delivery (e.g., flooding, routing) [KG02]. With clustering, one
of the three roles CLUSTERHEAD, GATEWAY, SLAVE is assigned to
each node. A clusterhead acts as a hub for slaves in its neighborhood such
that slaves directly communicate with their clusterhead only. Gateways
are slaves of more than one cluster and interconnect multiple clusters by
forwarding messages between them.
In-network Aggregation. Due to the scarcity of energy and the high
energy cost of wireless communication, reducing data communication is
an important design goal in sensor networks. One common form of data
reduction is in-network data aggregation, where certain nodes in the net-
work aggregate sensory data from many sources [IGE00]. For this, sen-
sor nodes must be assigned the roles SOURCE (generate sensory data),
AGGREGATOR (aggregate data), and SINK (consume aggregated data)
roles. In order to achieve a significant network traffic reduction, aggrega-
tor nodes should be located close to the data sources they aggregate.

While a number of specialized algorithms for these problems have been
developed, these are typically hard to adapt to different applications,
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where varying criteria for assigning the above roles may have to be ap-
plied. Driven by these observations, our aim is to provide a generic role
assignment service that is applicable to a wide variety of role assignment
problems. We first give an overview of the various components involved
in generic role assignment. These components will be described in detail
in the remainder of this chapter.

2.1 Overview

Figure 2.1 gives a sketch of the envisioned use case and its core elements.
To setup or re-configure the sensor network, the user/developer provides
a role specification that defines possible roles and rules for how to as-
sign roles to nodes. This specification is distributed to the whole network
via a network base station. On the nodes, a property directory provides
transparent access to node properties and capabilities. A distributed role
assignment algorithm assigns roles to sensor nodes, taking into account
role specifications and node properties. Finally, applications on the node
access node properties (including the node’s role), which may trigger ex-
ecution of role-specific code. For example, the assignment of the role
clusterhead would trigger the start of an additional routing compo-
nent on the node.

Role 

Specifications

Property 

Directory

Role Assignment 

Algorithm

Base Station

Applications

Network

Sensor Node

Role Compiler

Development 

Environment

Solver Simulator

Figure 2.1: Core elements of generic role assignment
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Property Value
battery 50%
pos (12.3, 3.4)
temp-sensor true
neighbors 7
role ON

Table 2.1: Example contents of the property directory

Property Directory. Properties of individual sensor nodes include the
available sensors (e.g., temperature) and their characteristics (e.g., res-
olution), other hardware features (e.g., memory size, processing power,
communication bandwidth), the remaining battery power, and the nodes’
physical location and orientation. Some properties are static, some may
change over the lifetime of the network. However, we assume that prop-
erties are not subject to frequent significant changes. This reflects the un-
derstanding that a particular configuration is valid for a certain minimum
amount of time. Depending on their nature, properties may be defined
at production time, by hardware introspection, or by actual sensor data.
The property directory provides a unified interface for accessing property
values. There is one such directory on each sensor node, which is inde-
pendent of the directories on other nodes.

As described, the property directory is not specific to the role assign-
ment task, but a general component facilitating cross-layer interaction
among software components. In our implementation, the property di-
rectory exports property values as a list of name-value pairs. Moreover,
it can issue asynchronous notifications to other software components on
the node whenever property values change. Our implementation supports
numeric and Boolean types, node positions, and sets of node identifiers.

A set of example contents of the property directory is shown in Ta-
ble 2.1. The current role of the node, and other information acquired
during the role assignment process (e.g., topology information such as
number of neighbors), are also treated as node properties. Applications
can subscribe to role changes or to other properties of interest and cus-
tomize their behaviour based on the assigned role. Inversely, applications
may update entries in the property directory, which would notify the role
assignment algorithm to adapt assigned roles accordingly.
Role Specification. In its basic form, a role is an identifier (e.g., CH for
clusterhead, GW for gateway). The role specification is a list of role-rule
pairs. For each possible role, the associated rule specifies the conditions
for assigning this role. Rules are Boolean expressions that may contain
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predicates over the local properties of a sensor node and predicates over
the properties of well-defined sets of nodes in the neighborhood of a sen-
sor node. All nodes in the network have a copy of the same role specifica-
tion. This reflects the understanding that all sensor nodes are in the same
initial software state. Detailed role specification examples will be given
in Section 2.3.

Role Assignment Algorithm. This component assigns roles to sensor
nodes, taking into account role specifications and node properties. De-
pending on the specific problem instance, it might be useful to allow the
assignment of multiple roles to one node. For example, a single sen-
sor node might act both as a data source and as an aggregator. Property
changes and node failures may necessitate re-assignment of roles.

A separate instance of the role assignment algorithm is executing on
each sensor node. Triggered by property and role changes at nodes in
the network neighborhood, the algorithm evaluates the rules contained in
the role specification. If a rule evaluates to true, the associated role is
assigned. We discuss such algorithms in Section 2.4.

Role Compiler. The above algorithm can be considered a template that
must be properly parameterized for a specific role assignment task. This
parameterization is carried out by a compiler at the network base station,
which reads a role specification and outputs appropriate parameters for
the role assignment algorithm. These parameters are then encoded in a
role specification message that is sent to all nodes in the network.

Development Environment. Integrated with the role compiler, the net-
work base station executes a centralized development environment allow-
ing developers to analyze role specifications before these are distributed
to a network in operation. On the one hand, the development environment
includes a network simulator which can be used to test the distributed al-
gorithm’s performance with a given specification. On the other hand, it
contains a solver component, which may be used to check the feasibility
of a given specification and, further, to compute optimal configurations in
which the use of certain roles is either maximized or minimized.

The solver component is mainly used for specification analysis. While
it may as well compute role assignments for actual networks (as a replace-
ment of the distributed algorithm), this is only sensible for small networks
with static properties, as it requires that a global view on the network
topology and node properties is collected at the network base station.
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Basic Services. A number of basic services such as node localization,
neighbor/topology discovery, or time synchronization may add valuable
information to the property directory. The availability of such services
could also be a node property. These services are decoupled from the rest
of the system through the property directory.

The remainder of this chapter is organized as follows. After survey-
ing related background literature in Section 2.2, we introduce a language
for specifying roles in Section 2.3. Section 2.4 presents distributed algo-
rithms for role assignment. The development environment and the imple-
mentation of the distributed algorithms is discussed in Section 2.5. We
evaluate the efficiency of these algorithms quantitatively in Section 2.6
and qualitatively, by comparing the semantics of our role assignment sys-
tem to specialized role assignment implementations from the literature, in
Section 2.7. Finally, we present the role assignment solver in Section 2.8
and provide an outlook to an extended role specification syntax in Sec-
tion 2.9.

2.2 Related Work

Self-configuration in ad hoc and sensor networks has been an active re-
search topic in the recent past. Various other approaches for solving spe-
cific self-configuration problems have been devised. Examples include
coverage [SP01]; aggregator placement [BB03]; clustering, routing and
addressing [KSG03, SAGP00, SK00]. [KSG03] uses a fixed set of roles
to build a network-wide backbone infrastructure. However, none of these
approaches are generic frameworks that support the assignment of user-
defined roles in an application-specific manner.

The concept of role assignment has been mentioned in various research
projects related to wireless sensor networks. In [HMCP04], a middle-
ware called MiLAN is outlined that controls the allocation of functions
to sensor nodes in order to meet certain quality-of-service requirements
specified by the user. In [MLM+05], a cross-layer framework called Tiny-
Cubus is presented that uses the notion of roles to implement efficient
code deployment. In [UWMG05], a high-level programming approach
for sensor networks is presented, where a high-level task specification is
compiled into a set of node-level programs that must be properly allocated
to sensor nodes taking into account the node capabilities.

Moreover, neighborhood programming abstractions [WM04,
WSBC04] have been proposed, where network neighbors can eas-
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ily share variables among each other. These abstractions pose an
interesting opportunity for implementing our role assignment approach.
In particular, each node in the network could set up a “sharing region” in
order to exchange property values among nodes.

Inspired by cellular cooperation in biological organisms, Amorphous
Computing [AAC+00] explores ways to program smart matter – very
densely deployed collections of indistinguishable smart particles. In con-
trast, our approach is based on the observation that sensor nodes may
significantly differ in their properties, may rely on a number of basic ser-
vices (e.g., localization), and are less densely deployed. Also, we focus
on the configuration of sensor networks, the actual “programming” (i.e.,
distributed data processing etc.) is not part of our work, although roles
and other property values derived during role assignment may provide
valuable input.

Our scheme for role assignment is somewhat similar to cellular au-
tomata [Wol94], where the state of a particle in a regular arrangement
is completely defined by the previous values of a neighborhood of parti-
cles around it. Note that a classification of a subclass of cellular automata
in [Wol94] indicates that a large group of automata converges to well-
defined states. Major differences of our approach are that state updates
are not synchronous, sensor nodes are not in a regular arrangement, and
sensor nodes differ in their properties.

The role assignment solver complements the distributed role assign-
ment algorithms by using integer linear programs (ILPs) to compute exact
solutions to generic role assignment problems. ILPs have been applied
to network configuration problems in various settings. In [BC02], the
authors derive upper bounds on the lifetime of data-gathering networks
by computing optimal configurations consisting of the roles sensor, re-
lay, and aggregator. Moreover, integer program formulations have been
used as a starting point for developing distributed approximation algo-
rithms which solve problems that are related to our specifications, most
prominently the minimum dominating set [KW03] and the facility loca-
tion problem [MW05]. The latter approach [MW05] addresses an impor-
tant subset of role assignment problems and will be discussed in detail
when we address these problems in Chapter 3. Compared to these ap-
proaches, the role assignment solver provides a generic framework for
translating any role assignment problem into an ILP.
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2.3 Role Specifications

In this section we introduce the notation for role specifications. We first
show how this approach can be used for a number of applications, later
we will review the essential specification components in more detail.

2.3.1 Application Examples

Let us revise the examples sketched in the introduction into more formal
specifications. Note that these role specifications will typically result in
approximate solutions of the respective configuration problems.
Coverage. As mentioned earlier, nodes must be assigned ON and OFF
roles. Requirements for the assignment of these roles are that the area of
interest is covered by the sensors of ON nodes, and that ON nodes have suf-
ficient remaining battery power. Assuming one is interested in coverage
with temperature readings, one possible formulation could be:

1 ON :: {
2 temp-sensor == true &&
3 battery >= threshold &&
4 count(2 hops) {
5 role == ON &&
6 dist(super.pos, pos) <= sensing-range
7 } <= 1 }
8 OFF :: else

The rule in lines 1-7 specifies the conditions for a node to have ON status:
it must have a temperature sensor and enough battery power (lines 2 and
3). As a third condition, we require that at most one other ON node should
exist within this node’s sensing range. This is specified by the count
operator in line 4. It expects a hop-range as its first parameter and re-
turns the number of nodes within this range for which the expression in
curly braces evaluates to true. Here we request to evaluate nodes within
2 network hops. Note that the used property names (e.g., role in line 5,
pos in line 6) in the nested expression refer to properties of the specified
neighboring nodes. To access properties of the local node instead, the
prefix super is used (e.g., super.pos in line 6). The dist operator
used in line 6 returns the metric distance between two positions. In the
example, it specifies that only nodes located within this node’s sensing
range should be counted.

In other settings it would be useful to retain state on network neighbors
instead of just counting them. Clustering is such an example.
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Clustering. A clustering approach needs to define assignment rules for
clusterhead (CH), gateway (GW) and SLAVE roles. The assignment of
these roles depends on a variety of parameters. Clusterheads should be
more powerful devices (in terms of processing, memory, communication,
and energy supply), because they act as hubs for many slaves. This may
be easily formulated in terms of the property directory and is neglected
here. For a role specification, consider the following basic scheme:

1 CH :: {
2 count(1 hop) {
3 role == CH
4 } == 0 }
5 GW :: {
6 clusterheads == retrieve(1 hop, 2) {
7 role == CH
8 } &&
9 count(2 hops) {

10 role == GW &&
11 clusterheads == super.clusterheads
12 } == 0 }
13 SLAVE :: else

A node that does not have any clusterhead among its neighbors declares
itself clusterhead (CH, lines 1-4).

Nodes should be assigned the role gateway (GW) if they are neighbors
to at least two clusterheads but are not aware of any other gateway nodes
interconnecting the same two clusterheads.

To achieve this, we introduce the retrieve operator (line 6), which
is similar to count, but returns a set of node identifiers instead of
only counting the nodes. In this example, the retrieve operator is used
to identify clusterheads in the 1-hop neighborhood of the node and to
bind them to the local property clusterheads in line 6 (similar to
binding of variables in declarative programming languages). Using the
clusterheads property, we require in lines 9-12 that within 2 hops no
other gateways should interconnect the same set of clusterheads.

The second parameter to retrieve in line 6 requests any two match-
ing nodes. If not enough matching nodes exist, the retrieve expression
evaluates to false. In this case, the GW role is not assigned, the property
clusterheads remains undefined, and the evaluation of lines 9-12 can
be omitted.
In-network Aggregation. Similar rules can be designed for an exemplary
application requiring in-network aggregation.
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1 AGG2 :: { analogous to AGG1 }
2 AGG1 :: {
3 count(2 hops) {
4 role == SOURCE &&
5 dist(pos, sink-pos) >
6 dist(super.pos, sink-pos)
7 } >= 2 &&
8 count(2 hops) {
9 role == AGG1

10 } == 0 }
11 SOURCE :: { temp-sensor == true }

In this example, sensor nodes equipped with temperature sensors act as
data sources (line 11). A single sink node with known position sink-pos
consumes aggregated data. Aggregator nodes (AGG1) should be placed in
the close neighborhood of many sources (line 4) compared to which the
aggregator is closer to the sink (lines 5-6) because data flows from sources
to the sink. We furthermore require that no other nodes with role AGG1
should exist within two hops.

Note that we used a second role AGG2 for aggregators of higher level
which aggregate information from nodes with role AGG1 instead of
sources. AGG2 nodes should be similarly placed between the AGG1 nodes
and the sink and no other AGG2 nodes should exist in their 2-hop neigh-
borhood.

2.3.2 Syntax and Semantics

Let us review the specification techniques introduced in the examples. A
role specification consists of a list of roles and associated conditions in-
volving the values of local properties of a sensor node or the properties
of well-defined sets of nodes in the neighborhood of the node. The con-
ditions for a role k are determined by an associated role predicate ck. We
assume ck has been preprocessed by the role compiler and rearranged into
its disjunctive normal form:

ck = (ck
11∧·· ·∧ ck

1n1
)∨ (ck

21∧·· ·∧ ck
2n2

)∨ . . . (2.1)

Three types of atomic predicates ck
i j are supported:

Simple predicates are essentially Boolean expressions formulated in
terms of properties and constants, possibly involving basic arith-
metic operations.

Count predicates of the form
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count(scope) { pred } rel const

can be used to count nodes that match a nested predicate pred
within a given number of hops scope around the current node and
compare the result to a constant expression const using a given
relation rel.

Retrieve predicates are similar, these have the form

p == retrieve(scope,size) { pred }

and can be used to bind the identities of a set of nodes matching
pred to a local property variable p. A parameter size specifies
that at least size matching nodes must exist, otherwise the predi-
cate evaluates to false. After evaluation, p contains the identifiers of
the matching nodes and can be used as a local property.

Within count and retrieve operators, the nested predicate pred spec-
ifies the conditions under which a remote node is counted or retrieved,
respectively. These conditions are arranged in a disjunctive normal form
in which, essentially, only simple predicates are allowed. Because the
properties used in pred generally reference property values of remote
nodes, it is furthermore possible to pre-pend super to property names to
reference properties of the current node instead.

As mentioned earlier, the property directory supports numeric and
Boolean types, node positions, sets of node identifiers, and the enumera-
tion role. When comparing node property values, equality is supported
for all properties, while the usual ordering relations (such as <, ≤ etc.)
are additionally available for all numeric properties.

Note that because retrieve predicates bind local properties which can
be referenced by other count and retrieve statements, the former must
be evaluated before predicates referencing the bound value. Moreover,
the specification must not contain circular dependencies between any two
retrieve statements that are part of the conditions of any role. This is
checked by a compiler before sending the specification to the nodes. In
Section 2.4, we describe distributed algorithms that can be used to imple-
ment the semantics described above.

The presented specification language obviously cannot capture all con-
ceivable role assignment problems (see also Section 2.7 on this issue).
However, from our experience it can be used to implement practical ap-
proximations of many configuration tasks. Moreover, our approach can
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be extended in two ways to be more powerful: Firstly, custom predicates
(such as the dist operator mentioned earlier) can be implemented by the
programmer to support complex role assignment tasks. Secondly, appli-
cations may subscribe to certain role changes and changes of other prop-
erties. When notified of such a change, the application may perform any
computations that cannot be expressed directly with the role specification
language. In addition, the application may set values in the property direc-
tory, triggering the role assignment algorithm to revise role assignments
to take into account the modified properties.

Generally, the role assignment abstraction enables the programmer to
address configuration problems based on rather stable network proper-
ties (where there is a limit on the frequency of changes of properties on
which the configuration decisions are based). In order to perform con-
figuration, any algorithm that implements role assignment will have to
reach consensus on the current state of the network within local network
neighborhoods around each node.

Crucial for the locality of any role assignment algorithm is the given
scope that is used in count and retrieve statements because it governs the
degree of interdependence between nodes. We therefore define the maxi-
mum scope of a specification:

Maximum Scope. The maximum scope of a given specification is the
highest hop-number used as a scope for count and retrieve statements.

Similarly we introduce a term for the set of nodes that can influence the
role selection of a given node:

Critical Area. The critical area of a node u is the set of nodes v with

0 < d(u,v)≤ maximum scope

where d(u,v) is the hop-length of the shortest path between u and v.

Next to the examples of Section 2.3.1, a range of basic building blocks
for network configuration can be specified using the presented role speci-
fication language. For example, a tree rooted at the sink is easy to specify
using adequately defined CHILD roles that set a node property parent.
Moreover, it is possible to formulate NP-hard configuration problems us-
ing role assignment specifications, which implies that a role assignment
cannot be computed within a guaranteed polynomial runtime. We will list
such role specification examples in Section 2.9.
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In the following, we describe a set of practical heuristics for role as-
signment which are efficient in the average case. The overhead of the
presented algorithms will later be tested with a range of typical role spec-
ifications and network topologies in Section 2.6.

2.4 Distributed Role Assignment Algorithms

We motivated generic role assignment and sketched a possible distributed
algorithm that could be used to implement role assignment in a position
paper [RFMB04]. This algorithm is based on a fixpoint iteration, where
each node would repeatedly fetch the current values of all relevant remote
properties in order to evaluate the role predicates, eventually deciding on
a (preliminary) role for itself. These evaluation cycles would have to be
properly sequentialized among neighboring nodes in order to ensure con-
sistent role assignments. Assuming that there is a fixpoint configuration,
each node would end up with a role that does not change in subsequent
evaluation cycles.

While this approach works in principle, it turns out that the overhead
for locking and unlocking neighbors for sequentialization is prohibitively
high. Therefore, we have examined more efficient algorithms that proac-
tively distribute property values to neighbors. This is based on the obser-
vation that a node can decide which of its property values are relevant to
what neighbors, because each node uses the same role specification.

This proactive approach [FR05] eliminates much of the overhead for
“locking” nodes and concurrently introduces some redundancy that makes
it more robust in the face of message loss. We present the basic algorithm
below. Later in Section 2.4.7 we introduce two probabilistic initialization
schemes that make it more efficient.

It must be emphasized that the algorithms are heuristics which may re-
sult in temporary inconsistencies due to the lack of sequentialization. We
will employ randomized delays in order to avoid such inconsistencies. If
a temporary inconsistency should occur, it will be removed in subsequent
evaluations at one of the affected nodes.

The algorithms operate on a given role specification that needs to be dis-
tributed to the nodes. Role specifications are encoded into byte-optimized
messages at the sink using a syntax tree that is constructed from the
given specification. Note that we do not focus on the (reliable) distri-
bution of the role specification. While we have implemented a flooding-
based approach, several well-studied protocols for code distribution ex-
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ist [LPCS04]. In some contexts, the specification may also be loaded into
the node offline before deployment.

2.4.1 Overview

The basic algorithm is built around local cache tables maintained at each
node, which contain a collection of (local and remote) properties that are
relevant for role assignment. Eventually, the node will refer to its cache
table to assign its own role, based on the information it has learned about
its neighbors up to that time. We will refer to this as local rule evaluation
as the node does not involve any additional remote data apart from its own
cache.

In the upcoming subsections we will discuss how to initialize the node’s
cache table after the specification is received, how to propagate node
properties that have changed, how to perform the above-mentioned local
rule evaluation, how to adapt to changing network properties, and finally,
how to detect termination of the algorithm.

2.4.2 Initialization

The initialization of the local cache table is performed upon receiving a
new role specification. As all nodes share the same specification, they
will essentially setup their tables in the same way.

In a first step, the node extracts the set of relevant properties from the
specification. Further, the node uses the specification to infer the distance
(in hops) over which each property needs to be propagated at most, which
we will refer to as the property’s max value. Such max values are com-
puted from the scope of all count and retrieve operators within which the
respective properties occur. Note that the node’s role is also a property for
which a max value can be computed.

If a property is only used in (local) simple predicates, its max value is
0 and the property will never be propagated to other nodes. Note that the
information on property max values is constant for a given specification
and their maximum corresponds to the specification’s maximum scope.
All these values are therefore pre-computed at the network base station
and included in the specification message that is injected into the network.

Using the above information, a given node A initializes its cache table
as shown in Figure 2.2. To illustrate the algorithm, we use a simplified
coverage specification – as depicted – where we assume that the node’s
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sensing range is equal to its transmission range and we specify that no
two neighbors are allowed to be ON concurrently.
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Figure 2.2: Node A after initialization

The table is initialized with a row for each property used in the specifi-
cation. Each row contains a field denoting the source node (which is A in
this case as information stems from A’s local properties), the property key,
and its current value. Furthermore, a dist field denotes the hop-distance
between the source node and A. At initialization this value is always 0
because all information is local. The table also shows the max values de-
scribed earlier which indicate how far the properties must be propagated.

Each row also contains a sequence number, which every node maintains
for its local entries. It is initialized with 1 and increased every time a local
property (with dist = 0) is updated. Finally, a dirty bit specifies whether
this information was already propagated to neighbors (false) or not (true).
Initially, this value is true.

The cache table – initialized with local properties as described here –
contains redundant information that is already present in the property di-
rectory. When optimizing for memory, these entries could be generated
just-in-time from the local property directory instead. Similarly, the max
values could be stored only once for each property and dist values once
for each node.

Once the cache table has been initialized, a node will schedule the exe-
cution of three procedures that we will describe in the following subsec-
tions (note that all random delays are uniformly distributed in the given
intervals).
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Property Propagation after a random delay tprop ∼ (0,Tprop). The de-
lay helps aggregating newly arriving information into a single mes-
sage and at the same time spreads traffic over a longer time interval.
See Section 2.4.3 for details.

Local Rule Evaluation is scheduled after an initial delay tinit. This de-
lay is chosen to allow for adequate property propagation from all
nodes in the current node’s critical area. It is computed from the
maximum scope s using an additional random offset teval ∼ (0,Teval)
to reduce the chance of simultaneous role evaluations:

tinit = sTprop + teval

Failure Detection at regular intervals Theartbeat.

2.4.3 Property Propagation

To transmit properties to its neighbors, a node creates an update message,
essentially containing a list of cache table rows.

The message is composed from all rows with dirty = true and dist <

max. Entries with dist = max have reached their maximal scope and need
not be propagated any further (e.g., the local properties battery and temp-
sensor in the coverage example). Essentially, the message contains a copy
of these rows with the dist field increased by 1 and max and dirty fields
left out (dirty is true anyway and max values can be derived from the
specification). Furthermore, the node resets all dirty bits of its table to
false. The resulting update message is broadcast to all neighbors. Note
that property keys can be efficiently encoded as an integer index, because
all nodes use the same specification.

The receivers of such update messages enter the contained information
into their local tables. If entries of the incoming message and the local
table refer to the same property of the same source node, the information
with the larger sequence number is retained (note that sequence numbers
are increased by the source node only, while other nodes forward them
unmodified). If the information has taken a shorter path (source and se-
quence number are the same, but dist field is smaller) the dist field is set
to the smaller value.

On the first incoming update message, receivers schedule

Property Propagation after a random delay tprop ∼ (0,Tprop) in order
to forward new information with dist < max.
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Local Rule Evaluation after a random delay teval ∼ (0,Teval). Gener-
ally, Teval is chosen to be larger than Tprop, see Section 2.4.4 for de-
tails.

The property propagation delay tprop fulfills two functions at different lay-
ers: Firstly, it is used to smooth out traffic bursts that would occur after
a property change that is forwarded over multiple hops. When using a
contention-based MAC layer, this would additionally reduce collisions,
as transmit attempts are spread over a longer period of time. Secondly, it
reduces the number of update messages by collecting many “dirty” table
rows into a single message as shown in Figure 2.3.

Update 
msgs.

Propagation Local Rule
Evaluation

tprop

teval

Summary
Upd.Msg.

Role Change 
Upd. Message

time

Figure 2.3: Property propagation and local rule evaluation

Our propagation procedure adds some redundancy when information is
forwarded over multiple hops because one bit of information is typically
forwarded over multiple paths. Yet this redundancy adds significantly to
the robustness of the algorithm in face of packet loss. We will examine
robustness in Section 2.6.

When the algorithm is used with low-duty-cycle MAC layers, one must
ensure that the symmetry-breaking nature of the randomized timers is pre-
served. This can be achieved either by making active periods sufficiently
long or by suspending algorithm timers in sleep periods (and thus stretch
the algorithm execution time). What is essential is that the MAC layer
does not synchronize property propagation to such an extent that it forces
neighboring nodes to propagate past role changes simultaneously.

In our example from Figure 2.2, assume node A has recently updated
its role property to ON and thus also increased the row’s sequence num-
ber. In A’s table, the only row with dist < max and dirty = true is the
role property. A therefore broadcasts an update message to its neighbors
containing its role property entry only. Assume that, similarly, node C
has sent an update message, after it had picked the role OFF. Node B’s
cache table, after receiving update messages from A and C, is shown in



2.4. Distributed Role Assignment Algorithms 35

Figure 2.4. In the example, no information needs to be forwarded further:
All rows either have dist = max or dirty = false.
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Figure 2.4: Sample cache table at node B

2.4.4 Local Rule Evaluation

As mentioned, local rule evaluation is either triggered by a new role
specification, in this case delayed by tinit, or by the first update mes-
sage following a previous local rule evaluation, in this case delayed by
teval ∼ (0,Teval). The timer teval has two functions: Firstly, it helps avoid
simultaneous role evaluations, for which we chose Teval to be relatively
large compared to Tprop (see Section 2.5 for timer settings). Secondly, it
also helps avoid unnecessary transient roles by making a late but informed
decision rather than performing many re-evaluations (e.g., after each in-
coming update message). A typical outcome where teval turns out larger
than tprop is shown in Figure 2.3.

On expiration of teval (or initially tinit), a node evaluates the role spec-
ification using its local cache table only. For this, it evaluates the role
predicates of its specification sequentially and will assume the first role,
for which the corresponding predicate matches. Each role predicate ck

is assumed to be in disjunctive normal form given in (2.1). Its atomic
predicates ck

i j can be evaluated sequentially.

Simple predicates are evaluated using property values from the local
cache table.

Count predicates of the form
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count(scope) { pred } rel const

consider cache table rows with 1≤ dist ≤ scope. The nested pred-
icate pred is then applied to the source nodes of all these rows. The
number of matching nodes is then compared to const using the
given relation rel.

Retrieve predicates of the form

p == retrieve(scope,size) { pred }

are evaluated similarly. However, instead of only counting matching
nodes, a set S of matching nodes is computed. Note that a retrieve
statement c binds p only while evaluating its enclosing conjunction
ck

x = (c1∧·· ·∧cnx). If |S| < size, ck
x evaluates to false. Otherwise,

the remainder of ck
x is evaluated for all p ⊂ S with |p| = size until

the enclosing predicate ck
x becomes true. If no such p exists, the

evaluation of ck
x returns false.

If the node’s role has changed, property propagation is triggered without
delay.

In our example, node B performs local rule evaluation. B’s cache table
is shown in Figure 2.4. In the given example, B first checks the conditions
for ON. Assuming that the node is equipped with a temperature sensor and
a full battery, the first two conditions of the coverage specification eval-
uate to true. Evaluating the count statement requires counting table rows
with property role and dist = 1. As the result of the count expression is 1,
the predicate for role ON does not match. Node B continues by checking
the conditions for OFF. As the “else” statement imposes no constraints,
node B is assigned the role OFF.

2.4.5 Property and Network Dynamics

So far, we have described role assignment in a static network. In this
section, we consider the effects of changes in the network on a computed
configuration. For this, we distinguish three classes of changes.

The first class are property changes, e.g., the battery level has changed.
The property directory is configured to notify the role assignment system
of such changes. If a change occurred, the node updates the cache table
and re-examines its chosen role via the local rule evaluation procedure.
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Only if the changed property value affects other (local or remote) proper-
ties by changing the evaluation result of a predicate in the specification,
an update message is composed and broadcast to all neighbors. Note that
the number of update messages generated through property changes is
limited by the minimal interval Tmin between two update messages that
are induced by property changes. The programmer may also specify a
tolerance interval ∆p for a property p, such that re-configuration is only
triggered if p’s value changes by more than ∆p.

A second class of changes is when nodes join the network. For example,
it is imaginable that additional nodes are deployed into a given area. When
such a new node overhears any protocol message, it first requests a copy of
the role specification from its network neighbors. After it received a reply,
it uses the specification to initialize as described earlier and broadcast an
update message to inform neighbors of its relevant properties.

The third class are node failures. To detect such failures, nodes send
heartbeats every Theartbeat. A heartbeat is essentially an update message,
containing the key of the property that needs to be propagated farthest in
the specification (e.g., the role property in our examples) with an empty
property value. The sequence number is incremented at each heartbeat. At
receiving nodes, the heartbeat message will update the sequence number
field of the corresponding row in the cache table and set it to dirty. For-
warding nodes will thus include heartbeats in their update messages, pro-
vided the maximum scope has not been reached yet and that no other prop-
erties of the originating node were already forwarded within the node’s
critical area within the last Theartbeat seconds.

After sending (or suppressing) its own heartbeat, a node verifies
whether all nodes contained in its cache table have sent information dur-
ing the last Nheartbeat × Theartbeat seconds. We use the factor Nheartbeat to
allow lost heartbeat messages before node failure is assumed and thus
accommodate unstable links. Nheartbeat is currently set to 3. Entries refer-
ring to nodes that have not sent any information by that time are deleted,
followed by local rule evaluation and subsequent propagation if a role or
property has changed.

2.4.6 Termination

Role assignment is continuously executed during the lifetime of a sensor
network to adapt role assignments to changes in the network. Hence, role
assignment itself does not terminate.
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However, role assignment is typically executed in phases which start
either after receiving a new role specification or on a property or neigh-
borhood change (cf. above Section 2.4.5). In a role assignment phase,
the above algorithm will perform a fixpoint iteration, in which a node
typically iterates through a sequence of different roles.

If a fixpoint configuration exists, each node will eventually assume a
stable role. Termination refers to detecting when such a stable role has
been assumed. In our approach, we assume that a role is stable if it has
not changed for Ttermination seconds. Note that applications are notified
of such stable roles, only. Changes of local or neighborhood properties
may later trigger re-assignment of roles. If such changes occur within a
role assignment phase, these will be incorporated in the result of the cur-
rent phase. However, changes must be infrequent enough to let such role
assignment phases terminate. Therefore, properties that change very fast
(e.g., a light sensor) are typically not useful as input for network configu-
ration.

In our experiments, stable configurations are reached after only very
few role-changes at each node (see Section 2.6 for details). However,
there are role specifications where no such fixpoint configuration exists
and no stable roles can be assumed, for example:

1 RED :: { count(1) { role == GREEN } > 1 }
2 GREEN :: { count(1) { role == RED } == 0 }

Here, a node requires the absence of RED neighbors to become GREEN,
yet its neighbors become RED as a direct consequence of its own role
having become GREEN.

We consider such specifications erroneous and provide three approaches
to help a developer detect such faulty specifications. Firstly, our develop-
ment environment provides a comprehensive simulation tool which can be
used to evaluate role specifications in realistic network setups. Secondly,
it includes a centralized solver component which allows the system to
assess the feasibility of specifications. As we will discuss in detail in Sec-
tion 2.8, the above specification is infeasible on any topology consisting
of more than two connected nodes.

Last but not least, we use heuristics to detect potentially non-
terminating specifications in an operative network. If a node goes through
the same cycle of roles over and over again, non-termination is assumed.
Another, simpler heuristic is to assume non-termination if a node exceeds
a given number of role changes without reaching a stable phase.



2.4. Distributed Role Assignment Algorithms 39

2.4.7 Probabilistic Initialization

In the above, we have described the basic role assignment algorithm
based on caching. In this algorithm, all nodes start with the initial role
undefined upon which they start the role assignment iteration. In this
section, we examine two approaches to initialize nodes more intelligently
based on probabilistic estimates generated from the role specification.
The above role assignment algorithm would then only repair inconsis-
tencies of an initial configuration.

Dicing Roles

A first approach is to estimate the probability of each role based on a given
specification and an estimate of the average network density. Assume the
role specification contains specifications for roles {1, . . . ,q}. In the fol-
lowing, we will compute a set of probabilities {p1, . . . , pq} and, initially,
let each node to take on role k with probability pk. Note that we use these
probabilities for initializing every node in the network, not incorporating
any additional information about a given node or its neighborhood. Thus,
{p1, . . . , pq} could even be pre-computed offline by a role compiler and
disseminated to the nodes together with the role specification.

We will map the role specification to a system of q equations with q un-
knowns, namely the probabilities p1, . . . , pq. We will now delineate how
we translate different parts of the specification into this equation system.

For this transformation, let us assume the role specification contains
role predicates of the general form of Equation (2.1):

ck = (ck
11∧·· ·∧ ck

1n1
)∨ (ck

21∧·· ·∧ ck
2n2

)∨ . . .

Let us assume that the values of ck
i j are independent of each other. Let

P(ck
i j) denote the probability that ck

i j is true. Assuming that probabilities
P(ck

i j) are known for all atomic predicates, we can derive the probability
pk of the role k:

pk = P(ck) = ∑
i

∏
j

P(ck
i j) (2.2)

while we set the probability of a possible else role to

pelse = 1−∑
i

pi (2.3)

We will now show how the probabilities P(ck
i j) can be obtained for all

types of atomic predicates c.



40 Chapter 2. Generic Role Assignment

Let us first consider the case, where c is a simple predicate. If c is of
the form role==r then P(c) = pr. In all other cases, we require the
programmer to explicitly specify P(c). This is often possible, as we are
only interested in the probabilities at startup. For example, the probability
for the predicate battery>10% can be approximated with 1 at deploy-
ment time. Otherwise, an educated guess may be applied. The respective
programmer-specified P(ck

i j) are distributed along with the specification.
For count and retrieve predicates, we assume that the average network

density is known and that a function E(h) for the expected number of
nodes within h hops (the so-called h-neighborhood) can be estimated from
deployment parameters1.

Now consider a count predicate c of the form:

count(scope) { pred } rel lim

where the nested predicate pred is in disjunctive normal form and con-
tains only simple sub-predicates ck

i j. That is, we can compute ppred =
P(pred) according to Equation 2.2. Let us now consider the case where
rel is “<=”, the other cases can be solved in similar ways.

Estimating the number of nodes n to be expected within scope by
n = E(scope), we can now formulate the probability that x out of n nodes
match pred using the binomial distribution:

P(x of n nodes match) =
(

n
x

)
px

pred(1− ppred)
n−x (2.4)

Thus, the probability that less or equal lim nodes match pred (and thus
the above count predicate c is true) corresponds to the sum the above
probabilities for all x ≤ lim :

P(count = true) =
lim

∑
x=0

(
n
x

)
px

pred(1− ppred)
n−x (2.5)

Finally, a retrieve predicate c of the form

p == retrieve(scope,size) { pred }

requires that at least size nodes exist within scope that match the given
nested predicate pred. For calculating role probabilities, we therefore
consider an equivalent count statement:

count(scope) { pred } >= size
1In our implementation, we estimated E(h) for unit disk graphs and random uniform node deployment

on a plane. By fitting results of simulations we found that for any fixed node density E(h)∼ h2.
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So far, we have derived q equations with q unknowns by substituting
P(ck

i j) in Equation (2.2) for 1 ≤ k ≤ q. We use a fixpoint iteration to
solve this equation system. Assume a set of probabilities for each role
pk(t) are known at a given step t. Substituting these into the right side of
equation (2.2), we can compute a set of new probabilities p̂k(t + 1). To
avoid oscillations in this series, we add a memory term pk(t) that averages
the old values into the newly chosen ones:

pk(t +1) :=
1
2

p̂k(t +1)+
1
2

pk(t) (2.6)

Note that at each step, we also normalize the pk(t +1) such that ∑k pk(t +
1) = 1. We initialize this series with equal probabilities for each role
pk(0) := 1/q and iterate until the series converges to a fixpoint. We would
like to emphasize that this computation is done offline by the role compiler
as all information needed is the specification and the mentioned estima-
tion of the neighborhood size E(h). The resulting probabilities are then
flooded along with the specification upon which each node draws role
k with probability pk and then starts initialization as described in Sec-
tion 2.4.2.

We will show in Section 2.6 how the probabilistic initialization can pro-
vide significant improvements over the baseline algorithm where all nodes
start with the role undefined.

One Wave

In the above approach we approximate retrieve statements with count
operators ignoring the fact that the local node sets bound by retrieve
statements occur in other predicates of the specification. Hence, sub-
predicates are not independent of each other (as we assumed).

Furthermore, the result of a retrieve statement depends on the proper-
ties of remote nodes. However, the initialization of local properties (that
are usually set by retrieve statements) cannot be performed probabilisti-
cally (at least it is highly unlikely that such initialization will be correct).
Therefore, additional interaction to adequately initialize such local prop-
erties will be required.

In this regard, partial (deterministic) information is helpful and can be
used to properly initialize the properties bound by retrieve statements,
while other decisions can still be performed probabilistically. In this sec-
tion we describe how we can use conditional probabilities to improve the
stability of probabilistic decisions.
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The basic idea for this approach is to leverage an existing network flood
(e.g., for delivering the role specification) and execute the algorithm of
Section 2.4 while forwarding this “propagation wave”.

We generate such a propagation wave by scheduling the property prop-
agation procedure of Section 2.4.3 differently: The sink is the only
node that initially sends an update message (other nodes refrain from
sending update messages before they received one). A node that re-
ceived an update message, awaits a random propagation delay twaveprop ∼
(0,Twaveprop), then chooses its role (see below) and includes its own cho-
sen role into the forwarded update message. Note that all information of
these update messages can be piggybacked onto flooded role specification
messages.

Let us consider the evaluation of the count predicate used as an example
in the previous Section 2.4.7:

count(scope) { pred } <= lim

Figure 2.5 depicts the situation, where the propagation wave reaches a
given node A. Let us assume that A expects n nodes in scope and m
of these are behind the wave front (to the left of A). These have already
chosen their roles and included all relevant information (including the
selected role) in previous update messages. That is, A has received update
messages from all nodes behind the wave (on the left). A will now decide
probabilistically what it expects from the n−m nodes on the right.

information on m nodes

available

n-m more

nodes expected

A

out of m nodes, m‘

nodes match pred

total of n nodes

expected in scope

wave front

Figure 2.5: Propagation wave

For this, let us assume that out of the m known nodes on the left, m′

match the nested predicate pred. We can now reformulate the proba-
bility that the count predicate is satisfied as the probability that lim−m′
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“more” nodes match (out of the n−m expected nodes on the right). The
conditional probability that the count predicate c is true can be expressed
as follows:

P′(c) =
lim−m′

∑
x=0

(
n−m

x

)
px

pred(1− ppred)
n−m−x (2.7)

Note that count statements using other relations (greater or equal to a con-
stant) can be treated analogously, and also the aspect that retrieve state-
ments require a minimum number of matching nodes.

When evaluating a retrieve predicate, the node additionally binds the
local properties to a set of nodes that are known to match the nested pred-
icate, if such a set of the required size exists. If such a set exists, we
consistently reflect the dependency between the local node and remote
nodes (in our case the remote nodes behind/left of the wave).

For sub-predicates c in pred of the form role==r we still assign the
corresponding pre-computed probability P(c) = pr of Section 2.4.7 as no
additional information is available on the n−m remote nodes that are in
front of the wave.

This way, we derive q equations for the conditional probabilities p′k,
one for each role similar to Equation (2.2), but formulated in terms of the
previously computed pk.

p′k = P′(ck) = ∑
i

∏
j

P′(ck
i j) (2.8)

What we changed is the way we obtain probabilities P′ for the atomic
predicates ck

i j of the equation. On the nodes, we compute the values of
p′k in one step (without the need for fixpoint iteration) using the {pk}
sent along with the specification and choose role k with the respective
probability p′k.

The advantage of the above algorithm is that role assignment can be
performed almost entirely within one network-wide flood and that only
few role assignments have to be “fixed” later on (using the baseline al-
gorithm). Moreover, this approach is able to capture interdependencies
between atomic predicates better. We will analyze the performance of
this algorithm in Section 2.6.

2.5 Development Environment

Generic role assignment is implemented within a development environ-
ment which allows programmers to test their specifications with different
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kinds of network topologies before deploying them into operative net-
works. The development environment consists of a compiler for role
specifications, a network setup and configuration component, a visual-
ization tool for introspecting algorithm execution and results, and finally
two back-ends that perform role assignment on the generated topology.
The first back-end is a discrete event simulator that executes the presented
distributed algorithms in a network environment using additive interfer-
ence models and realistic wireless parameters. The second back-end is a
solver-based analysis tool that can compute optimal role assignment so-
lutions in a centralized manner.

Figure 2.6: Role assignment simulation tool

The user interface is shown in Figure 2.6. It allows users to set up a
network topology, define property directory contents (i.e., the actual node
parameters) and select the algorithms for execution on the nodes. The role
compiler then translates a given specification – in this case the clustering
specification of Section 2.3.1 – into the corresponding syntax tree, per-
forms necessary pre-processing and context checking (i.e., ensures that
there are no circular dependencies and rearranges the role predicates into
disjunctive normal form) and computes a number of additional parameters
(such as role probabilities). Syntax tree and parameters are then encoded
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into a role specification message, which is then interpreted on the simu-
lated nodes.

Finally, the user can trigger delivery of the role specification message
through a flood initiated at the network base station, upon which the net-
work nodes initialize and execute the role assignment algorithm.

The visualization tool enables qualitative assessment of the algorithm
execution and of role assignment results. Figure 2.6 shows exemplary
results when using the one-wave variant of the cache table algorithm to
implement the clustering specification introduced in Section 2.3.1. The
highlighted edges are drawn between a gateway and the clusterheads it
connects. Note that in the shown simulation, apart from messages lost
due to collisions, an additional packet loss probability of 10% was en-
abled, which might have caused some – but only few – inconsistent role
assignments. We will discuss quantitative results in Section 2.6.

We use the discrete event simulator JiST/SWANS [Bar04] as a simu-
lation back-end. We adopted wireless transmission parameters from the
CC1000 radio [CC04] that is in use on the BTnode [BTn06] platform, on
Mica motes, and on many other platforms, please consider Figure 2.7(a)
for details. The physical layer supports additive interference and two-ray
fading. Using these parameters we obtain a maximum transmission range
of about 33 m.

Parameter Value
bandwidth 38.4 kbit/s
transmit power 5 dBm
sensitivity −96 dBm
receive threshold −84 dBm
interference limit −96 dBm
frequency 868 Mhz
antenna gain 0 dB
node height 5 cm
max. transmit range 33.5 m

(a) Wireless parameters

Parameter Value
Tprop 3 s
Teval 10 s
Theartbeat 60 s
Nheartbeat 3
Ttermination 60 s
Twaveprop 5 s
Tmin 1 s

(b) Algorithm timers

Figure 2.7: Simulation parameters

We use a variant of the CSMA MAC described in [WC01] with timers
and delays adapted for 38.4 kbit/s. Only the broadcast service is used
(i.e., no channel reservations are performed). The MAC does not per-
form collision detection, or any other means to improve robustness. We
deliberately chose such a simplistic MAC to study the robustness of our
algorithm separately from “tricks” performed by more advanced MAC
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layers. The obtained robustness results can be considered “worst case”
and better values can be expected when using more sophisticated MAC
layers (e.g., [PHC04, vDL03, YHE02]).

The second back-end for role assignment derives an integer linear pro-
gram (ILP) formulation from a role specification and a given network
topology. The ILP can provide insights into whether a specification is in-
feasible, that is, whether a valid assignment of roles to nodes exists at all.
Moreover, it helps assess the quality of the distributed solutions by com-
paring them to solutions in which certain sets of roles are minimized or
maximized (e.g., in the coverage example, the solver attempts to choose
fewer ON nodes but still cover the respective area). Section 2.8 describes
the solver back-end in detail.

2.6 Evaluation

An important requirement on programming abstractions is that the in-
duced overhead should be proportional to the complexity of the specified
problem. To gain an insight into whether our algorithms are adaptive in
the above sense, we evaluated three specifications of increasing difficulty:
The coverage example that we used to illustrate the caching algorithm in
Section 2.4 can be considered a baseline case. Furthermore, we exam-
ine aggregation and clustering as defined by the specifications from Sec-
tion 2.3.1. These both require propagation of additional properties over
two hops. The clustering specification is especially challenging through
use of the retrieve operator that makes role assignment decisions depen-
dent on the identities of nodes in the neighborhood.

We will evaluate all three presented algorithms, the baseline cache table
algorithm from Section 2.4 and its combination with the two probabilistic
initialization schemes described in Section 2.4.7, to which we will refer
as cachetable, probabilistic and wave, respectively. We set algorithm pa-
rameters according to Figure 2.7(b). To evaluate the protocols, we let the
three algorithms assign roles to a previously uninitialized network and
stop the simulation if all nodes were stable for Ttermination seconds (each
node decides termination locally).

We performed experiments on random topologies that are connected
with high probability. If there should be no multi-hop path from the sink
to a node, this node simply does not participate in the experiment. In our
evaluations, we place a variable number of nodes in a 300 m × 300 m
square field.
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For measuring overhead, we consider the total number of messages that
are sent by each node and – as messages can be of variable size – the
total payload sent by each node in Section 2.6. Note that the number
of messages includes (one) specification message per node, which is the
initial flood.

To quantify correctness of the outcome, we consider the (theoretical)
network topology where two nodes have a direct network link if their dis-
tance is less than the maximum transmission range of 33.5m. An assigned
role is considered correct if the respective role predicate matches for the
set of neighbors obtained from the above theoretical topology.

Later on we will consider the number of role changes that occur after
initialization to study convergence of our algorithms. For the probabilis-
tic and wave algorithms, we do not count the initial role change that is
induced by the probabilistic decision, as we are interested in the remain-
ing inconsistency that has to be repaired. For each data point, we indicate
95% confidence levels obtained from repeated simulations on indepen-
dently drawn random topologies.

Overhead. We study the communication effort spent by the three pre-
sented algorithms. We vary the number of nodes in the confined area
to see how increasing node density affects the performance of our algo-
rithms. The average number of messages sent per node using each speci-
fication are shown in Figure 2.8.

The results of Figure 2.8(a) show that the simplified coverage specifi-
cation can be implemented effortlessly by all three algorithms. The maxi-
mum of three messages includes the specification flood, the later propaga-
tion wave for the wave algorithm (we implemented propagation and role
specification waves separately), and finally at most one more message that
is used to check whether repairs are needed.

In the aggregation example of Figure 2.8(b), the probabilistic and wave
variants outperform the baseline algorithm. Note that the wave algorithm
does not perform better than probabilistic. This is due to the aggregation
specification (cf. Section 2.3.1): The wave algorithm can improve per-
formance only if it can exploit knowledge about nodes behind the wave
front. For the first count statement of role AGG1, this would require that
SOURCE nodes are behind the wave front. However, the specification fur-
ther requires that SOURCE nodes are farther away from the sink than ag-
gregators. This is unlikely to happen, because the wave propagates from
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Figure 2.8: Sent messages per node with increasing density
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the sink outward. Therefore, no aggregator roles are assigned during the
first wave.

For clustering in Figure 2.8(c), probabilistic performs slightly worse
than caching. This can be explained by the fact that the choice of roles
here depends very strongly on the identities of nodes in the neighborhood
and not only on their roles. Hence it is very unlikely that a probabilistic
decision “guesses” the right node identities, this has been one motivation
for the design of the wave variant, which exhibits better performance.
Nevertheless, it is notable that probabilistic still performs comparably to
caching.

The relative performance of the algorithms with respect to payload size
per node is similar. With the wave algorithm, the total payload size per
node in the clustering example is 179 bytes for 200 nodes and 388 bytes
for 600 nodes, resulting in average message sizes of 26 to 39 bytes, re-
spectively. Results are similar in the aggregation case, while coverage
only requires transmitting at most 40 bytes per node as a maximum over
all algorithms and node densities. This includes quite high density values:
600 nodes in the given area yield an average node degree of around 20.
Correctness. We show the fraction of nodes with an incorrect role as-
signment in Figure 2.9. The baseline coverage case does not exhibit any
significant incorrectness. This is due to the simplicity of the specifica-
tion, where the count operator considers the 1-hop neighborhood only.
Essentially, all nodes send one message to announce their role. If incon-
sistencies occur, these are repaired with a second message.

For aggregation and clustering specifications, the caching and wave
algorithms perform best, while the probabilistic variant suffers from its
deficiencies when used with retrieve operators. Note that even though
we omitted any means for reliable message transfer, the wave algorithm
achieves very low incorrectness numbers.

Note that shown incorrectness is due to unreliable message delivery
only. If message delivery were reliable, improbable yet possible simul-
taneous role evaluations would not contribute to incorrectness, as these
would be repaired in subsequent algorithm iterations. Nodes that end up
with incorrect roles have not learned from each other’s properties prop-
erly (i.e., at least one message must have been lost). A reliable MAC layer
would incur zero incorrectness but (possibly) worse convergence results.
Robustness. To examine robustness in the face of message loss, we in-
troduced an additional packet-loss probability. We measured again the
ratio of incorrect role assignments to the total number of nodes for our
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Figure 2.9: Percentage of incorrect assignments from total nodes with increasing density
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three examples. Results are shown in Figure 2.10. The x-axis denotes the
probability used for dropping a message.

On this scale, the algorithms do not exhibit significant differences. Note
that clustering is less robust than coverage and aggregation. This is due to
the fact that the dependency of the predicates on neighbor nodes is much
stronger in clustering: If, caused by a lost message from a clusterhead
neighbor, a node inconsistently becomes clusterhead, many neighbors of
the two will (incorrectly) become gateways, which they will have to cor-
rect later through additional communication effort. Therefore, errors tend
to amplify. Nevertheless, with all three specifications, high packet loss
still yields acceptable correctness levels.

Note that the node neighborhood changes with message loss. Hence,
the results depicted in Figure 2.10 can be interpreted as how well the
algorithms can deal with dynamic neighborhoods. We plan further evalu-
ation using bursts of lost messages that affect the perceived neighborhood
more severely.
Convergence. In Figure 2.11, we quantify the number of role changes
required after initialization until a node assumes a stable role. It shows the
total number of role changes per node after initialization. Note that we
do not count the probabilistic initialization for probability and wave as a
role change as the additional overhead it incurs is negligible. The average
number of role changes per node is less than 2 for all three specifications.
That is, all communication effort is invested into property propagation,
and almost no “undesired” repair iterations occur.

Note that the values shown for the wave algorithm are very low. After
the initial wave, only a few repairs are needed. The number of repairs
needed in the coverage case is effectively zero, while clustering and ag-
gregation require at most one role change for every two nodes.
Scalability. A parameter that is crucial for the algorithm’s efficiency is
the maximum scope of the considered specification. To assess how the
maximum scope affects overhead, we measured sent messages and pay-
loads with the simplified coverage example – while varying the scope of
its count operator from 1 to 4 in a setting with a constant number of 200
nodes.

The results depicted in Figure 2.12 demonstrate that information is in-
deed combined into few update messages. With an average node degree
of about 7 and a maximum scope of 4 hops, the employed number of
messages still remains low. However, the total payload increases, e.g.,
from 21 bytes (for scope 1) to 400 bytes per node (scope 4) for the best
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Figure 2.10: Robustness in face of dropped packets
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Figure 2.11: Total role changes per node with increasing density
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Figure 2.12: Coverage application with increasing scope

performing probabilistic algorithm. With a scope of 4 hops, the average
message size is at most 48 bytes.

Summing up, the evaluation results indicate that the role initializations
of probabilistic and wave can provide improvements over the baseline
algorithm. However, we have also seen that there is no single best algo-
rithm, although wave outperforms the other algorithms in most settings.
With aggregation we found a case, where the wave algorithm is “tricked”
by the specification. Apart from such special cases, a rule of thumb is
that wave performs better than probabilistic for specifications that make
use of retrieve. An interesting direction for future work would be
the development of further heuristics to automatically derive from a given
specification which algorithm can be expected to give the best results.

2.7 Qualitative Comparison

Throughout the chapter, we have used specific instances of coverage, clus-
tering, and aggregation problems to illustrate and evaluate generic role as-
signment. In the literature, numerous specialized algorithms for solving
various instances of these problems have been proposed. In this section,
we discuss how these algorithms compare to our implementations that are
based on generic role assignment.

For each of the problems, we selected a representative instance and
algorithm from literature and discuss differences to our implementation
with respect to semantics and efficiency.
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Coverage. A common semantic for coverage is that all of a node’s sens-
ing range should be covered by other sensors before the node can turn
off [TG03]. In our version of coverage we approximate this semantic by
turning a node off if there are at least N (we use N = 1 in the example)
other on nodes within sensing range. For a more direct implementation
of the semantics in [TG03], a node would first retrieve all neighbors
with overlapping sensing ranges (i.e., which are at most twice the sens-
ing range away) and then use a custom predicate to decide whether all
of the node’s sensing range is covered by these neighbors. This spec-
ification would require the role assignment algorithm to first propagate
position and role properties across the required number of hops and then
perform local rule evaluation after random delays. Chosen roles would
be immediately propagated to affected neighbors. Our algorithm would
(quite closely) match the implementation of [TG03] in the variant where
sensing ranges are assumed equal at all nodes. 2

Clustering. Our version of clustering was inspired by (but is not identical
to) passive clustering (PC) [KG02]. With PC, a node declares itself clus-
terhead if none of its neighbors have done so before. A node becomes a
gateway if αCH + β > GW where CH and GW are the numbers of clus-
terhead and gateway neighbors, respectively, and α,β > 0 are algorithm
parameters that control the desired number of gateways in the system.
This approach could be directly implemented by generic role assignment
with an overhead comparable to the implementation in [KG02], where
only the role property is shared among neighbors.

With PC, protocol information is piggybacked on existing network traf-
fic. In contrast, generic role assignment uses a separate protocol, resulting
in some traffic overhead when compared to PC. An interesting direction
for future work would be passive generic role assignment, where protocol
information would be piggybacked as with PC. 2

Aggregation. A common optimization criterion for aggregator placement
is to minimize the total network traffic, which is identical to solving the
Steiner-tree problem. Various heuristics are used in the literature to ap-
proximate this NP-hard problem. One commonly used heuristic is called
center at nearest source [IEGH02], where among a number of neighbor-
ing source nodes, the one closest to the sink is selected to act as an aggre-
gator. This approach can be implemented with generic role assignment,
where a node would use count to decide whether there is another source
in the neighborhood that is closer to the sink. The scope of count (i.e.,
size of the considered neighborhood) would be tuned to achieve a reason-
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able trade-off between algorithm overhead and optimality of aggregator
selection.

If geographic positions are used, the implementation of closer is
straightforward by propagating the position property of a node within the
scope. In the original algorithm in [IEGH02], this is done by a network-
wide flood. If hop-distance to the sink is used instead of geographic posi-
tions, an additional role specification would be needed to obtain the hop-
distance of each node from the sink. For this, each node would have a
property dist that specifies its distance from the sink. A node would
then retrieve among its neighbors the node with the smallest dist
value and set its dist property to the retrieved value plus one. This
would require a simple extension of the retrieve operator to sort the
retrieved nodes according to some user-specified criterion (e.g., minimum
of a property value). Note that other, custom-implemented, components
that determine the dist property could be integrated with role assign-
ment via the property directory. 2

Apart from the above specific examples, we can make some more general
observations about the efficiency of generic role assignment when com-
pared to specialized algorithms. With generic role assignment, the value
of a property is always propagated to all nodes in the scope of this prop-
erty. In some cases, however, it may not be necessary to propagate certain
property values. In other cases, certain nodes may not need to propa-
gate a property at all or only to certain nodes within a scope. As part of
future work we will investigate whether such optimizations can also be
supported by generic role assignment.

2.8 Role Assignment Solver

In the previous sections, we have mentioned a couple of open issues with
the described generic role assignment system. The first of these issues is
termination. For specifications, for which no assignment of roles to nodes
exists that satisfies all rules, our distributed algorithms may not converge.
Therefore, mechanisms are needed that assist developers with detecting
such faulty specifications. The second open issue is that many practical
role assignment problems include some global optimization criteria, such
as the minimization of the number of ON nodes in the above coverage
problem. Such problems cannot be expressed with the role specification
syntax from Section 2.3.2.
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The role assignment solver provides an analysis tool for approaching
these issues. In addition to the syntax specified in Section 2.3.2, the solver
component allows developers to specify global optimization criteria of the
form min role or max role, where role can be any of the roles that
have been defined, for example:

min ON

Multiple such specifications may be issued alongside a role assignment
specification to demand minimization or maximization of the respective
set of roles. The complete role specification and a given network topol-
ogy are then used as input to the role assignment solver. Given such input,
the solver will compute a role assignment taking into account the speci-
fied optimization criteria, or state infeasible if no feasible role assignment
exists.

The remainder of this section is structured in two parts. First, in Sec-
tion 2.8.1, we provide a mapping of the role specification language to Inte-
ger Linear Programs (ILP). This mapping, performed within the develop-
ment environment described in Section 2.5, returns a problem formulation
that can be used as an input to the CPLEX commercial solver. Second, in
Section 2.8.2, we use the resulting ILPs and CPLEX to re-examine some
of the role assignment specifications presented in Section 2.3. In partic-
ular, we show how infeasible (non-terminating) specifications can be de-
tected, and quantify improvements that can be achieved by using global
optimization criteria.

2.8.1 Integer Program Mapping

An instance of a role assignment problem consists of a role specification
(a set R of role predicates according to the syntax described in Section
2.3), all property values of all nodes that are referenced by the role speci-
fication, and a sensor network graph G = (V,E) with n = |V | participating
nodes.

G is used to define the elements of the h-hop neighborhood matrices
A(h) as follows:

A(h)
i j =


1 ∃ path from node i to node j

with length ≤ h
0 otherwise

The mapper generates a total of h = 1 . . .S such matrices, where S de-
notes the maximum scope that occurs in all count and retrieve statements
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of a specification. Note that these matrices can be readily computed from
the graph G’s adjacency matrix A(1). The above notation A(h)

i j will be used
to formulate the ILP constraints of count and retrieve operators in Section
Mapping Predicates below.

Role Assignment Variables

We first introduce the variables we use to encode the solution of a generic
role assignment problem. Unless otherwise noted, all variables are binary
with values ∈ {0,1}.

The first set of binary variables xik is used to encode whether a node i
satisfies the predicate ck of a given role k:

xik =

{
1 if node i satisfies ck

0 otherwise
(2.9)

By ck we refer to the Boolean predicate describing the conditions for as-
suming role k as discussed in Section 2.3.2. We will ensure that (2.9)
holds by translating ck into a set of equivalent constraints on xik below.

Furthermore, we require that at least one role predicate (from the set of
defined roles R) must match for every node, otherwise, the role assign-
ment is not feasible. This gives rise to the constraint

∑
k∈R

xik ≥ 1 ∀ nodes i . (2.10)

Note that, in order to avoid infeasibility, the programmer can always
specify an else role q which does not imply any constraints as it does
not have any sub-predicates (see Section 2.3.2). Therefore, the predicate
of an else role would always be satisfied, and, according to the above
definition (2.9), a solution should always set xiq to 1.

This points to a different aspect of the variables xik: The properties
and network neighborhood of a given node i could satisfy the conditions
for more than one role, as we do not require the programmer to specify
disjunct conditions in the predicates ck. Therefore, more than one ck can
be satisfied, requiring – because of (2.9) – that more than one xik is set to
1 for a given node i. Thus, the variables xik cannot directly be used as an
output variables of the role assignment solver.

Instead, the output variables should follow the semantics of the dis-
tributed algorithms of Section 2.4, namely, roles defined earlier in the
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specification should be given priority over later ones if multiple role pred-
icates match. These semantics imply that the first matching role with
xik = 1 is assigned to a node i. This is implemented using an additional
set of binary result variables yik which we require to be 1 only if the condi-
tions for roles 1, ...,k−1 (i.e., roles specified prior to k) are not satisfied.
Here we assume that k denotes role k’s position in the list of roles speci-
fied by the programmer (we can achieve this by simply re-numbering the
roles). The following constraint formulates the necessity that yik must
equal 1 (i.e., the role must be assigned) if the given role predicate is true
(xik = 1) and at the same time all predicates stated earlier in the role list
are false (∑k−1

l=1 xil = 0):

xik−
k−1

∑
l=1

xil ≤ yik ∀k, i (2.11)

Vice versa, in an additional constraint (2.12), we require that role k can
only be assigned if the corresponding predicate is true (xik = 1). Further,
(2.13) requires that exactly one role from the role set R should be assigned.

yik ≤ xik ∀k, i (2.12)

∑
k∈R

yik = 1 ∀i (2.13)

Finally, we introduce binary variables for node sets p that are bound to
the results of retrieve predicates of the form

p == retrieve(scope,size) { pred } .

For each such set p, we include an additional set of variables qp
i ( j) with

j ∈V with the following interpretation:

qp
i ( j) =

{
1 if the set p at node i contains node j

0 otherwise
(2.14)

To preserve a readable notation, we will sometimes omit the index p and
just write qi( j) implicitly referring to the respective set p.

Objective Function

We can now reformulate the optimization criteria of the form max role
or min role into an objective function in terms of the variables yik. As-
sume that out of a set of roles R stated in a given role assignment specifi-
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cation, the user would like to minimize the set of roles m ⊂ R and maxi-
mize the set of roles M ⊂ R in the network. The corresponding objective
function is

minimize ∑
i∈V

(
∑
k∈m

yik− ∑
k∈M

yik

)
.

Note that one may easily re-state this objective function to formulate
more complex optimization criteria in terms of the variables yik. For ex-
ample, one may express the desire to maintain certain ratios between ON
and OFF nodes (in the coverage example), or assign weights to the impor-
tance of minimizing or maximizing certain roles.

Mapping Predicates

We will in the following show the mapping of role predicates ck to re-
spective ILP constraints on the predicate variables xik. Note that the con-
straints will depend on i because the network neighborhood is a function
of the node identity i.

Consider a role predicate given in its disjunctive normal form as de-
scribed in Section 2.3.2

ck = (ck
11∧·· ·∧ ck

1n1
)︸ ︷︷ ︸

ak
1

∨(ck
21∧·· ·∧ ck

2n2
)︸ ︷︷ ︸

ak
2

∨·· · . (2.15)

As a first step, we translate the Boolean operations to ILP constraints
by means of a (standard) ILP modeling technique. For this purpose, we
use additional indicator variables ui(c) which (similarly to xik) indicate
whether an atomic predicate c occurring anywhere in (2.15) is satisfied at
a given node i.

Disjunctions and conjunctions can be expressed in terms of ILP con-
straints as follows. Assume a conjunctive term of the form (c = c1∧·· ·∧
cp), consisting of p terms, and let ui(c1) . . .ui(cp) be the respective in-
dicator variables for a given node i. We will use an additional variable
ui(c) to indicate whether the whole conjunction c is true. We therefore
require (for every node i) that ∑ui(cq) ≥ p if and only if ui(c) = 1. The
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constraints modeling necessity and sufficiency are:
p

∑
q=1

ui(cq) ≤ ui(c)+ p−1

p

∑
q=1

ui(cq) ≥ p×ui(c)

∀i (2.16)

Similarly, for an analogous disjunction of the form a = a1∨ ·· · ∨ ap, we
require that at least one of the indicator variables ui(aq) of a node i is 1,
thus ∑ui(aq)≥ 1 if and only if ui(a) = 1, for all nodes i. The constraints
modeling necessity and sufficiency are:

p

∑
q=1

ui(aq) ≤ p×ui(a)

p

∑
q=1

ui(aq) ≥ ui(a)

∀i (2.17)

We will use (2.16) and (2.17) on several occasions when we need to model
conjunctions or alternatives. Once conjunctions and alternatives can be
modeled, the remaining task is to map the atomic predicates ck

qr of (2.15)
to constraints on their respective indicator variables ui(ck

qr). This map-
ping is implemented in various ways depending on the type of the atomic
predicate.
Simple Predicates. We begin with simple predicates c that are local in
that they refer only to the properties of a given single node. These are for-
mulated in terms of property values of the node – which are, essentially,
known constants – and can therefore be evaluated before generating the
ILP. Hence, the respective indicator variable ui(c) can simply be replaced
by either 0 or 1.

Simple predicates that are nested in count or retrieve statements are
special cases that will be considered under nested predicates below.
Count Predicates. Consider a count predicate c of the form:

count(scope) { pred } <= lim

In the following we formulate equivalence between ui(c) = 1 and c. Let
u(pred)j be the variable indicating whether pred is true at a node j. We
constrain ui(c) as follows to formulate the necessity that (ui(c) = 1)→ c,

∑
j 6=i

A(scope)
i j u(pred)j ≤ (1−ui(c))M +lim (2.18)
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where M is a constant value greater than the total number of nodes n. Note
that the above reduces to either (2.19) or (2.20) if the indicator ui(c) is 1
or 0, respectively:

∑
j 6=i

A(scope)
i j u(pred)j ≤ lim (2.19)

∑
j 6=i

A(scope)
i j u(pred)j ≤ M +lim (2.20)

The former case (2.19) exactly formulates the semantics of the above
count predicate c, namely that the number of nodes j within scope that
match pred should be less or equal to lim. In the latter case (2.20), the
constraint is nullified by M, as M > n and the left-hand sum will never be
larger than the number of nodes.

The above equations (2.19) and (2.20) formulate the necessity that
ui(c)→ c. In a second step, we formulate the sufficiency c→ ui(c), equiv-
alent to ui(c)∨¬c, using the constraint

∑
j 6=i

A(scope)
i j u(pred)j ≥ (lim+1)(1−ui(c)) (2.21)

which requires ¬c if ui(c) = 0 while imposing only a trivial constraint if
ui(c) = 1. In summary, the constraints (2.18) and (2.21) model a count
operator that uses the relation ≤. Note that count operators using other
relations can be treated analogously.
Retrieve Predicates. A retrieve predicate c of the form

p == retrieve(scope,size) { pred }

evaluates to true if all of the following three requirements are met.
First, at least size nodes must exist within scope that match the given

nested predicate pred. We model this requirement as a count statement
of the form

count(scope) { pred } >= size

Second, we must ensure that every retrieved node j that is in the set p of
node i really is in scope and also matches the predicate pred

qpi ( j)≤ A(scope)
i j u(pred)i . (2.22)

Third, we require that the number of elements in the set p is size
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n

∑
j=1

q(p)i ( j) = size. (2.23)

Finally, we can formulate that u(c) = 1 if and only if all of the above
requirements hold at the same time using the approach for implementing
conjunctions given in (2.16).

Nested Predicates. In the following consider predicates that occur nested
in count or retrieve statements with a given scope.

For a nested predicate c that refers to the role of the node, i.e.,
role==k, no separate indicator variable u j(c) is needed. We can instead
re-use the existing result variable y jk which indicates whether the role of
a node j is k.

A special case are simple predicates c that check equality between two
properties that represent node sets such as

clusterheads == super.clusterheads

in the clustering example.
To model set equality, we introduce additional indicator variables Qi j

that are set to 1 if and only if the set clusterheads of node i is equal to
the set super.clusterheads at node j. The interesting case is when
the two sets are bound by retrieve predicates (as in the above clustering
example), and thus constitute variables of the algorithm. In these cases,
the parameter size of the respective retrieve predicates indicates the size
of the set (we assume the sets are of equal size, otherwise the compiler
can already set u(c) to 0). In all other cases Qi j can be evaluated before
generating the ILP and simply noted as 1 or 0, respectively.

In the following, we describe the constraints on Qi j. These are formu-
lated in terms of the variables qi(k) representing the set of node i, where
qi(k) = 1 if and only if the element k ∈ {1, ...,n} is contained in the set at
node i, as defined in (2.14). Likewise, respective variables q j(k) for node
j are used. We first compute a set of n helper variables qi j(k) for which
we require that qi j(k) = qi(k)∧ q j(k) using equation (2.16). Figure 2.13
shows an example with two sets of size 2 in which black circles indicate
that the respective q∗(k) = 1.

Using qi j(k), we can formulate that variables Qi j should be 1 if the
intersection of the sets at node i and j contains at least size elements
(i.e., if the sets are equal):
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of node

( )iq k
( )jq k

( ) ( ) ( )ij i jq k q k q k= ∧

n

i
j

additional 
helper variables

of node

1,k = 2, …3,

Figure 2.13: Set equality

n

∑
k=1

qi j(k)≤ Qi j−1+size (2.24)

Otherwise, Qi j should be 0:

n

∑
k=1

qi j(k)≥ size×Qi j (2.25)

Finally, we can replace u j(c) that occur nested within a count or
retrieve statement of a given node i by the corresponding Qi j.

Complexity

Depending on the complexity of the role specifications, the resulting ILPs
are solvable in reasonable time for up to 1000 nodes using the CPLEX

[CPX] commercial solver. Some specifications, however, can result in
rather large ILPs with many indicator variables and constraints. This is
particularly the case with specifications that contain retrieve predicates.
Below we therefore analyze how the above mapping could be imple-
mented using a much lower number of variables – an improvement which
we have so far omitted for ease of exposition. The number of variables
can be used as an indicator for the compute time of a generated ILP.

In the above, we used a total number of n×m variables to encode the
basic role assignment decision, where m denotes the number of specified
roles and n denotes the number of nodes in the network. Further, we
added another set of n variables for each node, to encode local properties
containing node sets that are bound by retrieve statements, resulting in
another n2×b variables, where b represents the total number of different
node sets used in the role specification.

Moreover, in the above mapping of role predicates, we introduced a
number of additional indicator variables. A total of n× a variables are
used to encode atomic predicates at each node, where a is the number of
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atomic predicates in the specification. The most complex atomic predicate
– set equality – required additional n indicator variables for each pair of
nodes, summing up to n3 variables.

However, one can reduce the number of variables by exploiting the lo-
cality (i.e., limited scope of count and retrieve predicates) inherent in the
role specification language. This is comparable to the way the distributed
algorithms of Section 2.4 exploit the locality stated in the specification in
that their overhead is strictly dependent on the size of the scopes used in
count and retrieve predicates.

Similarly, the number of variables needed for the ILP depends on the
scope sizes used in the role specification. Consider a retrieve statement
binding a local property p. Due to the limited scope, rather than n vari-
ables, each node i will only need ki variables to encode p, where ki cor-
responds to the number of nodes in the scope-hop neighborhood of i as
illustrated in Figure 2.14. Moreover, the set of nodes that needs to be en-
coded in the helper variables qi j is even smaller, as qi j(p) must only be
provided for nodes p which are located in the intersection of the scopes
of nodes i and j.

ik

i j

jkvariables

scope of retrieve

iq

ij i jq q q= ∧

variables
jq

Figure 2.14: The number of variables required for modeling set equality depends on the
specified scopes

With these improvements, we obtain a much smaller number of vari-
ables and coefficients. For example, for a 100 node network with
nodes being placed randomly in a 300 m by 300 m area, the ILP im-
plementing the clustering specification from Section 2.3.1 contains only
2428 variables (rather than 1003) and is solvable within seconds using
CPLEX [CPX].
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2.8.2 Evaluation

We extended the existing role assignment development environment de-
scribed in Section 2.5 with the capability of generating an ILP represent-
ing the execution of a given specification on a given topology. The gen-
erated ILP is formulated using the ZIMPL [Koc05] modeling language,
which we use as a front end for the CPLEX solver. Finally, the develop-
ment environment visualizes the ILP’s results on the respective network
topology.

Using the above ILP mapping of role specifications, we can re-examine
the role assignment specifications regarding their optimality, feasibility
and termination, which were open problems so far.

One new aspect of the generated ILP is that it enables the programmer
to express a desired optimality goal, i.e., to minimize or maximize the
number of nodes that are assigned a certain role. While the existing spec-
ifications were not devised with a possible optimization in mind – rather,
these were designed as input for distributed algorithms which assign roles
in a greedy fashion –, it is nevertheless interesting how the optimal results
compare to the ones found using the distributed algorithms of Section 2.4.

As illustrated in Figure 2.15, we examined the minimum number of ON
nodes required to ensure coverage based on the coverage specification that
was used in the evaluation of our distributed algorithms in Section 2.6. As
in earlier evaluations, nodes with a communication range of around 33 m
were randomly distributed in a square area of 300 m by 300 m.

Previously, we studied the same specification with several distributed
algorithms (caching, probabilistic and wave) in terms of their efficiency
regarding communication traffic, but did not employ any strategy to min-
imize the number of ON nodes. It is therefore not surprising that the ILP
approach can yield solutions with about half as many ON nodes as the
distributed algorithms.

As mentioned, the distributed algorithms assign roles in a greedy fash-
ion and do not attempt any optimization. If developers are interested to
improve the quality of the results obtained by the distributed algorithms,
they may add additional conditions to the role specifications (using the
original specification techniques of Section 2.3). In this regard, the op-
timal solution obtained via the ILP indicates the room for potential im-
provement using more refined role specifications.

Moreover, the role assignment solver can provide interesting insights
into undesirable effects of a role specification. While the clustering spec-
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Figure 2.15: Number of ON nodes in simplified coverage example

ification (re-stated in Figure 2.16 for convenience), when interpreted by
the distributed algorithms, typically results in a connected backbone net-
work of clusterheads and gateways (Figure 2.17(b)), minimizing both the
CH and GW roles results in a set of isolated clusters (Figure 2.17(a)), which
are usually not desirable in practical applications. The optimized assign-
ment places clusterheads exactly three hops away from each other, thus
ensuring that each slave is a neighbor of at least one clusterhead, while
at the same time avoiding assignment of the gateway role (as hardly any
node has more than one clusterhead neighbor). This hints at a weakness
of the specification, namely that it does not enforce that clusterhead and
gateway nodes should provide a connected backbone.

For the case that clusterhead and gateway roles are maximized, an ex-
emplary solution is shown in Figure 2.17(c). Here, clusterhead nodes are
exactly two hops away and arranged in an ordered fashion that allows
for many gateway nodes. Essentially, Figures 2.17(a) and 2.17(c) show
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1 CH :: {
2 count(1 hop) {
3 role == CH
4 } == 0 }
5 GW :: {
6 clusterheads == retrieve(1 hop, 2) {
7 role == CH
8 } &&
9 count(2 hops) {

10 role == GW &&
11 clusterheads == super.clusterheads
12 } == 0 }
13 SLAVE :: else

Figure 2.16: Original clustering specification

(a) Minimizing (b) Greedy

(c) Maximizing

Figure 2.17: Clustering results on a 9x9 grid, minimizing vs. maximizing clusterheads
and gateways (clusterheads are black, gateways are yellow, slaves are white,
and edges between gateways and their clusterheads are emphasized)
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two extremal outcomes that may occur with the current clustering speci-
fication – hinting the developer that there is a potential problem with this
specification.

The clustering specification performs more accurately with distributed
algorithms that greedily assign roles as seen in Figure 2.17(b) – as it was
originally designed as an input to these algorithms. With their semantics,
the clustering specification results in a connected backbone in most cases.
However, there is no guarantee that the backbone is always connected.
We therefore discuss a set of specification heuristics that overcome this
weakness in Section 2.9 below.

Enabling the programmer to formulate an additional constraint, namely
that a set of roles should be connected, would be an interesting exten-
sion for the solver component. Such a feature would complement related
work [MLM+05] which estimates whether a set of roles would form a
connected backbone in the average case.

Finally, the ILP translation helps to better understand erroneous spec-
ifications that do not terminate when using the current distributed algo-
rithms. Consider the mentioned RED-GREEN example for which the dis-
tributed algorithms of Section 2.4 would change back and forth between
the roles RED and GREEN:

1 RED :: { count(1) { role == GREEN } >= 1 }
2 GREEN :: { count(1) { role == RED } <= 0 }

Using the ILP mapping of the above specification we could show that the
specification is in fact infeasible – that is, no solution of the generated ILP
exists – on a range of different network topologies.

Apart from evaluating feasibility on a given network graph, we can also
reformulate the ILP to check whether, given a certain number of nodes,
there exists any network graph for which the problem has a solution. By
doing so for the above specification, we obtained graphs consisting of
single isolated GREEN nodes as the only feasible combination of network
topology and role specification. When adding the (practical) requirement
that every node should have at least one neighbor, no solution can be
found, indicating that the specification is infeasible on any reasonable
network topology.

For illustration of this result, consider the simplest graph with two nodes
u, v and an edge (u,v) as shown in Figure 2.18. Looking carefully, we can
see that, out of the 4 assignments that are possible in this graph, none is
feasible. While the last example (both nodes green) seems feasible at first,
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Green

Red

Figure 2.18: RED / GREEN example: None of the four possible role assignments satisfies
the role specification

it is not: As both nodes also match the predicate for RED, the assignment
does not comply with the requirement that the first matching role should
be assigned.

This example suggests that there is a close relationship between specifi-
cations that do not terminate when executed by the distributed algorithms
and specifications that result in infeasible ILPs. What is certain is that
infeasible specifications cannot provide any correct result with the dis-
tributed algorithms, and should therefore be discarded before distributing
them to the network.

Unfortunately, it is uncertain whether a complementary claim also
holds, namely, that one feasible solution implies fast convergence of the
distributed algorithms. Nevertheless, there is an argument supporting this
claim. First, note that the convergence speed is likely to be dependent on
the number of feasible assignments in the network. If the number of fea-
sible assignments is very small, the distributed algorithms are unlikely to
find a correct solution. Instead, they will either end up in a partly incom-
plete configuration (where some nodes have taken on feasible roles and
later on some nodes are assigned the role undefined as, based on the spec-
ification, no feasible roles for them remain), or in an endless iteration (as
in the RED-GREEN example). If the number of feasible solutions is large,
however, the algorithm is likely to converge to a feasible configuration
fast.

In this context, we argue that a feasible specification will usually have
many feasible solutions, not just a few. This has to do with the symme-
tries of the system, which are caused by the fact that the same specifi-
cation is distributed to all nodes: If for a given specification at least one
feasible assignment exists on each of a range of different network topolo-
gies, these assignments can be shifted, rotated, tiled, or combined into a
plethora of feasible solutions. This argument is consistent with the results
of our evaluation of the distributed algorithms (Section 2.6), in which the
convergence period always turned out very short.
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In particular, note how the most useful role assignment specifications
(such as the coverage, clustering, and aggregation specifications we eval-
uated in Section 2.6) focus on choosing special nodes that perform a spe-
cific task (such as the on, clusterhead, or aggregator nodes, respectively).
These specifications allow for a particularly high number of feasible solu-
tions, because it does not matter which node from a set of network neigh-
bors is elected special. Once an arbitrary initial choice of special nodes
has been made, a feasible solution, in which the special nodes’ neighbors
are assigned slave or gateway roles, can be found easily.

2.9 Additional Role Specifications and Language
Extensions

The previous sections have described and evaluated a comprehensive sys-
tem for assigning roles to sensor nodes. Based on the role assignment
solver of the previous Section 2.8, a deficiency of the example specifica-
tion we used for clustering has become apparent, namely, that it does not
guarantee that clusterhead nodes are connected.

Before concluding this chapter, we therefore briefly discuss a few exam-
ples of additional role assignment specifications. These should underline
the generality of the system and provide important building blocks from
which developers can derive their own specifications consisting of com-
binations and variations of the specifications provided here.

Further, we discuss a set of refinements of these specifications, which
we use to point out valuable extensions to the role assignment language.
These extensions would be easy to embed into the distributed role assign-
ment algorithm and at the same time would make it more flexible and
generic.
Data Gathering Tree. We have mentioned that generic role assignment
can be used to construct trees. Consider the following simple specifica-
tion:

1 CHILD :: {
2 parent == retrieve(1 hop, 1) {
3 role == SINK ||
4 role == CHILD
5 }
6 DISCONNECTED :: else

The specification requires that CHILD nodes are either neighbors of the
network’s sink or of other CHILD nodes. Because all nodes start in an
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undefined role, the role CHILD implies that the node is truly connected to
the sink. Because every node except the sink picks one parent, the above
specification implements a tree that grows from the sink. The local prop-
erty parent is used to retain a node’s parent in the tree and to make it
available to other applications by means of the node’s property directory.

Note that after constructing the initial configuration, after a failure of a
parent node it may happen that CHILD nodes re-connect to other CHILD
nodes forming a cycle which is not connected to the sink. This is a
common problem in tree construction protocols and can be addressed by
adding a local counter property that stores a node’s hop distance to the
sink. Every node would pick a parent whose counter is smaller than its
own and, further, set its own counter to the one of its parent plus one.
Such details could be implemented using the syntax we introduce in this
section. Note that we omit these details, when we implement trees in the
specifications below.
Connected Clustering. The clustering specification, which we intro-
duced in Section 2.3.1, can be enhanced by constructing a tree in a similar
manner.

We mentioned that the original specification does not guarantee that
a connected communication backbone of clusterheads and gateways is
constructed. Instead, it relies on heuristic constraints on the gateway role
that shall provide a connected topology in most cases and yet keep the
total number of gateway nodes low.

By a slight adaptation of the specification, however, a connected topol-
ogy can be obtained. Consider the enhanced clustering specification
shown in Figure 2.19, which only adds the lines 5–8 to the original clus-
tering specification introduced in Section 2.3.1:

The additional requirement for the assignment of the clusterhead (CH)
role (lines 5–8) is derived from the specification of the CHILD role above.
A node is allowed to become a clusterhead only if a “parent” clusterhead
(or the sink) is present within two hops of the local node. This way, based
on the provided specification for gateways (GW), later on at least one GW
node will be elected connecting the new clusterhead to its parent.
Clustered Tree. The above combination of the tree and clustering spec-
ifications hint at a refined version of this specification. For example, the
specification of the gateway role GW still focuses on connecting arbitrary
pairs of clusterheads. If a developer, instead, prefers to construct a clus-
tered tree rooted at the sink, and does not desire any additional inter-
clusterhead gateways, the specification shown in Figure 2.20 can be used.
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1 CH :: {
2 count(1 hop) {
3 role == CH
4 } == 0 &&
5 count(2 hop) {
6 role == SINK ||
7 role == CH
8 } >= 1 }
9 GW :: {

10 clusterheads == retrieve(1 hop, 2) {
11 role == CH
12 } &&
13 count(2 hops) {
14 role == GW &&
15 clusterheads == super.clusterheads
16 } == 0 }
17 SLAVE :: else

Figure 2.19: Connected clustering specification

1 CH :: {
2 count(1 hop) {
3 role == CH
4 } == 0 &&
5 parent = retrieve(2 hop, 1) {
6 role == SINK ||
7 role == CH }
8 GW :: {
9 clusterheads == retrieve(1 hop, 2) {

10 role == CH
11 } &&
12 count(2 hops) {
13 role == GW &&
14 clusterheads == super.clusterheads
15 } == 0 &&
16 (clusterheads(1) == clusterheads(2).parent ||
17 clusterheads(2) == clusterheads(1).parent) }
18 SLAVE :: else

Figure 2.20: Clustered tree specification



74 Chapter 2. Generic Role Assignment

Compared with Figure 2.19, line 5 now binds the parent clusterhead
in the tree using retrieve. Moreover, an additional requirement has
been added to the gateway role GW in lines 16–17. This statement requires
that among the two clusterheads connected by a potential gateway,
the first should be the parent of the second or vice versa. This way, once a
tree of clusterhead roles has been established – in which clusterheads are
always two hops apart – GW nodes will simply connect the original tree
constructed using the CH role. In this specification, more nodes can be
assigned the energy efficient SLAVE role, as much fewer nodes function
as gateways.

The statements in lines 16–17 use an extended syntax to access the
members of the set clusterheads in an ordered manner. This syntax
would be mapped onto set operations performed by an enhanced prop-
erty directory. In order to support the notation used in lines 16–17, the
property directory must store node sets in some arbitrary order and pro-
vide for access to individual elements of these sets. While such features
are not present in our current implementation, we expect that an existing
(and more powerful) property sharing component can be used for this
purpose, especially because various literature has argued for adequate
node-level components that are conceptually similar to our property di-
rectory [KHHK04, LMMR05]. Vice versa, many other systems (other
than role assignment) could benefit from a more powerful implementa-
tion of the property directory and, in particular, from data structures that
facilitate dealing with nodes, sets of nodes, and properties of these nodes.

In the example of lines 16–17, any deterministic ordering of the nodes in
the clusterheads set would suffice (e.g., based on node identifiers).
If the developer could additionally specify which node property should
be used to impose an order on the nodes in the set, even more powerful
specifications become possible. In the remaining examples, we will use
the syntax

nodeset(index,prop)

where the above expression references the node at position index
in nodeset when the elements of nodeset are ordered by ascend-
ing values of the node property prop. When we used the expres-
sion clusterheads(1) in the specification of the clustered tree
above, in the default case, node identifiers were used to induce an or-
der on the set clusterheads – spelled out, the expression would state
clusterheads(1,id), where id represents a property in the nodes’
property directory which contains the node’s identifier.
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Best Clusterhead. Using such expressions referring to members of node
sets, many simple yet effective applications can be formulated. Consider
the following alternative clustering specification:

1 CH :: {
2 count(1 hop) {
3 role == CH
4 } == 0 &&
5 connectedClients == count(1 hop) {
6 role == SLAVE &&
7 chId == super.id
8 }
9 SLAVE :: {

10 clusterheads == retrieve(1 hop) {
11 role == CH
12 } &&
13 chId == clusterheads(1, connectedClients).id }

In the above specification, we augmented the clusterhead role with a
counter connectedClients for counting slave nodes connected to
the current clusterhead (line 5). The respective count expression counts
SLAVE nodes whose associated clusterhead – which is stored by SLAVE
nodes in their local property chId – matches the identifier of the current
clusterhead (super.id) in line 7.

Using the connectedClients property, we can specify that SLAVE
nodes should select the clusterhead node which has the least number
of slaves connected to it. This is done in line 13. From the set
clusterheads, the identifier of the first node is selected – while the or-
der of clusterheads is imposed by their property connectedClients.

We would like to note that the above specification is unstable, because
only very slight changes in the number of connected clients could cause
slaves to switch their clusterhead (and again cause the number of con-
nected clients to change). However, this instability occurs only when two
clusterheads have near equal numbers of connected clients and can there-
fore be approached the same way as with other properties that undergo
many small changes (cf. Section 2.4.5): The programmer may specify
a tolerance threshold ∆(connectedClients), which would force the algo-
rithm to abstain from re-configuration if connectedClients changes by less
than the specified ∆.
Coloring. A common way to reduce interference among wireless trans-
mitters is to assign different channels to neighboring nodes. Such chan-
nel assignments, usually modeled by vertex coloring problems [KV02],
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are particularly useful if the used sensor node hardware includes multiple
transceivers [BKM+04] or if node transceivers support multiple commu-
nication channels [Tmo05], as the assignment of different channels to
neighboring nodes can effectively improve network throughput. A speci-
fication for selecting a low-interference channel2 is shown below:

1 C1 :: {
2 count(1 hop) {
3 role == C1
4 } == 0 }
5 C2 :: {
6 count(1 hop) {
7 role == C2
8 } == 0 }
9 C3 :: {

10 count(1 hop) {
11 role == C3
12 } == 0 }

The above specification simply assigns the roles C1 to C3. According to
the semantics of the distributed algorithms presented earlier in this chap-
ter, the role UNDEFINED will be assigned if no interference free channel
(C1-C3) should be available because all channels are allocated to neigh-
boring nodes.

This semantic detail constitutes an important difference to full-fledged
coloring algorithms: Given the above specification, our distributed algo-
rithms will not always find an assignment of channels to network nodes,
even if such an assignment (a 3-coloring) exists. Instead, the algo-
rithm will quickly iterate to some solution in which nodes will stay in
UNDEFINED if previous role assignments in the network neighborhood
happen to have “consumed” the three available channels.

Alternatively, instead of just choosing UNDEFINED, an algorithm could
initiate re-configuration at neighboring nodes, which would eventually
find a feasible 3-coloring solution if one exists. In our initial design, we
decided against enforcing such “strong” semantics because these come at
a very high cost: A role assignment problem which has only few (or only
one) feasible solution would be caught up in harmful iterations through
many role changes. These strong semantics are implemented only in the
centralized solver component, which is more powerful. Using the above
specification as an input, the centralized solver can compute a three-
coloring if one exists or otherwise return infeasible.

2In this example, we assume that a main communication channel performing role assignment and routing
has been selected beforehand and remains unchanged by this specification.
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In contrast, having nodes locally revert to UNDEFINED if no other role
is feasible, removes a large amount of the interdependence between neigh-
boring nodes and allows the algorithms to converge quickly. Moreover,
these “weaker” semantics are quite useful. For example, in sparse net-
works in which many feasible role assignments according to the above
specification exist, the distributed algorithm will very quickly converge to
one of them – or to a solution in which only very few nodes remain with
UNDEFINED. Moreover, the application developer may provide custom
code for nodes in the UNDEFINED role, i.e., which lets the node sleep
until a channel becomes available.

We close this section with an example specification of the above prob-
lem for a larger number of channels:

1 CHANNEL-ASSIGNED :: {
2 neighbors == retrieve(1 hop) {
3 role == CHANNEL-ASSIGNED
4 } &&
5 channel ==
6 draw-from {1..MAX-CHANNEL} \ neighbors.channel
7 }
8 UNDEFINED :: else

The above specification demonstrates a few syntactic features, which
can be used to render the existing role assignment system more flexible.
These features, as above, can be mapped onto local (possibly custom-
implemented) library functions or to more powerful operators provided by
the local node’s runtime. In this example, the function draw-from(S)
chooses a random element from a given set S, or evaluates to false if S= /0.

The operation {1..n} constructs a set consisting of the values 1
through n. If a local property P is of type node set, the expression P.x can
be used to generate a set of all different node properties x that occurred
at nodes in the set P. Note that the expression neighbors.channel
is well-defined, as the check for the CHANNEL-ASSIGNED role (line 3),
based on short-circuit semantics, ensures that the property channel is
set properly at all nodes in neighbors.

The symbol ‘\’ refers to set subtraction. In summary, the expression in
lines 5–6 chooses a random channel from the channels not used by nodes
in the one-hop neighborhood of the current node.

In the above, we have listed a set of specification examples that should
underline the initial claim that role assignment is a generic concept that
can be useful for a wide range of applications. In some of these specifica-
tions, we introduced slight extensions to the specification syntax, which
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we deem worthwhile implementing in future work, as we expect them to
provide for a new set of important applications. All envisioned extensions
involve only local operations that could be supported by a more power-
ful local runtime environment on the network nodes, while the basic role
assignment protocol (based on repeated property propagation and subse-
quent rule evaluation based on a nodes local knowledge) could still be
used to support these specifications as well.

2.10 Summary

In this chapter, we have investigated a novel programming abstraction
called generic role assignment, which automatically assigns roles to sen-
sor nodes based on their properties and the properties of their network
neighborhood.

We have presented a distributed algorithm for role assignment and two
variations that perform probabilistic initialization. Through an extensive
quantitative evaluation, we have shown that role assignment is not only a
powerful tool, but can also be implemented in an efficient and robust way.
Further, we described an extension to our role assignment system that
maps a given role assignment instance – consisting of a network topology,
a set of node properties, and a role assignment specification – to an integer
linear program formulation. This extension provides developers with a
valuable tool for analyzing the feasibility, optimality, and termination of
role assignment specifications.

A particularly noteworthy application of generic role assignment is
rapid prototyping for sensor networks. Currently, the deployment of
sensor networks often involves a trial-and-error phase, where algorithms
and protocols are tested in different configurations in real-world settings
(e.g., [WAJR+05]). With generic role assignment, these different config-
urations could be easily generated and changed. While all components
under test could be loaded onto the nodes before deployment, these could
be started and stopped through the assignment of certain roles and initial-
ize their respective configuration parameters from the property directory.

As we have argued, one desired property of role-based network config-
uration is that it obeys certain global optimization criteria, for example,
minimizing the number of required on nodes while maintaining coverage.
While such optimization can be performed using the provided solver com-
ponent, we have not provided such a feature in our distributed algorithms.
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The distributed generic role assignment approach instead focuses on
ease of use: It has been designed to allow developers to rapidly prototype
configuration heuristics whose quality is sufficient. For example, the ab-
straction can well express various clustering heuristics. This includes the
clustering specifications we presented in this chapter as well as the con-
nected dominating set heuristics used by passive clustering [KG02], or a
maximum independent set (implemented by our system if one specifies
that on nodes are not allowed to have on neighbors). A maximal indepen-
dent set can be used to approximate the minimum dominating set problem
as (in unit disk graphs) it is only a constant factor worse than the optimal
configuration [Mos07].

Nevertheless, a generic algorithm that computes optimal solutions for
a wide-range role-based configuration problems is an intruiging goal.
Based on the variety of applications which can be expressed using the
role specification language, devising an algorithm that is applicable to all
conceivable specifications remains a challenge. As it turns out, however,
such an algorithm can be provided for a key subclass of role-based con-
figuration problems, as we describe in the next chapter.



80 Chapter 2. Generic Role Assignment



3 Distributed Facility Location

In an important subclass of role-based configuration problems, a set of
network nodes must be chosen to provide a service to their network
neighborhood. Many application examples we have discussed in the pre-
vious chapter belong to this class, such as clustering [BMP04], where
cluster heads serve as communication hubs for nearby nodes, or ag-
gregator placement [MFHH02], where some nodes collect and aggre-
gate sensor data from nearby sensor nodes. Recently, tiered sensor net-
works [GGJ+06] have been proposed, consisting of resource-poor sensor
nodes in the first tier and powerful hub nodes in the second tier. In these
networks, every sensor node is assigned to and controlled by a hub node.
Note that in all of the above examples, configuration consists in electing
some nodes as servers while the remaining client nodes are assigned to a
server.

While, next to generic role assignment, many specialized proposals ex-
ist for finding such network configurations, these approaches often do not
pay attention to optimizing the overall cost of these configurations, which
consists of two components: on the one hand, the costs of operating the
servers (e.g., representing the servers’ increased communication load as
these forward traffic for many clients), and, on the other hand, the costs
of communication between clients and their server. In wireless networks,
the latter cost can be dependent on the physical distance between a client
and its server (as a longer wireless link requires higher transmit power and
thus increased energy consumption), on the number of hops in a multi-hop
network graph, or on interference and network congestion. In all cases,
lowering communication costs by means of additional server nodes may
prove beneficial.

The goal of this chapter is to provide a generic and practical mecha-
nism for finding cost-optimized solutions to the above self-configuration
problems. Our approach is based on the observation that the above opti-
mization problem can be modeled as an (uncapacitated) facility location
problem [Vyg05, Vaz03]. There, we are given a set F of facilities, a
set C of clients (also known as cities or customers), a cost fi for open-
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ing a facility i ∈ F and connection costs ci j for connecting client j to
facility i. The objective is to open a subset of facilities in F and con-
nect each client to an open facility such that the sum of connection and
opening costs is minimized. Open facilities represent server nodes which
can be used to provide a particular service to network neighbors (just like
clusterhead nodes in the previous chapter). The remaining client
nodes correspond to nodes assigned the role slave.

Although the facility location problem has been studied extensively in
the past, no practical solutions exist that would be suitable for multi-hop
sensor networks. While distributed algorithms for facility location exist,
they are either not generally applicable [GLS06], require a certain (albeit
small) amount of global knowledge [MW05], require impractical com-
munication models [MW05, CEPS05], or (based on the provided approx-
imation factor [CEPS05]) might not improve over the heuristic clustering
specifications we provided in the previous chapter – or over clustering
heuristics from related work.

In this chapter, we therefore contribute a local facility location algo-
rithm that lends itself well for implementation in multi-hop sensor net-
works, and provides an approximation factor of 1.61 for metric instances
(cf. Section 3.1). By means of an experimental study, we show that,
for typical problem instances derived from sensor network configuration
problems, the algorithm provides near-optimal solutions and terminates
after few communication rounds.

While the above view adopts a static graph model of sensor networks,
practical sensor networks are rather dynamic: Nodes may fail and the
quality of wireless links fluctuates over time. To make our algorithm ap-
plicable to such realistic settings, we propose a set of rules to repair a
sensor network configuration in case of node failures, additions, and link
quality changes. Further, we evaluate our algorithms and the proposed
dynamic adaptation rules using link quality traces obtained from an oper-
ative sensor network deployment.

Compared with the previous chapter, the provided facility location al-
gorithms export a narrower configuration interface to application devel-
opers. Instead of role specifications, developers are expected to provide a
set of opening and connection cost parameters or, alternatively, a custom-
implemented function which allows nodes to compute the respective cost
parameters locally. In return, the underlying implementation can provide
intriguing performance guarantees, which constitute the main motivation
of this chapter.
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3.1 Model and Applications

The facility location problem can be used to model configuration deci-
sions in multi-hop networks in a variety of ways. As before, we model the
multi-hop network subject to configuration as a graph G = (V,E). Typi-
cally, a network node takes on the role of a client and that of a potential
facility at the same time, that is, F = C = V . If a node i ∈ V is selected
as an open facility, it will take on the role of a server. The remaining
slave nodes will be associated to a certain server node in their network
neighborhood.

In some cases, only a subset of nodes have the necessary capabilities
(e.g., remaining energy, available sensors, communication bandwidth, or
processing power) that make them eligible as a facility, which results in
F ⊆ C = V . The role assignment framework presented in the previous
Chapter 2 may be used to compute the set of potential facility nodes F .
The algorithms of this chapter can then be used to open a subset from the
nodes F which serves the network nodes C efficiently.

The respective settings of opening costs fi and connection costs ci j can
implement various applications. In most cases, connection costs ci j of
an existing a network link (i, j) ∈ E represent a link quality metric that
can be determined locally at the nodes. In the application examples of
this chapter, we assume that the nodes can control the power they use for
sending. Therefore, we set connection costs ci j as proportional to g(i, j)2

where g(i, j) denotes the distance in m between i and j – implementing
the energy-level required to send messages from j to i.

For pairs of nodes (i, j) which cannot directly communicate in the un-
derlying network graph, i.e., (i, j) /∈ E, different settings of ci j allow to
specify desired configurations. Setting ci j = ∞ when (i, j) /∈ E would re-
quire that every client has a facility as a direct neighbor. We will denote
this problem formulation as one-hop. An example configuration using
such parameters is shown in Figure 3.1(a).

Alternatively, the network developer may be interested in allowing
nodes to connect to facilities which are an arbitrary number of hops away
– as long as the communication costs adequately represent the energy
required to communicate between i and j. To implement such configu-
rations, ci j can be set to the shortest network path between i and j. The
required shortest-paths computation will be achieved using a local flood
around a given node i. We denote this problem as multi-hop and show an
example configuration in Figure 3.1(b).
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(a) One-hop example, fi = 1 (b) Multi-hop example, fi = 5

(c) Multi-hop example, fi = 2×D(sink, i)

Figure 3.1: Effects of different opening cost parameters; D(sink, i) denotes the shortest-
path distance to the sink, which is located in the upper left corner



3.1. Model and Applications 85

Depending on the particular setting of ci j one may obtain instances of
the facility location problem which are not metric. The definition of a
metric instance is that connection costs obey the triangle inequality, which
requires that for any three nodes i, j,k the direct path is shorter than a
detour (ci j ≤ cik + ck j).

If the input to a facility location algorithm is non-metric, the problem is
particularly hard to solve (see Section 3.2 below). Particularly, the one-
hop setting results in a non-metric instance because of two reasons: The
first is that, for two non-neighboring nodes, the one-hop path is modeled
by infinite costs, while a multi-hop path exists. The second is that setting
connection costs proportional to the squared geographic distance between
two nodes results in non-metric instances, for example:

i j

k
4

8

1

In turn, the multi-hop problem formulation, in which ci j are computed
on the fly to correspond to the shortest path between i and j, represents a
metric instance of the facility location problem.

Finally, the opening costs provide developers with an additional lever to
express properties of the configuration they desire. For example, the open-
ing costs fi of a node i can represent the communication effort involved
if this node were to become a service provider for its network neighbor-
hood. In a network in which open facilities represent clusterheads which
must keep their receivers on at all times to receive traffic from associ-
ated clients, fi can quantify the energy required for operating the node’s
transceiver. This is usually a multiple of ci j, the effort involved in a client
node’s communication with its clusterhead in a given epoch.

Moreover, opening costs fi may take into account the effort involved if
clusterheads were to forward data to the network sink. In Figure 3.1(c),
we show an example of a multi-hop configuration in which opening costs
fi are proportional to the node i’s network distance to the sink. Such
parameterization is useful if one assumes that clusterheads must perform
repeated communication with the sink which, based on aggregation, does
not increase significantly with the number of connected clients. In this
setting, it is efficient to let facilities that are far from the sink connect more
clients at higher connection costs, as shown in the results of Figure 3.1(c).

In the course of this chapter, we will use the three parameterizations
sketched in Figure 3.1 to evaluate a set of distributed facility location al-
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gorithms which can be applied to the above one-hop and multi-hop prob-
lem settings.

3.2 Related Work

An ample amount of literature exists on centralized approximation al-
gorithms for the NP-hard facility location problem [Vyg05]. Such al-
gorithms are not applicable as collecting a global view of the network
topology at a single point (e.g., at the network basestation) represents a
prohibitive communication overhead.

For non-metric instances of the facility location problem, even approx-
imations are hard to come by: As the set cover problem can be reduced
to (non-metric) facility location, the best achievable approximation ra-
tio (even with a centralized algorithm) is logarithmic1 in the number of
nodes [Fei98]. A classic and simple algorithm [Hoc82] already comes
close to this lower bound. Distributed approximations are rare: [MW05]
solve non-metric facility location even in a constant number of commu-
nication rounds. However, the algorithm requires that a coefficient ρ,
which is computed from a global view of the problem instance, is dis-
tributed to all nodes before algorithm execution – which prevents it from
being used “as-is” in practice. Moreover, the algorithm requires global
communication among all relevant clients and facilities and therefore can
only efficiently be used in the one-hop setting where such communication
can be implemented efficiently by wireless broadcast. Finally, the best
approximation factor it can obtain, which is independent of the problem
instance, is on the order of O(log(m+n) log(mn)) where m and n denote
the number of facilities and clients, respectively.

For metric instances of the facility location problem, much better
approximation factors ∈ O(1) can be achieved. While it has been
shown [GK99] that a polynomial-time algorithm cannot obtain an ap-
proximation ratio better than 1.463, a centralized algorithm [MYZ02]
already provides a solution that is at most a factor of 1.52 away from
the optimum. For the metric case, a distributed algorithm has been men-
tioned in [CEPS05] which solves a constrained version of the problem
in which facilities and clients may be at most 3 hops away. It provides
a 3 + ε approximation factor derived from a parallelized execution of
a respective centralized algorithm [JV99] and is formulated in terms of

1This holds unless every problem in NP can be solved in O(nO(log logn)) time.
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a synchronous message passing model. The same paper [CEPS05] in-
cludes additional versions, which restrict the facility location problem in
one way or another. Only recently, a constrained version of the facil-
ity location problem (in which all opening costs are equal) has been ad-
dressed in a distributed manner [GLS06]. This algorithm also requires a
synchronous message passing model and global communication among
all nodes in each round. Finally, a distributed algorithm based on hill-
climbing [KSW05] addresses a version of the problem in which exactly
k facilities are opened. In this approach, the worst-case time complexity
and the obtained approximation factor are not discussed explicitly.

In this chapter, we develop a distributed version of a centralized al-
gorithm [JMM+03] which provides an 1.61 approximation factor with
metric instances. Compared to related work, our work improves on the
approximation factor achievable in a distributed manner. Moreover, we
provide adaptations for executing this algorithm in multi-hop networks
for which, to our knowledge, no local algorithm with guaranteed worst-
case approximation factor exists. Finally, compared to [MW05, CEPS05,
GLS06], our algorithms do not require a synchronous message passing
model. Instead, they perform synchronization among network neighbors
implicitly as nodes wait for incoming messages.

The remainder of this chapter is structured as follows. In Section 3.3,
we briefly summarize the centralized algorithms [JMM+03] which pro-
vide the foundation for our work. We then describe their distributed re-
formulation in two steps. The first version, given in Section 3.4, still re-
quires global communication, namely, that all clients communicate with
all relevant facilities in each step, and is therefore only applicable to the
one-hop setting, where this can be efficiently implemented as a wireless
broadcast. In the second step, we use this algorithm as a subroutine in the
algorithms of Section 3.5, which distribute messages only to a local neigh-
borhood around the sending node and may therefore be used in multi-hop
networks. Finally, we provide experimental results in Section 3.6 and a
summary of the chapter in Section 3.7.

3.3 Centralized Algorithms

Jain et al. [JMM+03] devised two centralized approximation algorithms
for the facility location problem. Both use the notion of a star (i,B) con-
sisting of a facility i and an arbitrary choice of clients B⊆C (in clustering
terminology, a star corresponds to a cluster leader and a set of associated
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slave nodes). The first algorithm from [JMM+03] is given in Algorithm 1.
In its core step (line 1.3), the algorithm selects the star (i,B) with best
(lowest) cost efficiency. The cost efficiency of a star is defined as

c(i,B) =
(

fi +∑ci j
)
/|B| (3.1)

and represents the average cost per client which this star adds to the total
cost.

Algorithm 1: Centralized 1.861-approximation algorithm [JMM+03]
set U = C1.1

while U 6= /0 do1.2

find most cost-efficient star (i,B) with B ⊆U1.3

open facility i (if not already open)1.4

set σ( j) = i for all j ∈ B1.5

set U = U \B1.6

set fi = 01.7

Therefore, in each step, the algorithm selects the most cost-efficient star
(i,B), opens the respective facility i, connects all clients j ∈ B to i (sets
σ(j) = i), and from this point on disregards all (now connected) clients in
B. The algorithm terminates once all clients are connected.

Note that in spite of there being exponentially many sets B ⊆ U , the
most efficient star can be found in polynomial time: For each facility
i, clients j can be sorted by ascending connection cost to i. Any most
cost-efficient star spanning some k = |B| clients will consist of the first k
clients with lowest connection costs – all other subsets of k clients can be
disregarded as these cannot be more efficient. Hence, at most |C| different
sets must be considered.

When a facility i is opened, its opening cost fi is set to zero. This al-
lows facility i to be chosen again to connect additional clients in later
iterations, based on a cost-efficiency that disregards i’s opening costs fi
– as the facility i has already been opened before in order to serve other
clients. For metric instances, Algorithm 1 provides a 1.861 approximation
factor. Note that line 1.7 constitutes the only difference to a classic algo-
rithm [Hoc82], whose approximation factor for metric instances is much
worse. An even better approximation factor of 1.61 can be obtained when
changing the above algorithm to additionally take into account the benefit
of opening a facility i for clients that are already connected to some other
facility. This involves two changes.
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First, this requires that a revised cost-efficiency definition is used in
line 1.3. We let B(i) denote the set of clients j which are already con-
nected to some facility σ( j) and would benefit if i would be opened as
their connection cost to i would be lower than their current connection
cost cσ( j) j, i.e.,

B(i) =
{

j ∈C with σ( j) 6= none and ci j < cσ( j) j
}

. (3.2)

The cost efficiency of a star (i,B) can now be restated as

c(i,B) =

(
fi + ∑

j∈B
ci j− ∑

j∈B(i)
(cσ( j) j− ci j)

)
/|B|. (3.3)

A second analogous change is made to line 1.5. In addition to the clients
which are part of the most-efficient star (i,B), all already-connected
clients B(i) which benefit from switching are connected to i. For this,
line 1.5 becomes

set σ( j) = i for all j ∈ B∪B(i).

The authors prove in [JMM+03] that this change improves the approx-
imation factor to 1.61 for metric instances. In the following, we will
present a distributed version of this 1.61-algorithm. In the discussed dis-
tributed adaptations, we will always use the revised cost-efficiency defi-
nition given in equation (3.3).

3.4 One-hop Approximation

Consider the distributed algorithms given in Algorithm 2 (for facilities)
and 3 (for clients). We will show below that they perform the exact same
steps as the centralized Algorithm 1. While these algorithms require that
each client communicates with each facility and vice versa, the algorithms
can be also applied “locally” such that each node communicates only with
its network neighbors. This way, they can be used to compute a solution to
the one-hop version of the facility location problem, for example, to com-
pute an energy-efficient clustering that takes the costs of individual links
into account. Unfortunately, this constrained problem version results in a
non-metric instance (see Section 3.1) and thus the approximation guaran-
tee of 1.61 cannot be preserved. However, in the next section, we will use
these algorithms as a subroutine to obtain an algorithm that maintains the
approximation factor of 1.61 for multi-hop sensor networks. Moreover,
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we will show that Algorithms 2 and 3 compute good solutions even when
they are executed on non-metric instances in our experimental results of
Section 3.6.

We assume that after an initial neighbor discovery phase, each client j
knows the set of neighboring facilities, which it stores in the local variable
Fj, and also the connection costs ci j to facilities i ∈ Fj. Vice versa, each
facility i knows the set of neighboring clients Ci and ci j of all i∈Ci. In the
following we will simply write C and F , as the respective indices i and j
can be deduced from the context.

Algorithm 2: Distributed formulation of Algorithm 1 for Facility i
set U = C2.1

repeat2.2

find most cost-efficient star (i,B) with B ⊆U2.3

send c(i,B) to all j ∈U2.4

receive “connect-requests” from set B∗ ⊆U2.5

if B∗ = B then2.6

open facility i (if not already open)2.7

send “open” to all j ∈ F2.8

set U = U \B2.9

set fi = 02.10

receive σ( j) 6= none from set Ca2.11

set U = U \Ca2.12

until U = /02.13

Algorithm 3: Distributed formulation of Algorithm 1 for a Client j
repeat3.1

receive c(i,B) from all i ∈ F3.2

i∗ = argmini∈F c(i,B) // use node ids to break ties among equal c(i,B)3.3

send “connect-request” to i∗3.4

if received “open” from i∗ then3.5

set σ( j) = i∗3.6

send σ( j) to all i ∈ F3.7

until connected3.8

on “open” from i with ci j < cσ( j) j3.9

set σ( j) = i3.10

send σ( j) to all i ∈ F3.11

As in Algorithm 1, this time each facility i maintains a set U of un-
connected clients which is initially equal to C (line 2.1). Facilities start a
round by finding the most cost-efficient star (i,B) with respect to U and
sending the respective cost efficiency c(i,B) to all clients in B (lines 2.3-
2.4). In turn, the clients can expect to receive cost-efficiency numbers
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c(i,B) from all facilities i ∈ F (line 3.2). In order to connect the most
cost-efficient star among the many existing ones, clients reply to the facil-
ity i∗ that has sent the lowest c(i∗,B) with a “connect request” (line 3.4).
In turn, facilities collect a set of clients B∗ which have sent these “con-
nect requests” (line 2.5). Intuitively, a facility should only be opened if
B = B∗, that is, if it has connect requests from all clients B in its most effi-
cient star (line 2.6). This is necessary, as it could happen that some clients
in B have decided to connect to a different facility than i as this facility
spans a more cost efficient star. So, if all clients in B are ready to connect,
facility i opens, notifies all clients in B about this, removes the connected
clients B from U , and sets its opening costs to 0 (lines 2.7-2.10) as in the
centralized algorithm.

If a client j receives such an “open” message from the same facility i∗

which it had previously selected as the most cost efficient, it can connect
to i∗ (lines 3.5-3.6). Further, in line 3.7, client j notifies all facilities that
it is now connected to i∗, which update their sets of unconnected clients
U in lines 2.11-2.12.

Once connected, clients simply switch the facility they are connected
to in case a closer facility becomes available (lines 3.9-3.10). This fea-
ture enables the 1.61 approximation factor. Note that whenever a client
changes its facility σ( j), it informs all facilities about this (lines 3.7 and
3.11). All these σ( j) messages include the associated connection costs
cσ( j) j and will be received in line 2.11 of the facility algorithm. By the
next iteration, facilities will have received σ( j) and cσ( j) j from all rel-
evant clients, and will therefore be able to correctly compute the most
cost-efficient star (line 2.3) according to Eq.(3.3).
Discussion. In the following, we argue that the distributed and the cen-
tralized versions are equivalent. For this, we denote one execution of the
inner loops at Algorithms 3 and 4 as a round. Note that the distributed
version opens some stars out-of-order, that is, earlier than the centralized
version. The following lemma states that these stars are disjoint from any
star that might follow and has lower cost-efficiency.

Lemma 3.4.1 Let Uk be the set of uncovered clients prior to the begin-
ning of round k. If a client j is part of a star (i,B) opened by the dis-
tributed algorithm in round k, then there is no star (i′,B′) considering
B′ ⊆Uk with j ∈ B′ and c(i′,B′) < c(i,B).

Proof Assume the contrary, namely that a star (i′,B′) exists with
c(i′,B′) < c(i,B) and say j is a client in B′∩B. Note that B′ ⊆Uk, and



92 Chapter 3. Distributed Facility Location

therefore i′ will choose some star (i′,B′′) with cost-efficiency c(i′,B′′) ≤
c(i′,B′) in line 2.3. However, as (i,B) is opened in round k, client j has
sent its connect request to i and not to i′, which implies c(i′,B′)≥ c(i,B)
and contradicts the assumption.

Given the above, we can show that the stars opened by the distributed
algorithm can be re-ordered to correspond to the execution of the central-
ized algorithm.

Theorem 3.4.2 The distributed and centralized versions are equivalent.

Proof We sequentialize the distributed algorithm as follows: In the se-
quentialized version we open only one star (the globally most cost-
efficient star) per round. Further, we postpone opening a star (i,B) which
has been opened in parallel by the distributed algorithm to a later round
prior to which all stars (i′,B′) with c(i′,B′) < c(i,B) have been processed.
Let (i′,B′) denote one such star. Because of Lemma 3.4.1, B′ ∩B = /0,
and therefore opening (i′,B′) ahead of time does not remove any client in
B from U and therefore does not interfere with opening (i,B). Similarly,
postponing any (i,B) will not allow that a more cost-efficient star includ-
ing elements of B is formed earlier – again by Lemma 3.4.1. Postponing
(i,B) can further influence (raise) the cost-efficiency of the stars (i′,B′) as
it changes the set B(i) for these facilities and thus may change the order
in which these are processed. However, as by Lemma 3.4.1 all these stars
are mutually disjoint, the order in which they are opened does not affect
total costs. Finally, all stars opened in parallel are disjoint and re-ordering
them does not change algorithm execution.

Therefore, the sequentialized version opens the same stars as the dis-
tributed algorithm. Moreover, as the sequentialized version opens the
most cost-efficient star in every round, it implements the execution of
the centralized algorithm.

Algorithms 2 and 3 therefore provide an approximation factor of 1.61.
While the quality of the obtained solutions is intruiging, the worst-case
number of rounds required by Algorithms 2 and 3 is linear in the number
of nodes, because there can be a unique point of activity around the glob-
ally most cost-efficient facility i∗ in each round: Consider for instance a
chain of m facilities located on a line, where each pair of facilities is inter-
connected by at least one client, and assume that facilities in the chain
have monotonously decreasing cost efficiencies. Each client situated be-
tween two facilities will send a “connect-request” to only one of them (the
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more cost efficient), thus the second cannot open. In this example, only
the facility at the end of the chain can be opened in one round. Similarly,
once at least one facility is open, it could happen that in each round only
one client connects to this facility. The worst-case runtime is therefore
O(n), in which n is the number of network nodes.

The linear number of rounds required by every node in the worst-case
would constitute a high overhead in large networks. However, a worst-
case configuration on a larger scale is highly improbable. We will evaluate
the number of rounds required on typical instances derived from sensor
networks in Section 3.6.

As we mentioned, the above algorithm only achieves an 1.61 approxi-
mation factor with metric instances. As the metric property implies that
a graph must be complete, executing the above algorithms on metric in-
stances implies global communication between all clients and facilities.
Global communication can only be implemented efficiently in scenarios
where all nodes are in wireless range of each other.

In our evaluation of Section 3.6, however, we will show that the above
algorithms perform well even with non-metric one-hop instances. More-
over, below we will use the above algorithms as subroutines in an adapted
“local” version that functions properly in multi-hop networks.

3.5 Multi-hop Approximation

The described algorithm can be changed to work in multi-hop settings us-
ing only a slight adaptation. As it turns out, if connection costs represent
shortest paths between network nodes, the communication performed by
the algorithms can be restricted to small network neighborhoods. Specif-
ically, if one is interested in determining whether a facility i has a cost-
efficiency of less than a certain threshold s, it is sufficient to consider
only clients j that are reachable by i over a path with costs of at most s,
i.e., clients j with ci j ≤ s. To see this, consider the definition of a facil-
ity’s cost-efficiency and assume that some star’s cost efficiency c(i,B)≤ s.
One can always obtain an even smaller cost-efficiency once one removes
the clients j ∈ B′ which have ci j > s, that is, c(i,B\B′) < c(i,B).

Similarly, for any facility i, the clients j with cσ( j) j > ci j will not benefit
from switching to i. Consequently, these clients will not occur in the set
B(i) of Eq. (3.3). Therefore, it is sufficient that clients j which become
connected to σ( j) distribute σ( j) only to facilities i with cost ci j < cσ( j) j.
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Algorithm 4: Multi-Hop Adaptation of Algorithm 3 for a Client j
set s = 1, set σ( j) = none4.1

repeat4.2

set s = s×a4.3

send “start(s)” to all i ∈ Fs4.4

if no “begin(s)” received then continue4.5

repeat4.6

receive c(i,B) from all facilities Fs4.7

set Fa = {i ∈ Fs with c(i,B)≤ s}4.8

if Fa 6= /0 then4.9

i∗ = argmini∈Fa c(i,B) // use node ids to break ties4.10

send “connect-request” to i∗4.11

if received “open(s)” from i∗ then4.12

set σ( j) = i∗4.13

send σ( j) to all i ∈ Fs4.14

until connected or Fa = /04.15

until connected4.16

on “open(s∗)” from i with ci j < cσ( j) j4.17

set σ( j) = i4.18

send σ( j) to all i ∈ Fs∗4.19

In an outer loop added around Algorithms 2 and 3, we therefore ex-
ponentially increase the communication scope s, that is, the maximum
distance over which messages are forwarded. Specifically, given a certain
scope s, a message is only flooded within a localized neighborhood Ns(i)
around the sending node i, where Ns(i) := { j ∈V with ci j ≤ s}. Note that
if the direct link (i, j) is not present in the network graph, ci j representing
the shortest path from j to i can be determined on the fly while flooding a
message within Ns( j). Nodes simply stop forwarding a message if it has
covered a distance larger than s or if it has already been received over a
shorter path.

The updated versions are given in Algorithm 4 (clients) and Algorithm 5
(facilities). In the following, we will respectively use Cs and Fs to refer to
client and facility nodes within scope s of the current node.

In the outer loop, the considered scope s is raised exponentially
(lines 4.3 and 5.3) by a constant a. To initialize an outer round, clients,
which have not yet been connected, send a “start” message containing
their current scope s to all facilities in scope (line 4.4). In turn, facilities
wait for at least one such “start” message for a certain time (line 5.4) upon
which they reply “begin(s)”. The waiting period must be long enough
to allow relevant clients to send the respective start messages and finish
earlier rounds. If no “start” messages were received, facilities simply ad-
vance to the next outer round (line 5.4) to wait for “start” messages from
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Algorithm 5: Multi-Hop Adaptation of Algorithm 2 for Facility i
set s = 15.1

repeat5.2

set s = s×a5.3

if “start(s)” received then send “begin(s)” to all j ∈Cs else continue5.4

query σ( j) from all j ∈Cs5.5

set Us = { j ∈Cs with σ( j) = none}5.6

repeat5.7

find most cost-efficient star (i,B) with B ⊆Us5.8

send c(i,B) to all j ∈Us5.9

if c(i,B)≤ s then5.10

receive “connect-requests” from set B∗ ⊆Us.5.11

if B∗ = B then5.12

open facility i (if not already open)5.13

send “open(s)” to all j ∈C5.14

set Us = Us \B, set fi = 05.15

receive σ( j) 6= none from some clients B′ ⊆Us5.16

set Us = Us \B′5.17

until Us = /0 or c(i,B) > s5.18

until s > smax5.19

a larger scope. Clients, analogously, wait and then skip the current round
if no neighboring facility has sent “begin”.

A start message sent by a client j thus triggers execution of one outer
round at all the facilities in scope Fs. Facilities then query all clients in
scope for their status σ( j) in line 5.5 and compute the set of yet uncon-
nected clients Us. This query-reply cycle allows the facility to wait for
all relevant clients to catch up to the current scope s. Clients reply to this
query once they have reached scope s – note that we have omitted the
respective code in the client algorithm. Similarly clients can wait for fa-
cilities lagging behind in line 4.7 where they expect to receive a message
from all facilities in scope.

After this initialization, facilities execute Algorithm 2 in an inner loop
(lines 5.7-5.18) and clients react accordingly (lines 4.6-4.15) implement-
ing Algorithm 3. Compared to Algorithms 2 and 3, the termination con-
ditions of the inner loops must be changed to allow clients and facilities
to proceed to a larger scope in a properly synchronized manner. As with
the 1-hop version, clients terminate their inner loop once they are con-
nected (line 4.15) and facilities once no active clients remain in scope
(line 5.18). In addition, within an inner-loop with scope s, the algorithm
should only consider stars (i,B) with cost-efficiency c(i,B) < s. There-
fore, facilities only proceed with the current inner loop as long as they are
efficient enough for this scope (lines 5.10 and 5.18) while in turn clients
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only proceed with their inner loop as long as there is a facility in scope
that is efficient enough to connect them (lines 4.8,4.9 and 4.15).

Finally, once a client has been connected (4.17-4.19), it acts analo-
gously to Algorithm 3: It simply changes its facility if this is beneficial
and notifies all relevant facilities about it. Here the client can synchro-
nize to the scope s∗ of the sending facility as it is included in the received
“open” message to ensure that all relevant facilities are informed. Note
that the messages sent in line 4.19 are also received by facilities still per-
forming their inner loop in line 5.16.

Discussion. The algorithms presented in this section enhance Algorithms
2 and 3 by making them “local”, meaning that clients do not need to
communicate with all relevant facilities but only with the ones in a con-
fined neighborhood. This allows to perform shortest-paths computations
in these confined neighborhoods which, in turn, give rise to metric in-
stances and preserve the approximation factor of Algorithm 1.

An additional outer loop provides for both, an adequate expansion of
the involved communication scope and for sufficient synchronization of
the nodes in scope without depending on a synchronous communication
model. Note that the outer loop increases the number of rounds in the
worst case only slightly: As in Algorithms 2 and 3, every single node
may constitute a single point of activity only once during algorithm ex-
ecution. The added runtime is based on the total number of steps of the
outer loop which amounts to loga smax where smax is the efficiency of the
least-efficient star chosen by some node in line 5.8 and a denotes the fac-
tor by which scopes are increased in each outer round. The worst-case
number of communication rounds is therefore in O(n+ logsmax).

In this term, we treat a local broadcast as a single operation and ne-
glect the time for multi-hop message propagation. In the worst case,
however, broadcast scopes may become as large as the network diame-
ter. Moreover, there is a certain latency involved in the synchronization
performed in lines 4.5 and 5.4 (parts of the network might have to wait for
other parts to complete earlier outer rounds). Such multi-hop propagation
and synchronization efforts are not considered in the runtime of related
work [MW05, GLS06] designed for synchronous (and global) communi-
cation models. If taken into account, this would require multiplying the
network’s hop-diameter to the worst-case runtime.

Such high runtimes do not materizalize in practical multi-hop instances,
as we will show in Section 3.6. In particular, the runtime does not in-
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crease with the network size and the involved communication scopes (de-
termined by smax) are fairly small compared to the network diameter2.
Dynamic Re-configuration. In real-world deployments of sensor net-
works, link qualities change over time and nodes may fail. To accom-
modate for major changes in the network topology, the algorithms are
re-executed at regular intervals. As such re-starts involve relatively high
overhead, these are performed only infrequently (e.g., once a day). In be-
tween such re-starts, a client j combines periodic re-evaluations of link
costs ci j (within a local scope of size cσ( j) j) with a liveness check on the
facility σ( j). In both cases, if σ( j) has failed or a closer open facility has
been found, client j re-connects to the closest open facility. In the next
section, we will show that such adaptations suffice to maintain a close-to-
optimal configuration over longer periods of time.

3.6 Evaluation

In the following we present results from two distinct sets of experiments.
The first, detailed in Section 3.6.1, is based on simulations which test
the scalability of the proposed algorithms. The second, detailed in Sec-
tion 3.6.2, tests the applicability of the proposed algorithms to operational
networks with dynamic links.

3.6.1 Scalability

In the experiments based on simulations, we uniformly deployed a vari-
able number of nodes onto a 300 m by 300 m area. The network graph
has an edge (i, j) ∈ E if nodes i and j are less than 30 m apart. Assuming
that nodes can control their transmit power, for (i, j) ∈ E we set the con-
nection costs ci j to g(i, j)2, in which g(i, j) denotes the distance in meters
between i and j, and normalize them such that ci j ∈ [0,1].
Scenarios. To test our algorithms with a range of applications, we ex-
amined three different parameterizations of the problem, of which quali-
tative results were shown earlier in Figure 3.1. In the first, shown in Fig-
ure 3.1(a), we set opening costs fi = 1 and additionally require that clients
and facilities must be neighbors. We tested the one-hop Algorithms 2 and
3 on such instances.

2In fact, smax depends on the application and is proportional to the hardness of the specified configuration
problem: If the desired configuration is inherently non-local, for example, if high opening cost settings
require the algorithms to choose only one facility that serves the whole network, smax will be high.
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Further, we tested the multi-hop Algorithms 4 and 5 in two different
settings, which were also already introduced in Figures 3.1(b) and 3.1(c),
respectively. In the first, we set fi = 5 to denote that a high effort is
required to operate a cluster leader. In the second scenario, we assumed
that cluster leaders must send much data to the network base station and
therefore their operation costs increase with their network distance to the
sink (yielding smaller stars close to the sink and larger ones further away).
One-Hop Clusters. In the one-hop setting (Figure 3.1(a)), we evaluated
the costs of configurations produced by different algorithms while varying
the number of nodes in the simulation area (that is, the node density). The
results are given in Figure 3.2(a) which shows the costs obtained with the
following five methods.

One-hop denotes the simple one-hop algorithms of Section 3.4. Respec-
tively, one-hop IP refers to the optimal configuration of the constrained
case which requires clients to connect to facilities which are direct net-
work neighbors. Further, multi-hop denotes the multi-hop algorithm de-
scribed in Section 3.5, which has a 1.61 approximation guarantee. Here,
clients may connect to facilities which are an arbitrary number of hops
away. Respectively, multi-hop IP computes the optimal solution to the
facility location problem, in which facilities and clients may be multiple
hops apart and the instance is made metric by a centralized shortest-paths
computation. Finally, MDS IP denotes the optimal solution to the mini-
mum dominating set problem, in which dominator nodes represent open
facilities and slave nodes are clients that connect to the closest dominator
node. The costs are computed using the original (non-metric) instance.

The costs of a minimum dominating set (MDS IP) which suffer from
expensive long links mark one end of the optimization spectrum. Here
we argued that facility location can provide a more energy efficient con-
figuration as it takes costs of the links between clients and servers into
account. On the other hand, the optimal facility-location based configura-
tion (multi-hop IP) marks the other end of the spectrum as it represents a
lower bound for the employed approximation algorithms.

The one-hop algorithm performs well and is even close to the respec-
tive optimal configuration one-hop IP, although it operates on non-metric
instances and thus without a guaranteed approximation factor.

Note that in this particular setting, the constrained versions, which re-
quire facilities and clients to be direct neighbors (one-hop and the optimal
one-hop IP), are not far away from the multi-hop results and the optimum
of the unconstrained case (multi-hop IP). This is due to the low opening
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costs we used, which are set to fi = 1 for all facilities. With larger opening
costs, multi-hop solutions would benefit more from larger stars.

Multi-Hop Clusters. In the experiments shown in Figure 3.2(b), we
additionally evaluate the quality of the solutions obtained by the multi-
hop algorithm with the two different opening cost settings shown in Fig-
ures 3.1(b) and 3.1(c). In the first (denoted as simple) we set opening costs
to a constant fi = 5 which corresponds to configurations as shown in Fig-
ure 3.1(b). In the second, denoted as dist, we apply the heuristic shown
in Figure 3.1(c), where the opening costs correspond to twice the costs of
the shortest path to the sink. In both cases, the results of the distributed
implementation are very close to the achievable optimum computed by
CPLEX on the same instance.

Runtime and Overhead. In the experiments shown in Figure 3.2(b), the
scope s started out with 0.2 and a was set to 2, thus doubling the scope
in each outer round. Note, however, that these two parameters do not
influence the quality of the obtained solution. Rather, they determine the
trade-off achieved between the runtime of the algorithms and the scope
within which messages are sent. On the one hand, the smaller a is set, the
less likely it is that scopes are increased by too much (in vain). On the
other hand, lower values of a increase the number of outer rounds3.

Figure 3.3 demonstrates this trade-off as observed in the simulation run
corresponding to Figure 3.2(b). In Figure 3.3(a) we show the average
scope with which messages were sent during algorithm execution, given
different settings of a (the scope s always starts at 0.2). The lower we
set a, the better the results as the scope is increased by smaller amounts.
Note that in general, the effort involved in the execution of our algorithm
is proportional to the “locality” implied by the problem instance: On the
one hand, if opening costs are high (here fi = 5), a facility will generally
connect clients in a larger neighborhood (as seen in Figure 3.1(b)). On
the other hand, the experienced scopes are even much lower with small
opening costs (e.g., for fi = 1, not shown).

In contrast, in Figure 3.3(b), we show the runtime in rounds (one round
corresponds to one iteration of the inner loop) of the multi-hop algorithm
on the same instances. Note that, while previously the error bars indicated
confidence intervals of 95%, we use them in Figure 3.3(b) to mark the
maximum and minimum values that occurred in 10 random instances (as

3Interstingly, our experiments show that the average number of communication rounds, whose worst
case amounts to O(n + loga smax), is in fact dominated by the latter term loga smax. The case where
single nodes slow down algorithm execution (giving rise to the first term n) is highly unlikely.
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Figure 3.3: Average scope size vs. total runtime (in rounds). In Figure 3.3(b) the error
bars denote the maximum and the minimum that occurred.
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we are particularly interested in the maximum value). The results show
that – while in theory the worst case runtime can be large – in typical
instances based on multi-hop networks the runtime is sufficiently small
and does not even grow with the number of nodes. Moreover, based on
the trade-off between runtime and scope size, the runtime improves with
higher a values. Finally, the scope size decreases with increasing net-
work density. This is due to the fact that, given certain opening costs, the
algorithms will connect stars of around the same size (namely, facilities
are opened once enough clients are connected to pay for opening them).
Therefore, smaller stars are opened in denser networks and the cumulated
communication overhead stays the same.

3.6.2 Network Dynamics

One open question is whether such, albeit close-to-optimal solutions, can
provide a benefit for real-world deployments in which the network topol-
ogy changes over time. To obtain realistic link qualities, we extended a
testbed of 13 TMote Sky modules that gather temperature, humidity, and
light measurements from our office premises to record network topology
information as well. In addition to its sensor measurements, every 5 sec-
onds, a node reports the set of nodes from which an application-layer
message has been received since the last update.

Such topology information received from each node i allows to compute
a (packet-level) link quality estimate ei j(t) for each network link directed
from j to i [WTC03]. The estimate ei j(t) is based on the packet success
rate ri j = packets received in T

packets expected in T which is smoothened using an exponentially
weighted moving average such that ei j(t) = αri j(t) + (1−α)ei j(t − 1).
In our experiments, we set α=0.6 according to [WTC03] and T to 300 s.
We transform the quality estimates ei j ∈ [0,1] into link cost estimates by
setting ci j = 1 + 10(1− ei j) if ei j > 0.5 and ci j = ∞, otherwise. Further,
we set opening costs to constant fi = 2.

To give the reader an impression of the examined networks, Figure 3.4
shows our sensor node deployment, the resulting network topology, and a
configuration computed by the multi-hop algorithms.

Given the link costs {ci j(t0)} observed at a certain time of the exper-
iment t0, we let the presented multi-hop algorithms compute a configu-
ration (a set of open facilities and assigned clients), whose costs C(t0, t)
vary with t as link qualities change over time. Once a configuration has
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Figure 3.4: Deployment plan, network topology, and computed configuration

been computed, only small dynamic adaptations (detailed in Section 3.5)
are performed.

In Figure 3.5(a), we show the ratio between C(t0, t) and the costs of
an optimal configuration Copt computed by CPLEX – for configurations
computed at three arbitrarily chosen instants of time t0. Observe how at
t = t0, e.g. at 7:46 or at 11:42, the respective optimality gap is close to
1. As expected, however, this is not always the case. For example the
configuration obtained at t0=9:28 is not optimal even at this time.

In Figure 3.5(a), one can observe how the time t0 at which the initial
configuration is computed influences the respective outcome of C(t0, t).
To obtain more general results, t0 is randomly drawn from the total 24
hour interval corresponding to available topology data and used to com-
pute the respective curve C(t0, t) in 20 repeated simulation runs. The ratio
of the average C(t0, t) to the costs of the optimal configuration is shown
Figure 3.5(b). In addition, Figure 3.5(b) shows the costs CMDS of a mini-
mum dominating set computed by CPLEX for each instant of experiment
time. The latter costs can be used as an assessment of whether a much
faster MDS approximation, which can be re-executed frequently, could
out-perform a facility location algorithm executed more rarely. As said
earlier, however, MDS-based configurations require slaves to use expen-
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sive links (with poor link quality estimates) to communicate with their
cluster leader. Such “bad” links are often the most volatile and cause
the costs of an MDS-based configuration to diverge significantly from an
optimal configuration. While this is not always the case (Figure 3.5(b)
has portions in which MDS is close-to-optimal), one can observe that
facility-location based configurations, which focus on high-quality links,
are robust with respect to varying link qualities. The observed gap to an
optimal configuration remains small – in the observed 24 hours it stayed
below 10% at all times.

3.7 Summary

In this chapter, we motivated the use of facility location algorithms to ad-
dress configuration tasks in multi-hop networks as they can flexibly im-
plement many sensor-network configuration problems, such as an energy-
efficient clustering, a clustering in which cluster leaders can connect
nodes through multiple hops, or a configuration in which cluster lead-
ers are chosen based on their distance to the sink. We claim that many
more such applications of the problem can be found.

Further, we have shown that algorithms which are very good in theory
(with an approximation factor of 1.61 while even a centralized polyno-
mial algorithm cannot be better than 1.463) can be feasibly transformed
for distributed execution. The transformations we described resulted in
(to our knowledge) the first facility location algorithm which can be effi-
ciently executed in multi-hop networks.

In the experimental evaluation, we were able to show that although our
algorithm exhibits a high worst-case runtime, in typical sensor-network
instances it terminates in only few communication rounds. Moreover, by
analyzing the scopes within which messages were forwarded during algo-
rithm execution, we showed that the devised algorithm, although equiv-
alent to its centralized ancestor, requires only very local communication.
Further, we showed that the distributed algorithm always performs close
to the optimal solution, a quality which it inherits from the centralized
version [JMM+03].
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4 Query Scoping

In the previous two chapters, we provided role-based configuration ap-
proaches for sensor networks using multi-hop communication. However,
such support for role-based configuration is required in other network
models as well. In this chapter, we consider a configuration algorithm
specifically designed for a large scale sensing system in which every sen-
sor node is reachable by the network base station in one network hop.
Specifically, we focus on a sensing infrastructure based on mobile phones
and on a specific application which allows users to find lost or misplaced
items using their phone.

As in Chapter 3, we are considering a subclass of the generic role as-
signment problems introduced in Chapter 2. However, the discussed ap-
plication, as well as the involved network model and the addressed con-
figuration problems, differ significantly from the previous Chapters 2 and
3. We will therefore start this chapter by taking a detour describing the
application scenarios supported by our approach and the architecture of
the underlying wide-area sensing system.

Specifically, this system allows users to keep track of real-world ob-
jects, e.g., their personal belongings, using a mobile phone and to use
the phone to locate lost or misplaced items. The phones carried by users
constitute the sensing infrastructure of this system, each phone being in-
tegrated with a short-range sensor for detecting objects in its proximity.
The application, detailed in Section 4.1, includes different usage scenar-
ios from storing the context in which an object has left the sensing range
of the local device to allowing object owners to search for objects using
the sensing infrastructure provided by the cellular network and the mobile
phones of other system participants.

The considered application gives rise to a configuration approach that
is organized differently than in the two previous chapters – exploring the
design space of wireless sensor network configuration in yet another di-
rection. The developed algorithm addresses a configuration problem that
is specific to the underlying network model: In a large scale system in
which, potentially, every mobile phone connected to a cellular network



108 Chapter 4. Query Scoping

can be used as a sensor, one can neither distribute a search query to all
available sensors nor aggregate all sensor readings (e.g., object X seen by
sensor A) in a database for later query.

Instead, everytime a user issues a query to find an object, the config-
uration algorithm must assign the roles sensing and idle to the nodes of
the network, such that the sensing nodes are likely to obtain the desired
information, while idle nodes can keep their sensors off and, effectively,
may even refrain from any communication with the network basestation.
the main contribution of this chapter is therefore a flexible query scoping
algorithm that selects nodes based on their likelihood to locate an object
of interest to the user.

As the algorithm is based on a wide range of real-world data stored
by various software components of the presented object search system,
its evaluation is not straightforward. Therefore, the evaluation section
focuses on verifying the practicability of the mobile-phone-based system
itself, that is, the coverage it provides and the performance it exhibits
when trying to find an object. To demonstrate the query scoping algorithm
itself, we discuss how it can be applied to a set of application scenarios
and present qualitative results for the involved configuration problems.

The chapter is structured as follows. We first describe the object local-
ization application in detail in Section 4.1. After reviewing related work
in Section 4.2, we overview the system’s architecture in Section 4.3 to
motivate why various relevant history data is available at different com-
ponents distributed in the system. This data will then be used by the query
scoping system, which we describe in Section 4.4. With a focus on the
practicability of the object localization application, we discuss the pri-
vacy implications of the developed system in Section 4.5 and evaluate the
sensing performance obtained from sensors carried by users in a compre-
hensive study in Section 4.6. We close the chapter with a summary in
Section 4.7.

4.1 The Object Localization Application

Our application requires that object sensors, which are able to detect the
nearby presence of an electronically tagged item, can be integrated with
mobile phones. Various technologies could be employed for this pur-
pose. For example, passive RFID tags are expected be attached to many
consumer products in the near future as they may realize significant cost
savings in stock and supply chain management. In particular, passive
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(a) (b) (c)

Figure 4.1: User issues an object search query

UHF RFID technology or active tags with a small autonomous power
source [RF 06] can provide reading ranges of a couple of meters even with
small reader modules. If improved variants of today’s handheld RFID
readers were integrated into mobile phones, a ubiquitous system could be
deployed within a few years using the short innovation cycle established
through mobile phone sales. In addition to RFID, other upcoming ra-
dio communication technologies, some even compatible with the phone’s
Bluetooth capability, could be used to identify objects in the phone’s
proximity in a similar way. If small, inexpensive Bluetooth-discoverable
tags [Wib06] can be built, a ubiquitous object sensing infrastructure is
already in place today.

Each tagging technology defines a certain trade-off between tag costs,
achievable identification range, and costs of reader hardware. Irrespec-
tive of the employed technology, we assume for our scenario that suitable
object sensors can be integrated into mobile phones, as it is already the
case today with Bluetooth or NFC. While we evaluate the benefit of an in-
creased sensing range later in this chapter, the final choice of the technol-
ogy is based on costs versus range trade-offs which remain to be explored
in a concrete product’s business plan. Our system prototype currently re-
quires tagging objects with battery-powered tags (BTnodes [BTn06]) and
uses the phones’ built-in Bluetooth discovery for object sensing.

Our object localization application involves two prominent use cases.
In the remember use case, users can task their mobile device to store the
context in which an object leaves its local sensing range. This includes a
trace of the user’s location before and after the loss event and other people
present or other personal objects carried along at the time the object was
left behind. As there will be numerous managed objects which users leave
behind on a regular basis (for example when leaving their home), users
will find it unpleasant to receive notifications each time objects go out of
range. Instead, the relevant data is silently stored and can be used at a
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later time to help the user recall the circumstances of the loss or to hint at
the location of a lost object.

In the find use case, the user can query the system for an item from
the list of objects which have previously been associated to the user (Fig-
ure 4.1). The system will then forward the query to a set of object sensors
which, based on user preferences and system settings, are presumed good
candidates to find the object. Object search strategies can be based on
various heuristics, such as querying sensors near the location where the
object was last in range of the user’s device (determined by the remember
use case), or querying object sensing devices which have been previously
associated with the user (for example, users may install stationary object
sensing devices at certain prominent locations such as their workplace or
their holiday home). Once a remote sensor has located the object, the
user will receive a notification containing the object’s location as shown
in Fig. 4.1(c).

Taken together, these use cases benefit from the coverage provided by
the mobile device both in time and in space: The remember use case
benefits from the mobile phone’s ability to cover the user’s daily life over
longer periods of time to record a “hint” on where a lost object might be
located. Complementing this functionality, the find use case uses this hint
as a starting point for performing a wide area search that aggregates sensor
data from a larger number of system participants during short periods of
time.

Further, our system supports additional use cases related to object mon-
itoring and sensing. We omit them here as they are outside the focus of
this chapter. For details on the complete application, we refer to the orig-
inal publications on the object localization prototype and the underlying
system architecture [FRB+07, FBRK07, FBMK07].

4.2 Related Work

Various research papers argue for the relevance of locating everyday ob-
jects, monitoring the presence of items, or avoiding their loss. Many such
systems [WFGH99, DKB03, YSM05] suggest a pre-installed object sens-
ing infrastructure, which is costly to deploy and to maintain. Instead,
we use mobile phones implementing a people-centric sensing infrastruc-
ture. In the Smart Watch prototype [BBH+04], RFID readers transmit
their current readings to the passing user’s personal device. The user is
then notified if objects are missing compared to readings which were col-
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lected earlier. The delegate use case was first mentioned in another pro-
totype [SHK+05]. Both systems focus on reminding users before a loss
takes place. As mentioned, we assume that tagged objects will often be
intentionally left behind and therefore avoid immediate notification. In-
stead, we study how the location of an item can be determined on a user’s
request.

Note that an object search system could also be implemented by proac-
tively sending all sensor readings to a centralized service which would
then be queried when an object needs to be located. Such a system would
face the scalability challenge of a global data collection system, such as
IrisNet [GKK+03] or Hourglass [PLS+06]. In contrast, we use a reactive,
that is, query-based approach, as the number of sensor readings (e.g., ob-
ject X seen by object sensor A) is expected to be much larger than the
number of queries. Moreover, our system avoids aggregation of all read-
ings in a centralized database as this would have severe implications for
the user’s personal privacy. In particular, it is incompatible with a privacy
enhancing feature of our system: Certain objects, which have previously
been associated to their owner, can only be detected by a sensor after this
sensor has received an explicit query for the given object (see Section 4.5
for details).

Some related work has similarly advocated the use of the existing in-
frastructure of the mobile network: The authors of [TP05] focus on a mid-
dleware architecture motivated by a health-care application. Similarly,
recent work [BEH+06, EAL+06] has motivated people-centric sensing
with a focus on applications and their architectural requirements. In this
context, we also want to mention Nokia’s recent SensorPlanet [Sen07]
initiative, which focuses on building a mobile-phone-based platform for
research on large-scale wireless sensor networks. Compared to these ap-
proaches, we address two issues which we consider central to large scale
sensing applications: Query scoping (determining which sensors should
be queried from a large and homogeneous sensor array) and the properties
of the wide-area sensor coverage obtained by user-carried sensors.

The query scoping algorithm, which we will describe further down,
is based on a classic approach known as uniform cost search [RN95].
Its innovation does not consist in the search technique itself, but in the
means we provide for its parameterization. In particular, our query scop-
ing approach satisfies two requirements: On the one hand, it allows to
use any data stored by application services to parameterize search and, on
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the other hand, it efficiently accesses data sources which are distributed
throughout the system.

As query scoping is based on history data stored by the application, the
system is only indirectly related to systems concerned with scoping in
multi-hop sensor networks [SFCB04, MP06, WSBC04]. These systems
focus on letting individual nodes decide whether they are part of a certain
scope. These decisions are made by sensor nodes themselves based on
certain criteria which each node can evaluate locally.

In contrast, our query scoping system performs an a priori selection of
nodes. This way, the nodes which are not in scope remain completely un-
scathed from a user query and from the scoping algorithm, that is, these
are not required to perform any evaluation (e.g., on their scope member-
ship) nor any communication with the server. This is required because
the scope changes with every query, and because the scale of the system
makes frequent communication with all nodes infeasible.

Therefore, the query scoping algorithm is executed in a centralized
manner on a server in the back-end infrastructure. Considering the under-
lying one-hop network model, executing a centralized algorithm involves
less overhead than in multi-hop models. For example, in our model, there
is no non-trivial topology information which must be gathered at the sink.
Instead, as we will argue in the remainder of the chapter, there is enough
application-specific information available on the server side of the infras-
tructure, such that query scoping can be performed offline, that is, before
communicating with the network.

Approaches addressing the sensor selection problem, such as [BKG06,
IB05], have a goal that is similar to ours, namely, to select the set of sen-
sors that best fulfills the application’s sensing requirements. These sys-
tems assume that the application’s requirements are formulated in terms
of a utility function, which assigns a certain utility value to the concur-
rent measurements of any given subset of sensors. The sensor selection
problem involves finding a subset of nodes that maximizes utility while
obeying certain constraints on the total sensing costs (or, vice versa, min-
imizing sensing costs while maintaining a certain utility).

In comparison, we provide a complementary approach focusing on
practical means for initializing the utility function itself – based on dis-
tributed stores of history data available in the system. While, once the
utility function is initialized, we do also apply a set of practical sensor
selection heuristics, these cannot integrate aspects from [BKG06, IB05]
in a straightforward manner. This is due to the different sensing model of
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Figure 4.2: System architecture

our application, which involves intrinsically mobile sensor nodes. Nev-
ertheless, we expect that our sensor selection heuristics can be optimized
further. We provide a few improvement guidelines based on our evalua-
tion in Section 4.6.

4.3 System Architecture

Figure 4.2 shows an overview of the system architecture. As mentioned
above, mobile phones are used to link sensing functionality to users and
the back-end infrastructure. Sensing functionality on mobile phones in-
cludes sensing the presence of tagged items, the phone’s location, and
other information relevant for remembering the context of an object’s loss,
as detailed in Section 4.3.1. Furthermore, our architecture involves appli-
cation specific services, such as association of objects and their owners, a
user database, and profiling services that can be used to deduct heuristics
for computing the scope of an object search query. These services will
be discussed in Section 4.3.2. All of the above are integrated by query
services which support the implementation of the application’s use cases.
These include the local query service, used to set up individual mobile
phones, the global query service, used to route queries on the global scale,
and the query scoping service, which supports the latter in determining
suitable receivers of a query (that are likely to produce a result) based on
all kinds of history data stored by the application. These three-fold query
services will be detailed in Section 4.4.
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4.3.1 Sensing Functionality

Apart from object sensors, which we assume to be integrated into each
mobile phone, we suppose that mobile devices have access to a variety of
additional sensor information, for example, to a sensor determining the
location of the user carrying the device.

Event Sources. All sensor information is encapsulated in application-
specific software components which we name event sources. An event
source generates events of a pre-determined type, either in a periodic man-
ner or when a certain condition is met. Our system uses event sources that
generate an event whenever a tagged object comes in range or goes out of
range of the device or when the device’s location changes. It also uses an
event source for persons who are within short wireless range of the user
device.

In our prototype implementation, the location event source generates an
event every time the mobile phone’s cell identifier changes. Object tag-
ging is implemented using BTnodes [BTn06], tiny devices equipped with
a Bluetooth radio, and object sensing is realized using Bluetooth discov-
ery. The in range and out of range event sources, respectively, generate an
event every time a new object is discovered by Bluetooth or a previously
seen object has been missing in several rounds of discovery. Similarly,
the person event source generates periodic events which contain a list of
nearby users based on the Bluetooth names of their phones.

Sensor Authentication. Both, object tags and devices representing per-
sons, can restrict their visibility and allow only authenticated sensors to
detect their presence. Such authentication is based on a shared secret
which is exchanged between the actor initiating sensing and the sensed
entity at an earlier time (the association service described below is used
for this purpose). After the initial key exchange, protected entities can
be sensed only by sending an authenticated message. We discuss details
of this concept which can be implemented on tags of a small form fac-
tor [EHJ04] in Section 4.5.

Our implementation of sensor authentication is prototypical. Protected
persons and objects are emulated by turning off visibility to Bluetooth
discovery, while the Bluetooth MAC address takes on the role of a shared
secret: Sensing polls (for persons or objects) consist of a connection at-
tempt at the correct address.
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4.3.2 Application Specific Services

In our architecture, three system services have been designed to take on
specific functionality mentioned in the object localization application.

Association. The association service serves three main purposes. First,
it keeps track of associations between users and objects (Figure 4.1(a)
shows the list of Alice’s associated objects). While objects can be de-
tected by any object sensor in their initial state, after association, they
are detectable only within queries initiated by the object owner’s device.
Second, user to object sensor association allows users to maintain a set of
object sensors that are particularly relevant for them (e.g., object sensors
which have been installed by the user at home or at work; Bob’s mobile
device has previously been associated with Alice in the scenario depicted
in Figure 4.1). Third, user to user association enables group access rights
to certain objects, but is also used as a basis for disclosing the identity
of associated users to each other (in Figure 4.1(c), Alice is shown the
identity of Bob based on a previous association between them, otherwise
the notification would only contain the location of the object). Similarly,
users may choose to be visible only to persons event sources set up by
associated users.

Location Profile. This optional service performs statistics on the loca-
tions (such as the physical location or the observed network cells) in
which users spend most of their time. This makes it possible to implement
a search strategy (i.e., a query scoping strategy) which gives preference to
sensors at these locations, assuming that they represent places that contain
personal belongings, such as a user’s work place or home.

Our prototype includes a rudimentary adaptation of a network-cell-
based profiling system [LRT04] augmented with functionality for naming
certain network cells which are particularly relevant (such as ‘Office’ in
Figure 4.1(c)).

User Database. We assume that the mobile network operator offers users
a database service in which application data such as previous reports of
certain objects can be stored. The service can be used, for example, to
record a log of objects reported by an object sensor for later query. Sim-
ilarly, it can be employed to store the details on the circumstances of an
out-of-range event as required by the remember use case.
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4.4 Query Services

The query services form the integrating central point of the system, wiring
the distributed components for the required application task. The back-
end infrastructure hosts the global query service, which provides support
for query dissemination, cost control, and validity management for user
queries. Moreover, each mobile device executes a local query service
dealing with handling data requests on the level of the local mobile phone.

The query scoping service supports the global query service by deter-
mining which sensors should be involved in a wide area query, integrating
information known at various application-specific services. For example,
a query can be disseminated to a subset of associated users (based on in-
formation stored in the association registry), to locations that are particu-
larly relevant for the user (based on location profile data), or near locations
where the object was observed in the past (based on the user’s database).

These query services are supported by a set of middleware services
which are not detailed here. For instance, storage services are avail-
able both on the mobile device and in the back-end infrastructure – and
are also used to implement the user database and the association ser-
vice. Their implementations including transparent data marshaling and
database interaction functionality for resource-constrained devices are de-
scribed in [BL06]. Further, means for local event forwarding, wide area
point to point messaging, and OSGi-based component execution plat-
forms for both, the mobile device and the back-end infrastructure, have
been implemented in our prototype. For details on these services, we re-
fer to [FRB+07].

4.4.1 Query Service Interface

The query interface specifies the receivers of the query (its scope), the
receivers of produced reports (sinks), and, further, various limits on the
involved query effort. The scope can either consist of a single mobile
device (in the remember scenario the targeted device is simply the user’s
phone) or a custom-implemented scope provider component (as in the
find use case). Scope providers, required to return a list of object sensors
sorted by relevance, may be used to pass on a variety of search strate-
gies to the global query service: For example, an association-based scope
provider may simply return a list of previously associated object sensors,
a location-profile-based scope provider would return sensors at locations
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where the user spends much time; the query scoping algorithm which
we present in Section 4.4.2 also represents a scope provider component
that can combine various search strategies. The reports generated by the
query, in turn, will be delivered to the specified sinks. Various system
services may be wired as sinks: In the remember use case, reports will be
delivered to the local database on the user’s phone, in the find use case,
reports cause a direct notification on the user interface.

Moreover, different effort limits can be issued with the query: cmax lim-
its the monetary costs billed to the user, qmax the number of object sensors
which are involved in the query, emax the total number of reports gener-
ated by the query, and, finally, tmax the total time the query shall be active.
The limits qmax and tmax are particularly relevant for the find example.
Here, the global query service will distribute the query to the first qmax
sensors returned by the scope provider. The term qmax is equivalent to the
number of messages sent by the global query service in the dissemination
phase and can be used to limit the communication costs. The parameter
tmax may be used to specify the time that is usually required for an ad-
equate search strategy to find an object and thus limits the search effort
of inadequate strategies. Moreover, it allows for an iteration of different
search strategies of increasing costs, where the next strategy is initiated
after an unsuccessful timeout of the previous. We will discuss suitable
numbers for tmax in Section 4.6.

To obtain suitable search strategies for wide-area queries of the find
scenario is a challenge. Various heuristics can be used to distribute a query
to a relevant subset of object sensors. For example, one may distribute it to
sensors near the location where the object was last observed. Similarly, all
conceivable heuristics will be based on some kind of history data available
in the system.

To elaborate on this, we show a simple data model of our application in
Figure 4.3: Objects are associated with users (object owners) by the as-
sociation service and also with locations (e.g., cells) where an object has
been observed in the past. Users may choose to record a history of their
location on their mobile device (user history) or to enable the location
profile service, which computes locations that a user visits frequently. In
this simple model, locations are related to other locations via the neigh-
borhood relation. Moreover, users can be associated with object sensors
they often use (e.g., which they have installed in their office or car) and
with other users who are family, friends, or colleagues. Finally, the mobile
network operator keeps a database (object sensor registry) which stores



118 Chapter 4. Query Scoping

Location 

Profile

OS 

Registry

OS 

Assoc.

User 

Assoc.

Obj. 

Assoc.

User 

History

usrcell

Obj. 

History

Neighb. loc usr

OS

obj

Figure 4.3: Example Data model

the current location (e.g., the current network cell) of object sensors (in-
cluding certain mobile phones which can be used as object sensors as well
as stationary sensors).

In order to simplify its description, we omitted some details in the data
model (most prominently a more refined location model). However, it is
sufficient to demonstrate that many conceivable search heuristics corre-
spond to paths in Figure 4.3 from an entity of type object at the top to
entities of type object sensor, which should be queried for the object. For
example, we can query object sensors which:

I) Are near the location where the object was last seen.
II) Are near locations recently visited by the user.

III) Are near locations where the user spends a large amount of her/his
time.

IV) Are associated with the object owner (as in Figure 4.1).
V) Match the above strategies III and IV for a different (associated) user,

such as a family member, or even for a friend of a friend, etc.

While, intuitively, none of these heuristics can guarantee success, they
all incorporate sensible assumptions on where users keep personal be-
longings and where these are generally left. Note how each heuristics rep-
resents a path in the data model of Figure 4.3: Heuristics I corresponds to
the path (obj-loc-object sensor) on the left, while heuristics V corresponds
to the path obj-usr-usr-loc-object sensor.

Based on these considerations, a data model is a suitable means to ex-
press the real-world links between various types of data stored by the sys-
tem, and can be used to generate a variety of search strategies – including
all of the above. In particular, the application programmer may assign
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weights to each edge in the model, representing the application program-
mer’s estimate whether exploring entities according to the relation type
r will be useful in the search, on a scale from 1 (very useful) to ∞ (not
useful). For example, to implement heuristics I, the object history, neigh-
borhood, and object sensor registry relation types would have weight 1,
and all others weight ∞.

4.4.2 Query Scoping Algorithm

Parameterized with a weighted data model, a source entity o (i.e., the
sought object) and a destination type (i.e., object sensors), the scoping
algorithm will “unfold” the data model into a search tree that contains en-
tities stored by system services which are somehow related to the source
entity o. The algorithm traverses the entities in the tree in order of de-
creasing (estimated) relatedness, essentially implementing a variant of the
uniform cost search [RN95].

More concretely, the algorithm works as follows: It maintains a set of
entities visited V and a result set Q. Each entity t ∈ V will be assigned
a relevance measure c(t), denoting how related t is to the source entity o
given the data currently known to the system. Initially (line 6.1), V = {o}
and c(o) = 0, moreover Q = /0.

Algorithm 6: Scoping algorithm based on uniform cost search.
Input: Data model M = (E,R) with entity types E and relation types R, weights w(r) for

relation types r ∈ R, source entity o (of type ∈ E), destination type d ∈ E, entity
limit qmax.

Output: Result set Q consisting of entities of type d
set V = {o}, c(o) = 0, Q = /06.1

while |Q| ≤ qmax do6.2

pick relation (u,v) between entity u ∈V and v /∈V with smallest c(u)+ c(u,v)6.3

or exit loop if no such relation (u,v) exists6.4

add v to V , set c(v) = c(u)+ c(u,v)6.5

if v of type d then add v to Q6.6

return Q6.7

Based on the data referenced by the given data model, the algorithm in
its core step (line 6.3) considers relations {(u,v)} between entities u ∈V
and v /∈ V . If such relations exist, the algorithm picks the relation (u,v)
with the smallest c(u)+ c(u,v).

By defining the cost function c(u,v), developers can parameterize the
execution of the query scoping algorithm. Typically, c(u,v) is a function
formulated in terms of two estimates: The first are weights w(r) provided
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by developers to assess whether the relation type r which stores the re-
lation (u,v) is assumed useful in the search. Moreover, implementatons
of c(u,v) commonly take into account a second estimate, referred to as
g(u,v), by which the service that stores (u,v) may provide a relative order
among different entities v related to u. In particular, g(u,v) estimates the
relevance of v given that u is relevant for the search. For example, the
location profile service could estimate g(user, loc) for different locations
using statistics on the amount of time the user spends in them. For the ob-
ject history relation, it is intuitive that the latest location where the object
was observed is the most relevant. We will provide concrete examples for
c(u,v) in Section 4.4.3.

In the remainder of the loop, the algorithm adds v to the set of visited
entities V , updates the relevance estimate c(v) of v (line 6.4), and adds v
to the result set if it is of type destination type (line 6.5). The algorithm
repeats these steps until up to entity limit related entities have been found,
and then returns Q (if the chosen destination type is object sensor, the
entity limit corresponds to the limit on queried sensors qmax).

A requirement for the edge cost function c(u,v) is that it shall return
values on the same scale ranging from 1 (for very related) to ∞ (for un-
related). If this is the case, the shortest path sums c(t) maintain the same
semantics. Based on the costs c(u,v), the algorithm explores the most
relevant relations first, and the result list Q contains entities t of type des-
tination type in order of increasing c(t), that is, in order of decreasing
relatedness to the start entity o.

While based on classic search methods, the presented approach lends it-
self well to distributed data sources: Each system service that implements
a relation type accessed by the algorithm is required to provide a single
interface method next(u), which allows to iterate through the entities v re-
lated to u in the order of increasing c(u,v). Note that both the runtime
and the space complexity of the algorithm depend on the data referenced
in the given data model.

The algorithm implements a variant of uniform cost search [RN95]
based on the edge costs c(u,v). The result set Q contains entities t of
type destination type in order of increasing cost c(t), that is, in order of
decreasing relatedness to the start entity o. Compared to uniform cost
search, our approach does not expand all children of a node u at a time as
there are potentially too many, due to several relations relevant for u and
a potentially huge list of related entities provided by each one. Instead, at
each step, we only add a single child entity v to the search tree.
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4.4.3 Example Parameterizations

We aim to demonstrate the flexibility of the above algorithm for imple-
menting a wide-range of search strategies using a set of application ex-
amples. These examples implement variations of the proposed heuristics I
(to search where an object has been reported in the past) and therefore in-
volve the relation types object history, neighborhood, and object sensor
registry which are relevant for these heuristics.

Application Data

First, we briefly describe the data stored by each of these relation types.
To illustrate scoping results, we assumed a location model based on cell
identifiers. This model is based on a very rudimentary localization tech-
nology, which is also used in our prototype system: Object sensors (that
is, the respective mobile phones) “measure” their location by observing
the network cell they are associated with at a given point in time.

We will therefore use cell-based implementations of the object history,
neighborhood, and object sensor registry relations. The object history
simply returns a set of cells where the object was observed in the past.
Given a certain cell, the object sensor registry will return object sensors
that (at the time of the query) are associated to that cell. As we aim
to demonstrate scoping with a large network, the implementation of the
object sensor registry is based on our simulator software (detailed later
on in Section 4.6), which associates object sensors to the cell with the
strongest signal at the sensor’s physical location. Such signal strengths
are computed using realistic antenna locations and orientations [EGT05].
Finally, the neighborhood relation associates a given cell to cells which,
based on their signal propagation, cover an area adjacent to the given cell.
In a future system, mobile network operators are expected to be able to
compute the cell neighborhood relation in a similar way, for example,
based on the cell handovers observed in the network.

Search Tree Example

For an initial illustration of the algorithm’s semantics, consider the exam-
ple instant of algorithm execution shown in Figure 4.4. In order to im-
plement the proposed heuristics I and search based on previous locations
of an object, the application developer has disabled all relation types (by
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setting c(u,v) = ∞) except for the relevant relation types object history,
neighborhood, and object sensor registry.

Each enabled relation type can be used to generate child entities using
the next(u) method, which the algorithm invokes at the service imple-
menting the respective relation type. Starting with the sought object o,
only the object history relation type is enabled, for which a call to next(o)
returns the location where the object has been seen last, in this example in
cell1. Given a cell entity, object sensor registry may generate child enti-
ties representing object sensors in that cell, while neighborhood generates
child nodes which are other, neighboring, cells. The other relations will
never contribute any child entities because they have infinite edge costs.
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Figure 4.4: Example search tree generated by three relation types

As the algorithm’s basic step will always add the edge leading to the
smallest c(t), one may express preference for one relation type over an-
other by means of the edge cost function c(u,v). In the shown execution,
because c(cell1,∗) is set to 200 for the neighborhood relation, the algo-
rithm explores (and adds to the scope) 200 object sensors in cell1 first, and
later explores object sensors in cell1’s neighboring cells cell3 and cell4.

Edge Cost Functions

In the following, we will give parameterizations for the edge-cost func-
tions c(u,v) which are able to implement a range of different search strate-
gies. Although arbitrarily complex implementations of the cost function
c(u,v) could be provided by the system designer, in the examples below,
we will use a simplified form of c(u,v) which already suffices to formu-
late a range of examples. In our examples, c(u,v) has the form

c(u,v) = a(r)+b(r)×g(u,v) (4.1)
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in which a(r) and b(r) are parameters defining the relevance of the rela-
tion type r. Moreover, in this example implementation of c(u,v), g(u,v)
corresponds to the index of v in the list of entities related to u – sorted
by decreasing relevance. For example, the object history relation would
set g(obj,cell1) = 1 if cell1 were the location where obj was last seen,
g(obj,cell2) = 2 for a second, less relevant, location cell2 where the ob-
ject was seen earlier. Note that g(u,v) could implement much more fine-
grained estimates of the importance of different entities v that are related
to an entity u. Nevertheless, this simple implementation of g(u,v) (return-
ing v’s place in the list of related entities) already allows for a range of
heterogeneous search strategies, as we will show below.

As the algorithm implements uniform cost search based on c(u,v), the
cost parameters a(r) and b(r) have the following semantics:

a(r) Defines how the first entity v contributed by r will be prioritized
compared to other parts of the search tree. Once the algorithm has
explored u, it will grow other parts of the search tree by a(r) before
it adds v. The higher a(r) in c(u,v), the less important is r compared
to other relations contributing children to u and to other parts of the
tree.

b(r) Defines how an additional entity w contributed by r will be priori-
tized compared to other parts of the search tree. Such an entity w will
be added to the tree only after all other parts of the tree have grown
by b(r). The higher b(r), the less important are additional entities
contributed by r.

Searching based on the Object’s History

The two weight parameters a(r) and b(r) can be illustrated using the ex-
ample of Figure 4.5(a), which implements a variation of search strategy I:
On the one hand, as the strategy involves searching at locations where
the object was observed in the past, the object history relation is relevant
in the search. Therefore, the algorithm should add the first related entity
immediately, and a(object history) = 0. On the other hand, considering
additional locations further back in time is considered less useful in this
example, therefore, b(ob ject history) is high in order to let c(u,v) for
such entities grow fast.

More specifically, based on the algorithm’s uniform cost property, the
ratio between b(object history) = 500 and b(object sensor registry) = 1
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relation type r a(r) b(r)
object history 0 500
neighborhood ∞ ∞

object sensor registry 0 1

(a) Weight parameters for searching at lo-
cations where an object has been observed
in the past. For other r, a(r) = b(r) = ∞.

(b) Scope size qmax = 200 (c) Scope size qmax = 400

Figure 4.5: Example strategy and scoping results with different limits on the number of
queried sensors qmax. Sensors in scope are marked with black dots.

determines how the algorithm will access the two relation types: It will
explore 500 object sensors at already visited locations (if these exist) us-
ing the object sensor registry before examining additional locations using
the object history relation and adding sensors there to the scope.

Once a set of locations is included in the scope, the parameters of the
neighborhood relation determine how fast neighboring locations should
be explored. In this example, only the very cell where the object was last
seen should be included in the search and, therefore, the neighborhood
relation is disabled by setting a(r) and b(r) – thus, c(u,v) – to ∞. In
contrast, the algorithm should immediately start exploring object sensors
in every identified cell, which is why a(object sensor registry) = 0.

An example result – showing the sensors in scope given these parame-
ters – is presented in Figures 4.5(b) and 4.5(c). For illustration, the fig-
ures include the simulated cell boundaries (lines where the signals from
two neighboring cells have equal strength). We assume that the object
was last reported in cell1, which is located in the center of the simulation
area, and, earlier, in cell2, which is located to the north-east of the center.
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Because b(object sensor registry) is low compared to b(object history),
additional sensors in cell1 are added to the scope before cell2 is consid-
ered (Figure 4.5(b)). If one increases qmax (the limit on the number of
sensors) to have the algorithm return a larger scope, it will first add 500
sensors in cell1 to the scope, and then additional sensors from cell2 (Fig-
ure 4.5(c)).

Searching Neighborhoods

The above example can be altered in various ways. To have the algo-
rithm also include neighboring cells in the search, e.g., to allow for the
case that the locations returned by object history are imprecise, the pa-
rameterization of the neighborhood relation can be changed as shown in
Figure 4.6(a). Setting a(neighborhood) = 200 causes the algorithm to
begin adding sensors from neighboring cells to the scope once about 200
sensors associated with already known cells have been added by means of
the object sensor registry relation.

relation type r a(r) b(r)
object history 0 500
neighborhood 200 0
object sensor registry 0 1

(a) Weight parameters for searching where
the object has been observed in the past and
at neighboring locations as well. For other
r, a(r) = b(r) = ∞.

(b) Scope size qmax = 220 (c) Scope size qmax = 2000

Figure 4.6: A search strategy based on the location of the last report and its neighborhood
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Note that Figure 4.4 (introduced above) corresponds to such a param-
eterization (Figure 4.6(a)) and (roughly) to the results shown in Fig-
ure 4.6(b). It shows the instant of execution after the algorithm has added
all object sensors with c(t) ≤ 200 to the result set Q, and is about to add
object sensors from neighboring cells in a uniform manner (in Figure 4.4
the next basic step will add a sensor in cell4). Figure 4.6(c) demonstrates
the effect of an expanding scope size qmax. The figure shows how, based
on the uniform cost search semantics, cells within two hops are explored.
This is based on the implications of the fraction b(object history)

a(neighborhood) > 2: The
algorithm can begin expanding neighbors twice before an additional loca-
tion from the object history relation would be added to the scope.

Because b(neighborhood) = 0, the order g(cell1,v) in which neighbors
of cell1 are returned by the neighborhood relation does not have an impact
on the execution of the algorithm: All neighboring cells are considered
equally important and therefore child nodes (sensors in these cells) are
added to the result set in equal proportions.

Ordering Neighbors

If an order of neighboring cells should be relevant, e.g., if based on
information stored in the system some cells can be assumed “closer”
to cell1 than others, the developer may assign more significance to
the order g(u,v) returned by the neighborhood relation using a higher
b(neighborhood) parameter as shown in Figure 4.7(a).

Based on the uniform cost search property, 50 object sensors from ob-
ject sensor registry will be added to the result set before the next cell
is retrieved from the neighborhood relation. This is reflected in the re-
spective scoping results shown Figure 4.7(b) where the scope is focused
around the original cell and two (assumedly most relevant) neighbors. Ex-
panding the scope to more sensors adds more neighboring cells, and, once
the scope is large enough, the algorithm starts adding sensors at the sec-
ond location returned by the object history relation (Figure 4.7(c)). Note
that cell neighborhood is defined as cells sharing a common border and,
due to non contiguous cell coverage, some cells are considered neigh-
bors although this is not apparent in the figures. Further, note that the
order g(u,v) among neighboring cells is chosen randomly in this example
while, in a future system, neighboring cells could be prioritized by various
profiling services, e.g., based on data from the location profile [LRT04]: If
users tend to switch between neighboring cells frequently, these cells are
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relation type r a(r) b(r)
object history 0 500
neighborhood 200 50
object sensor registry 0 1

(a) Variation of the parameters to take into ac-
count the order in which cells are returned by
the neighborhood relation; for all other relation
types r, a(r) = b(r) = ∞

(b) qmax=400 (c) qmax=1000

Figure 4.7: Search strategy taking the order of neighboring locations into account

likely to cover the same physical location and, therefore, are both likely
to be useful in the search.

A Combined Search Strategy

We close with a last example, which demonstrates how the algorithm may
implement combined search strategies that are based on multiple paths in
the data model. In the previous parameterizations (e.g., in Figure 4.6(a)),
the neighborhood relation was prioritized compared to the object history
relation type). To state that the search should explore previous locations
of the object as well, one could decrease b(object history), and therefore
implement a mixed strategy based on data on an object’s previous loca-
tions and on the neighborhood of these locations.

Such a combined strategy is shown in Figure 4.8(a). Setting
b(object history) = 100 demands that the search should consider an ad-
ditional location where the object was reported, once 100 sensors have
been added at previous locations. Moreover, the ratio a(neighborhood)

b(object history) im-
plies that a second history location is considered in the scope, before the
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relation type r a(r) b(r)
object history 0 100
neighborhood 200 0
object sensor registry 0 1

(a) Example weight parameters for a mixed
strategy based on object history and neighbor-
hood; for other r, a(r) = b(r) = ∞

(b) qmax=100 (c) qmax=200

(d) qmax=800 (e) qmax=2000

Figure 4.8: A combined search strategy (the search scope is expanded in four steps)
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neighborhood relation will start contributing neighboring cells and add
sensors near these locations to the resulting scope Q.

We show a set of scopes computed according to Figure 4.8(a) in Fig-
ures 4.8(b)-4.8(e). The results highlight how the algorithm adaptively
integrates different search strategies while the user expands the size of
the query scope qmax. When the scope size is low (in Figure 4.8(b)) the
strategy with highest preference (to include sensors at the location where
the object was reported last) is considered. If the system cannot find the
object in this small scope, the user might choose to increase qmax. This
will produce an enlarged scope (Figure 4.8(c)) that includes sensors at a
second location while still prioritizing the first. Once even more sensors
are permitted, and because no additional sensors are available apart from
the most probable locations (cell1 and cell2), the scope expands by means
of the neighborhood relation only (Figures 4.8(d) and 4.8(e)).

4.4.4 Discussion

In comparison with previous chapters, application requirements have
driven the design of a very specific role assignment algorithm which as-
signs the role sensing to nodes inside the computed scope.

One the one hand, requirements included allowing users to formulate
(and even automatically generate) a wide range of strategies for selecting
sensing nodes. To achieve this, the algorithm was required to be able to
take into account arbitrary information available at system services. This
has led to an interface, described above, which is based on data models
of the application domain – annotated with weight parameters that define
the relevance of relations in the model.

On the other hand, efficient communication between different sources
of data used by the query scoping algorithm is required, because the re-
lations driving the algorithm’s execution are stored at distributed appli-
cation services. Therefore, the interface between the algorithm and data
sources has been streamlined to a simple next(u) method, which is called
only once for every related entity.

These requirements have been met well. Some open issues, however,
remain.

Semantics

The first issue is related to the semantics of a given set of parameterized
functions {c(u,v)}. While these functions provide a flexible configura-
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tion interface, the effects of a given function definition c(u,v) are not a
priori well understood by developers. Instead, the exported semantics
are closely bound to the algorithm’s execution. In contrast, the Boolean
predicates used in the generic role assignment specifications described in
Chapter 2 are a much more intuitive concept. Similarly, the implications
of the parameters issued to the facility location algorithms of Chapter 3
can be considered well-understood concepts: They represent an estimate
of the cost of either operating a hub or communicating with a hub in a
given epoch of network operation.

In comparison, the understanding of the provided levers to the above
query scoping algorithm may be less intuitive. This seems to be a feature
as well as a drawback. Using the functions c(u,v), the developers are
provided a very fine-grained control over the algorithm’s execution. In
turn, for specialized search strategies, the developers must perform an
important translation between the search strategy they have in mind and
the respective design of the functions c(u,v).

Note, however, that this is mostly the case if multiple paths through the
data model are explored in combined search strategies. If a single path
is followed instead, as is mostly the case in the heuristics I-V described
in Section 4.4.1 above, the parameterization is much simpler, mostly just
enabling or disabling certain relationship types.

Moreover, we argue that even for more involved strategies, an appli-
cation developer is provided a valuable configuration tool that combines
distributed data sources quickly and effectively. When combining differ-
ent paths through the data model, care must be taken to make the relevance
estimates g(u,v) (issued by different relations) comparable – by means of
weights attached to the respective cost functions.

Finally, while the above algorithm is flexible and requires only a limited
amount of communication between distributed data sources, compared to
other search algorithms, the described approach involves an additional ap-
proximation heuristic: During search, it considers only the shortest path
to a given entity, and disregards all longer paths that may be discovered
later on during algorithm execution. This is a viable approach and also
crucial for enabling efficient exploration of the distributed data sources.
However, it neglects the fact that a large number of ignored long paths
could imply that an entity t is more relevant than it is apparent in the
length of the shortest path c(t).

More sophisticated algorithms (such as PageRank [BP98]) let the node
weight c(t) represent a weighted sum of all paths to t, which is computed
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by solving a system of linear equations. Such algorithms require that
all paths are explored before computing the rank (in terms of relevance)
of an individual sensor. In contrast, our application requires that sensi-
tive data stores (e.g., association or the location profile) can be stored on
user’s devices to protect the user’s privacy (cf. Section 4.5). Therefore,
the exploration of all relevant paths at the same time would not be pos-
sible – unless one gathers all data in a centralized database. We perceive
such centralized data collection as a significant disadvantage based on its
privacy implications, in particular, given the large amount of personal in-
formation our system may collect on its users’ everyday lives.

Space Complexity

A second issue of the presented algorithm is that it inherits the exponen-
tial space complexity present in any breadth-first search. This does not
represent a significant disadvantage in our application domain, however:
Firstly, the costs of an object search billed to the user will most likely
be proportional to the number of queried object sensors (due to commu-
nication costs). As only a constant (user-defined) budget is granted, at
most a constant number of object sensor entities will be in the search
tree (as any visited object sensor will be queried during search). Sec-
ondly, the number of intermediate entities (like locations) in the tree can
also be limited by raising the weight parameters of individual relations,
which will re-configure the algorithm to explore “deeper” paths earlier
and reach object sensor entities faster. In the example execution shown
in Figure 4.8(a), setting a(neighborhood) higher would force the algo-
rithm to explore many object sensors at already known locations before
including additional locations in the search.

4.4.5 Global Query Service

In the following, we will discuss how the presented algorithm is employed
by the global query service to implement the search strategies I-V in prac-
tice. For this, note that search strategies I-III employ the object sensor
registry relation, which associates a set of locations L to a set of object
sensors near them. Due to user mobility, however, the object sensors near
the set L will change with time. Therefore query scoping is decoupled
from the actual movements of users and their object sensors. That is,
when heuristics I-III are implemented, location will be the destination
type parameter passed to the search algorithm. The returned set of loca-
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tions L, for example a set of cells, is then passed on to the global query
service, which will distribute the query at these locations. The global
query service is then concerned with maintaining a computed query scope
over time while observing the cost control parameters (qmax, tmax, emax,
and cmax) specified at the query interface.

If search strategy IV is chosen, a set of object sensors is determined by
the scoping algorithm. Here, a query will be distributed to the first qmax
sensors returned by the scoping algorithm and be active for at most tmax
time.

If search strategies I-III are chosen, the scoping algorithm will not di-
rectly return a set of object sensors, but a set of locations, as mentioned
above. In the basic location model we employ, these can either be a set
of cells (the most basic localization already available on the phone) or a
set of geographic points (if phone localization is more precise) together
with an associated measurement error. Because the set of object sensors
associated with these locations may change over time, our system installs
(or un-installs) a query at sensors which come close to (or, respectively,
depart from) these locations. Whether a sensor s is close to the returned
locations is defined by the implementation of a predicate f (which maps
s to either true or false).

Depending on the way locations are modeled, we use two different im-
plementations of f (s). Given a set of cells C, f (s) will be true if the mo-
bile phone (with its object sensor s) is currently served by any of the cells
in C. Note that this information is already available at the mobile network
operator, that is, it can be accessed on the server side of our infrastructure
without incurring additional communication costs.

In case the mobile devices are equipped with more accurate position-
ing means, the locations returned by query scoping will instead be a set
of geographic points P. Here, f (s) will be true if the current position
measured by a mobile phone’s object sensor s is within a certain range r
away from the points P. This range r will depend on the error incurred at
the positioning sensor when the points in P were measured (we will dis-
cuss a concrete implementation in Section 4.6). Note that such additional
positioning information will only improve the efficiency of query dissem-
ination if positioning information of all object sensors is already known at
a database on the server. Otherwise, it would be inefficient to propagate
all object sensor positions to the server before query dissemination, and
therefore a different approach is chosen: The query is distributed to object
sensors in a set of cells C which “cover” the whole area surrounding the
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points P (the actual object sensor will be turned on only later, once the
predicate f (s) evaluates to true). Note that the total number of distributed
queries is now the same as if locations were a set of cells C.

When installing queries for such location-based strategies I-III, the total
number of object sensors at which a query will be installed (qtotal) is made
up of two parts, qtotal = qinit + qmob. Here, qinit denotes the number of
users queried initially at the time the query is issued – chosen out of the
initial query scope Sinit = {s| f (s) = true}. In addition to qinit, the query
will be installed at a second set of sensors qmob for which f (s) becomes
true while the query is active.

After a query installation at an object sensor s, object sensing will be
performed continuously until tmax expires. The mobile device associated
with s un-installs the query autonomously either when f (s) becomes false
or when tmax expires.

A query is declared successful, if some object sensor s reports having
found o at time treply with treply ≤ tmax. The current position of s represents
the location at which the object was found and will be included in the
reply issued to the user. A query is terminated without success, once the
query timeout tmax is reached.

4.5 Privacy Considerations

The query service, presented in the previous sections, makes use of a wide
variety of personal user data. In the following, we describe a few privacy
enhancing features of our system.

Most prominently, tagged objects and persons can be protected from
being sensed by unauthorized users as proposed in [EHJ04]. This protec-
tion is based on a shared secret x, which is known both at an authorized
user device U and at the sensed entity (e.g., at a tagged object o). With
query initiation, U may issue a zero-knowledge authentication message
(ZAM), say m, in which the shared secret x is made oblivious by means
of a random session key r and a current time stamp d. The ZAM is for-
matted such that the receiving tagged object o can recover r as it knows
x and also receives an authentication proof that U truly knows x1. Based
on this feature, if authentication fails, o simply does not reply. Moreover,
o will only reply to the first reception of m. Therefore, an adversary A
cannot easily make use of forwarded queries to locate objects which have
been lost by other users in public spaces. To be effective, A must not only
have been forwarded the find query containing m but also be the first to
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sense o using m. To achieve this, A needs to control an infrastructure of
object sensors that finds objects faster than the infrastructure provided by
regular system users – in most cases an unrealistic assumption.

As noted, a ZAM represents a permit for sensing once. For use cases in
which sensing of an object or person o must be performed multiple times
within a given query (e.g., delegate or gate), there are three options: The
first is to let an authorized user device U re-issue a proper ZAM every
time, which requires repeated end-to-end communication between o and
U . The second is to entrust the shared secret to the global query service
(run by the mobile network operator on the back-end server) which may
then issue authentication messages on its own. The third is to propagate
the shared secret even further to the remote sensor R (such as the object
sensor employed in the gate scenario) for the time of query execution.
The latter two options lower the communication overhead (the overhead
of the third option is lowest) but require that the user is confident that the
entrusted entity (e.g., the remote sensor R) does not leak the shared secret
during the time of the query. After query termination, the shared secret x
may be changed – such a change could be propagated to multiple users U
previously associated with o using the same authentication protocol.

A second privacy enhancing feature of our system is the component de-
ployment infrastructure, which allows to re-configure the execution plat-
form of services containing sensitive information within the application.
That is, the association registry or the location profile, which should en-
hance object search functionality, could be executed on the user’s mobile
device instead of the server back-end, giving users full physical control
over their data. Similarly, deployment of the location profile service could
be completely omitted – based on user preferences.

Some potential privacy threats, however, remain. One threat is shared
by any system providing wide-area object localization, namely, that an
adversary may attach a properly associated object to some person he or
she wishes to track. Avoiding such threats is hard as they are related to the
core functionality of the envisioned system. Possible approaches would
be to limit the frequency of user queries, or make repeated consecutive
queries for an object expensive. Vice versa, adversaries may leave an ob-
ject at a known location, and then check whether associated users arrive
at this location. Here, the required transparency can be obtained by mak-

1A ZAM has three parts: m = (d;r xor hash(d xor x); hash(r xor x)). Using d and part two, o can
compute r. Using r, o can check part three, which confirms that the sender truly knew the secret x. For
details we refer to the original paper [EHJ04].
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ing association services symmetric, such that an object sensor carrier is
allowed to see which associated users sent queries to his or her device –
while un-associated users are kept oblivious to each other by the mobile
network operator.

Several extensions of these concepts are conceivable. For example,
users can be offered a feature to protect private spaces [YSM05], such as
their home, from queries issued by unauthorized users. While dependent
on accurate and verifiable location sensors for user devices, such protec-
tion of spaces could be enforced by the mobile network operator, which
exerts the role of a gatekeeper in both directions, when forwarding user
queries and when forwarding replies. This is similar to the way, in the
presented system, the network operator will ensure that a user’s identity
is only disclosed to associated users.

4.6 Evaluation

So far, we have described a bundle of generic query services that support
our object localization application with query dissemination. These in-
volved a query scoping algorithm which is able to implement a range of
different search strategies.

The evaluation of the devised query scoping algorithm, however, is far
from straightforward. To begin with, an evaluation must involve a large
set of sensors in order to determine whether the scoping algorithm is both
effective and efficient. This requires either an extensive user study, or
experiments performed using simulations. If an extensive user study is
not feasible based on time and budget constraints, the remaining option
for large-scale experiments are simulations.

Unfortunately, evaluation by simulation requires the provision of two
models. The first is a simulation model of the real circumstances of ob-
jects that are lost or misplaced, for example, of a user that has left an
object at a friend’s house. Such a model would already be hard to jus-
tify. Moreover, a second model is also required. This second model is
implied in the used search strategy, which essentially models the assumed
circumstances of an object’s loss (for example, a strategy matching the
circumstances of the loss would search using social relationships and the
owner’s location trace). If the assumptions made in the search strategy
match the reality of the simulation model, the search will find the object.
Otherwise it will not.
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Figure 4.9: Experiment setup: Average reply times (in seconds) for the 10 tagged objects
in different rooms

Based on these considerations, in the remainder of this chapter, we
avoid generating full models of the system’s future use. Instead, in the
evaluations of this section, we assume that the employed search strategies
are in fact correct. Such evaluation allows to assess the performance of a
user-carried infrastructure for finding an object, given that the user will at
some point come up with a correct search strategy.

In the following, we therefore provide an evaluation of the performance
of our system using two strategies mentioned in the course of the chapter
– using a small real-world experiment and a set of simulations.

4.6.1 Real-world Experiment

We first come back to the scenario from the introduction of this chapter
(Figure 4.1), where the user is at home and tries to verify the whereabouts
of a given object which was left at the office. The mobile phones of the
user’s officemates (e.g., Bob) are registered with the association service
and thus are considered relevant object sensors.

Our experiment was performed with four users working on the same
floor. The users were given mobile phones running the object search pro-
totype already tasked to perform continuous object sensing for all objects
(using repeated Bluetooth discovery) and to report their findings in reg-
ular intervals to the back-end database. Similarly, 10 BTnodes [BTn06]
representing tagged objects were distributed in various rooms of the same
floor. Figure 4.9 shows the experiment’s setup (tagged objects are shown
as numbered circles while the offices of the four participating users are
shaded).

Note that while Bluetooth may be too expensive and battery-intensive to
be used as an object tagging technology in a practical system, it neverthe-
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less allows to test whether, given a better-suited technology with similar
radio range, the mobility of a few office colleagues suffices to detect a
given object in reasonable time.

During four consecutive days, all sensor readings entered the database
as (user, time, obj_id) tuples. We considered only core office hours, that is,
readings reported after the fourth user arrived in the morning and before
the first left at night. This resulted in 30 hours of data. Based on these
data, the reply time of a search query for a given object o issued at an
arbitrary time tq to the four office colleagues can be computed as tr =
tDB− tq, where tDB is the time of the next database entry on the object o.

Based on this consideration, we computed the average reply time for
each object, assuming that queries for this object were distributed uni-
formly over the experiment time. In order to save messaging costs, user
devices cached seen objects and only re-reported them to the database 10
minutes after their last report on the same object. This way, even if an
object sensor has seen the object continuously, the resulting reports will
yield an average query reply time of 5 minutes instead of zero.

For each object, Figure 4.9 shows the average reply time in seconds.
Intuitively, we expect to obtain low values for objects with a participating
user in the same room (objects 3, 5, 8, and 9). Further, note that the
best results were obtained for objects close to the printer and the coffee
machine (objects 7 and 8), while objects in rooms that were not visited by
the participants during the experiment yield worse results.

We show a cumulative density curve of the observed reply times for
object 2 (with worst results), object 7 (with best results), and the average
over all objects in Figure 4.12(a) further down. In all cases, reasonable
success rates (about 80%) could be obtained with a maximum query time
tmax of 30 minutes.

4.6.2 Simulation Model

In our experiments described above, we focused on a small and confined
search area and query scope. In the remaining evaluations, we use simula-
tions to investigate the characteristics of an object search system operating
in the wide-area with a larger user base – to provide design guidelines for
a future realistic system.

As we mentioned, adequate models of a large-scale execution environ-
ment are difficult to obtain, as these must consider many aspects of daily
life. To provide an accurate basis for system design, models must include
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the number of participating users, the frequency at which these users lose
or search for certain objects, particular scenarios where objects are lost,
and the number of tagged objects owned by each user. Intuitively, such a
model contains many parameters which cannot be influenced by the sys-
tem designer. We refer to such parameters as environmental parameters.
Our approach to these parameters is to investigate a significant portion of
this rather vast parameter space.

In contrast, there are some design parameters which determine the sys-
tem’s performance and can more or less directly be set and varied by the
system developer. These include the size of the search scope (the number
of users who participate in searching for an object), the sensing range of
an object sensor (which can be influenced by employing more expensive
tag and object sensing hardware), or the timeout used for queries. For
these design parameters we aim to find the most appropriate values, i.e.,
the parameter settings which can implement object search with the least
communication overhead for a given success rate.

Scenario. In the evaluated scenario, a user misplaces an object o and later
issues a search query to the global query service. We assume that at the
time the object left the range of the object sensor, the user’s mobile device
recorded its location p. This location p is used as a hint in the search
(implementing heuristics I presented in Section 4.4.2). We evaluate two
versions, a cell-based version in which p is a cell, and a position-based
version in which p is a geographic point measured with a certain error. In
both versions, query scoping is performed as described in Section 4.4.5.

Metrics. The main metric we observe is the success rate of our system.
This rate corresponds to the fraction of queries for which a notification
from some object sensor is received within the query timeout tmax. Fur-
ther, we examine the overhead for query distribution qtotal including the
part qmob which is caused by user mobility.

In our simulations, we do not examine object sensing costs explicitly, as
we expect wide-area query dissemination to dominate the total cost due
to the object sensor’s shorter wireless range and potential energy efficient
implementations of object sensing (e.g., it is usually sufficient to briefly
activate an object sensor every time it is moved).

Environment Model. We assume that the object is left in a densely pop-
ulated urban environment. In this setting, we study how an object can be
found by users who move according to pedestrian mobility models (see
details on the mobility models below) in a square area of 1 km2. The
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Figure 4.10: Environment models

choice of the user density ud is derived from the total daytime population
as estimated by the Momentum project [FCX+03] (a downtown Lisbon
example which we cite from [FCX+03] is shown in Figure 4.10(a)). For
urban environments, the authors estimate the fraction of mobile-phone
users with “pedestrian” mobility patterns as around 50%-70% [FCX+03,
p. 37] from the total. The total includes other users who are assumed to
be stationary or moving differently, e.g., with higher speeds on streets;
we omit these users in our simulations. Moreover, as we are only in-
terested in users associated with a single mobile provider, we choose
more pessimistic values for the user density ud: We vary ud from 100-
2000 users/km2, values which represent only a small fraction of the esti-
mated daytime population shown in Figure 4.10(a). Our default partici-
pant density of ud=500 users/km2, for example, corresponds to only one
pedestrian user per 2000 m2 of office space.

As mentioned, in some settings we rely on cell identifiers for posi-
tioning. To study such scenarios, we use actual position and orientation
data from UMTS antennas together with a detailed model of land use
types (e.g., buildings, highways, open, water) provided by the Momentum
project to compute the strongest-signal cell for each point of the simula-
tion area [EGT05, Mom06]. In Figure 4.10(b), we show an example of
a resulting cell-coverage map computed for a UMTS network of down-
town Lisbon. For cell-based scenarios the simulation area is enlarged to
10 km2 to avoid border effects. While we are aware that in reality sev-
eral cells may be observed at a given location at different points in time,
we assume for our study that the object can be found in the cell where
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it was last seen. Results for scenarios in which several cells need to be
searched to cover a certain location could be extrapolated from the results
we provide.

Mobility Models. Generally, a tagged object will not move once its
owner left it somewhere. In turn, the users’ mobility model is a cru-
cial aspect in our evaluation, as it determines the coverage obtained by
object sensors carried by users. Therefore, the user densities we assume
in our simulations are rather small compared to actual densities observed
in urban environments or on office floors. In this regard, the fraction of
simulated users represents the subset of all users who move according to
the model we simulate. Additional users, e.g., sitting in their offices or
moving differently, would then only improve results.

In the most basic setting, we use a random waypoint mobility model
parameterized for pedestrian users. Users pick a random destination and
start moving towards it with a speed drawn uniformly from the interval
(2,4) km/h. (The average speed of 3 km/h is chosen according to the
ETSI guidelines [ETS98].) As our simulation area can be fairly large,
we choose trip destinations within 200 m from the user’s current position.

We also use a second mobility model which was derived from WLAN
traces observed on the Dartmouth campus [KKK06]. The model includes
hotspot regions which represent central points of the campus (for exam-
ple, a hotel, a library, or a cafeteria), which tend to contain many users
and also represent popular destinations chosen by the campus population.
In our adaptation, we use five hotspot regions: one in the middle and four
shifted to each side of our simulation area. Each hotspot region’s size is
one hundredth of the simulation area. Half of the trips of a given user are
made inside the current hotspot and half are directed to another arbitrary
hotspot on the campus. The remaining (non-hotspot) area is called the
cold region. In our simulation, users never choose a destination in the
cold region but only travel through it. As hotspot regions have a higher
density, their positions and sizes are apparent in Figure 4.10(b), which
shows a total density of 500 users/km2 in a 10 km2 area of downtown Lis-
bon.

The chosen trips include 2 to 5 waypoints. The speed and pause times
follow log-normal distributions parameterized according to [KKK06, ta-
ble 3]. The pause time distribution has a mean of 0.71 hours with a high
standard deviation of several hours, as [KKK06] found that users tend to
stay in a hotspots for longer periods.
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To avoid an initial transient period, we used initializations of user trips
according to the perfect simulation method [LV05]. In the campus mo-
bility model, however, some distributions had to be estimated, and thus a
transient period of 1000 s remains. Object search queries are issued only
after this period.

Sensor Model. A mobile device operates its object sensor continuously
as long as a query is installed and running. In the default case, we assume
that the object sensor has a sensing range of 5 m, that is, the object sensor
sends a notification once the user carrying it comes within 5 m of the
sought object.

Moreover, in some simulations we assume that the user has a position
sensor available (e.g, GPS). To model the sensor’s localization error, the
position returned by the sensor is drawn uniformly from a disk centered
around the actual position of the user. We refer to the radius of this disk
as the positioning error ep used in the simulation (ep is set to 100 m if
nothing else is stated). Note that with this error distribution, the density
of observing an actual error, say e, is proportional to the circumference
of a circle with radius e, and therefore the mean error is (1/

√
2)ep. This

positioning error occurs not only when the owner’s mobile device records
the position p where it has last seen an object, but also when distributing
a query to object sensors near p, as these object sensors’ positions are
measured with an independent positioning error.

Alternatively, we also model a scenario in which the positioning sensor
simply returns the UMTS cell to which the mobile phone is currently con-
nected. This is a worst case scenario as most cell-based localization ap-
proaches combine signal strength information from multiple nearby cells
together with antenna positions and so-called time advancement values to
obtain more accurate localization results.

4.6.3 Simulation Results

Using the simple scenario and the environment models described above,
we aim to investigate several aspects of a future object sensing system.
Foremost, given some scope, we want to confirm whether it is possible
to find objects with reasonable success rates and small-enough overhead.
Further, we aim to investigate how cell-based scopes compare to position-
based scopes and to a random query dissemination strategy which queries
a certain fraction of all users. Moreover, we aim to gain insights into the
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sensitivity of the system’s performance with regard to parameters such as
user mobility, object sensing range, or chosen query timeouts.

Success Rate

In the first set of simulation runs, we investigated the query success rate
observed with position-based scoping and cell-based scoping. These
scopes are implemented according to Section 4.4.5, based on the location
p where the object was last in range of the user’s device. In the position-
based version, the scope Sinit consists of sensors within a disk around p of
radius r = sr + ep where sr denotes the range of the user’s object sensor
and ep the maximum positioning error. In both versions, if |Sinit|> qmax,
then qmax sensors are randomly chosen from Sinit.

Figure 4.11(a) shows the fraction of successful queries (upon which the
queried sensors have located the object within 30 minutes) when the user-
imposed limit qmax on the number of queried sensors is varied. Five dif-
ferent graphs show the results obtained with different positioning errors
ep (from ep=50 m to ep=200 m), cell-based scoping, and a random strat-
egy where we distribute the query to a fraction of qmax/500 of all users.
For all graphs, the obtained success rate can be increased by raising qmax
and reaches acceptable levels with qmax=200.

The communication effort involved in the same runs, determined by
the number of sensors qtotal which were actually queried, is shown in Fig-
ure 4.11(b). As, by the definition of our protocol, the search area becomes
larger with an increased positioning error, the required effort increases as
well. Similarly, searching the coverage area of the cell where the object
was left requires sending more messages before obtaining reasonable suc-
cess rates. Note, however, how in Figure 4.11(b) the number of queried
sensors qtotal at some point stops growing with the user-imposed limit
qmax. This is because with small enough scopes the object is found be-
fore the limit qmax is reached. Observe also, how the performance of
cell-based scoping is comparable to a 200 m positioning error and even
outperforms the latter in terms of the communication effort qtotal. This is
because with position-based scoping and large positioning errors, many
ineffective queries are sent to mobile devices which erroneously measured
a position which was close to the position hint p.

Finally, as Figure 4.11(a) shows, any scoping performs better than a
random strategy. Even if 40% of all users are queried (i.e, qmax = 200),
the success rate of the random strategy is still only around 60%. Needless
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Figure 4.11: Success rate and overhead with different positioning technologies

to say, its communication effort is worst as it is proportional to the total
number of users (not shown).

Timeout, Sensing Range, and Different Mobility Models

Apart from scoping, several other parameters may significantly influence
the performance of the system.

The first is the timeout used for queries. Here, the question is whether a
more adequate choice of the timeout (previously set to tmax=30 min) wait-
ing for successful replies can be made. Note that choosing an adequate
timeout is particularly relevant when object sensing itself is considered
a significant cost. Especially because in reality the object might be out-
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Figure 4.12: Cumulative density functions of reply times

side the chosen scope, it is important not to sense in vain for too long,
but at the same time to issue a confident “not-found” reply. Further, the
system performance is expected to vary with the user density. We show
the interplay of these two parameters with position-based scoping in Fig-
ure 4.12(b). Each graph represents the cumulative density function of the
reply time obtained after 5000 repeated simulation runs (each data point
represents the fraction of requests answered within the given timeout) in
which no limit on the communication effort qmax was set. As expected,
the likeliness of finding the object increases with a longer timeout, but for
high user-densities short timeouts (5 to 10 minutes) are already sufficient.
Moreover, high success rates can be obtained with tmax=30 min even with
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Figure 4.13: Varying sensing range and mobility

user densities as low as 500 users/km2. For lower densities longer time-
outs must be used.

Observe that the graphs of Figure 4.12(a) measured in our office floor
experiments (see Section 4.6.1), in which the actual user density was
larger than 4000 users/km2, are comparable to user densities of 500 to
200 users/km2 in Figure 4.12(b). This is compatible with our earlier con-
jecture that the random waypoint simulation only models the “pedestrian”
fraction out of the total users, and confirms that the approach to look at
user densities which are smaller than in reality is valid.

A second important parameter, which is expected to have a large im-
pact on the performance, is the sensing range of the employed object sen-
sors. In the runs shown in Figure 4.13(a), we demonstrate the impact of
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the sensing range on the success rate of position-based scoping. With
2000 users/km2, even a sensing range of 1 m yields acceptable results. As
expected, however, the sensing range has a high impact. When designing
a practical system that shall be robust to small user densities, it seems
worthwhile to invest in object sensing technology with a higher range.

Finally, a third important parameter is the mobility of the system’s par-
ticipants. Here it is unclear whether the random waypoint model used is
perhaps too optimistic. Figure 4.13(b) shows the success rate observed
with the campus mobility model when raising the message limit qmax. We
show four graphs for the cases in which the object was left in a hotspot or
in the cold region with two different user densities. Because user pause
times in this model are quite long, we extended the query timeout tmax to
2 hours. Note, however, that the total number of queries remains limited
to qmax and therefore the results remain comparable to earlier simulation
runs shown in Figure 4.11(a). Here, for very small user densities, the suc-
cess rate cannot be improved by raising qmax as the timeout remains the
dominating constraint. For 500 users/km2, however, the object can often
be found with at most 200 messages even if it lies in the cold region.

Increasing the User Density

Additional insights can be gained when the user density is varied. Such
experiments were performed with cell-based scoping and are shown in
Figures 4.14 and 4.15. We show the success rate and the query reply time
while varying the user density in Figure 4.14(a), and analogously the re-
sults for the campus mobility model in Figure 4.14(b). The corresponding
overheads are shown in Figure 4.15(a) and 4.15(b), respectively. Note that
for these runs no limit qmax is set.

Both overhead figures show the total overhead qtotal and the overhead
due to user mobility qmob included in the total. Observe that qmob does not
increase with higher user densities. A reason for this is that query reply
time decreases with increased user density and therefore compensates for
the expected increase in the mobility-based overhead. Quite differently,
qinit (equal to qtotal−qmob) increases proportionally to the user density as
the number of queries is not limited by a certain qmax.

The main result here is that once the success rate is good, an increased
number of messages is “wasted” towards lowering the reply time. In other
words: waiting for users to move is more efficient than simply querying
more users. As a consequence, if a higher reply time were acceptable,
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then the protocol can do with much less queries by choosing a smaller
initial number of queries qinit.

Summing up, the above results are encouraging. In all our experiments,
we could observe high rate of successful queries, that is, of objects being
found. While the time until a reply can be obtained varies with user mo-
bility and density, our conjecture – that most of the time an object will be
found eventually – was confirmed. Moreover, we could show that even in
settings with high positioning errors. or which rely solely on the observed
cell identifier for localization, the total overhead for distributing an object
search query remains acceptably low.

Finally, in certain circumstances the system may even work reasonably
with very low participant densities which represent a hundredth of the
expected daytime population in an urban area. Based on these results,
we assume that a similarly designed object localization system can be
implemented in practice.

4.7 Summary

In this chapter, we motivated and designed a comprehensive system for
managing and finding everyday items using mobile phones. We discussed
the architecture, design, and expected performance of this system, to-
gether with a flexible query scoping algorithm that generates object search
heuristics from application data.

Our system makes use of an unconventional approach, as it relies on the
participants’ mobility in order to cover an essential portion of the search
space. We therefore spent significant effort on modeling and testing the
circumstances in which such an object search system would be used in
the large.

A prominent challenge of the presented object localization system is to
select a set of sensors that are likely to cover the phenomenon of inter-
est, as a query cannot be distributed to all available sensors based on the
scale of the system. This challenge was approached by a query scoping
algorithm that exports a generic interface for its configuration. Based on
the observation that every conceivable query scoping strategy would in-
volve exploring history data stored by the system, the algorithm takes an
annotated data model for an input, by which developers may parameterize
algorithm to implement arbitrary query scoping heuristics.

While different in its motivation and the underlying network model, the
approach repeats a pattern which re-alligns it with the previous chapters.
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It uses a role-based configuration algorithm which exports a generic in-
terface for setting up its behavior.



5 Conclusion

In the preceeding chapters, we have examined three rather heterogeneous
approaches to wireless sensor network configuration. In this final chapter,
we summarize the presented contributions and discuss their limitations as
well as possible extensions.

5.1 Contributions

Each of the presented approaches allows programmers to express desired
configuration behaviour in a generic way. We summarize the taken ap-
proaches in the following three sections.

5.1.1 Generic Role Assignment

Generic role assignment is a programmable service which supports devel-
opers with network configuration tasks. Based on properties of the nodes
and their network neighborhood, developers can specify conditions for
assigning roles to sensor nodes. We argued that many network configura-
tion problems can be considered instances of generic role assignment as
they can be expressed in terms of concise role assignment conditions.

Next to being expressive, the system is also efficient. In our evalua-
tion, we showed that the communication costs incurred by generic role
assignment are proportional to the “hardness” of the specified problem.
Moreover, we discussed how the overhead involved in implementing role
assignment problems is often comparable to specialized implementations
of these problems.

To help developers assess the quality of role assignment conditions (so-
called role specifications), we provided a verification tool which can be
used to perform offline analysis of a given role assignment problem. In
particular, this tool can be used to detect erroneous specifications which
will not generate any useful configuration when deployed to a network in
operation.
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5.1.2 Facility Location

The second contribution zooms in on a large subclass of role assignment
problems which is concerned with selecting nodes that provide a service
to client nodes in their network neighborhood.

This subclass of problems can be modeled by the facility location prob-
lem. We therefore designed a distributed approximation algorithm for the
facility location problem which can be practically implemented on wire-
less sensor nodes. Based on a set of parameters determining the cost in-
volved in operating server nodes and the cost of communication between
clients and their servers, the provided algorithm is able to find an optimal
trade-off between these two kinds of costs involved in network operation.

Using experiments, we could show that the presented algorithm finds
near-optimal solutions while depending only on local communication
constrained to small network neighborhoods. Moreover, we found that
a possible drawback of this algorithm, namely a high worst-case runtime,
does rarely materialize in practice. In our experiments, the algorithm’s
runtime is small and constant, that is, independent of the network size.

Apart from being close to optimal in the average case, the computed
solutions are guaranteed to be within a factor of 1.61 from the optimum,
even in the worst-case. By integrating very good theoretical results (not
even a centralized polynomial algorithm can provide an approximation
factor better than 1.463) into a practicable local algorithm, the presented
work can be considered to build a bridge between theory and practice.

5.1.3 Query Scoping

Our third contribution focused on a different subclass of configuration
problems, which involves selecting the subset of sensor nodes which is
most suitable for addressing a given sensing task.

The motivating application requires embedding sensors for detecting
nearby objects into users’ mobile phones and makes use of the resulting
sensing infrastructure to locate lost or misplaced objects. In order to be
efficient, this system selects an appropriate subset of all sensors for han-
dling a given user query on a misplaced object. In particular, the sensor
selection is performed offline at the network base station avoiding com-
municating with all sensors for each query.

The query scoping system has been custom tailored to its motivating
application: It selects sensors based on their utility in locating everyday
items which are of interest to users. In this context, we argued that the
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system may flexibly generate a large range of sensor selection heuristics,
based on arbitrary data that is stored by the application (such as previous
reports on an object).

In our evaluation, we compared the performance of query scoping to
random sensor selection strategies. Further, we evaluated the practica-
bility of the mobile-phone-based object localization application itself. In
particular, we examined various trade-offs involved in the design of user-
centric sensing systems, and showed that adding sensors to only a small
fraction of the participants’ mobile phones already suffices for implement-
ing the object localization application.

5.2 Limitations

As all three services summarized above provide generic interfaces for
their parameterization, a set of common limitations can be associated to
each of them. The first is related to the expressiveness of the service in-
terface. For example, each service has been custom-tailored to a certain
class of problems and does not allow for the implementation of functional-
ity beyond this class. The second is related to the efficiency of the service
implementation when compared with custom-built specialized solutions
of similar problems. Last but not least, even if a service interface provides
a high level of abstraction, developers must still perform a translation be-
tween the desired application logic and the provided service interface, to
which we refer to as the interface’s semantic gap.

In the following three sections, we discuss the limitations of each con-
tribution according to the above categories, as well as specific limitations
which can be associated to each contribution.

5.2.1 Generic Role Assignment

Clearly, generic role assignment cannot be used to formulate every con-
ceivable role assignment problem. Instead, its expressiveness is limited by
design. For example, generic role assignment is specialized to symmet-
ric problems, where each node follows the same set of rules. Moreover,
the system focuses on configuration tasks whose role assignment condi-
tions are formulated in terms of rather stable network properties. While
node properties may change over time, generic role assignment is only
useful if (on average) one role assignment iteration can conclude and the
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network is allowed to benefit from the computed configuration before the
next property changes necessitating re-configuration take place.

Moreover, generic role assignment is limited to configurations in which
greedy assignment of roles according to the specification makes sense,
that is, which do not require to observe certain global optimization cri-
teria. For example, while it has been possible to guarantee near-optimal
solutions for the configuration tasks that can be modeled by the facility
location problem, such optimality guarantees are hard to achieve for all
problems specifiable by the generic role assignment system.

Further, we mentioned that the efficiency of the system is comparable
to specialized implementations in many cases. However, one drawback
is that nodes propagate properties occurring in the role specification to
all nodes within a local network neighborhood. Specialized implemen-
tations, instead, may limit property propagation to nodes which benefit
from the information.

Finally, generic role assignment’s semantic gap is hard to assess ade-
quately and only tentative statements can be made. Boolean role assign-
ment conditions are established concepts, which can readily capture the
developer’s logic (consider the clustering example, where cluster lead-
ers are connected by gateways which function as bridges between them).
What might diverge from developers’ intentions are the effects caused
by unforeseen interdependencies between conditions for assigning differ-
ent roles, which may in some cases result in non-terminating role assign-
ment iterations. The role assignment solver, providing offline specifica-
tion analysis, was built to overcome this concern.

A specific limitation of generic role assignment is that the speed of
its convergence to a stable set of roles is an open issue – although this
drawback is not apparent in our experiments. A formal framework that
categorizes classes of role-assignment problems based on their conver-
gence properties (as has been done in [Wol94] for a synchronous execu-
tion model and a constrained set of assignment rules) would be a valuable
extension of our work. Because of the generality of the discussed role
specifications, however, this remains a challenging open problem.

5.2.2 Distributed Facility Location

Analogous limitations exist for the provided facility location algorithms.
Intuitively, their expresiveness is limited to configuration tasks that can be
modeled by the facility location problem. In particular, we considered the
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uncapacitated version of the problem, which does not set a limit on the
number of clients per server node. Such limits, however, can be useful
in many applications. A possible extension of our algorithm therefore
is to address the capacitated facility location problem, as we describe in
Section 5.3.2.

Moreover, our algorithms may suffer from drawbacks in efficiency when
applied to problems which are “easier” than facility location. For exam-
ple, the algorithms can be parameterized to compute a minimum dominat-
ing set. However, specialized approaches which are based on assigning
roles probabilistically [Lub85] are able to provide low approximation fac-
tors involving fewer communication rounds.

Finally, the semantic gap of the facility location algorithms can be con-
sidered low, as the connection and opening cost parameters may well rep-
resent the energy spent by each of the two roles (client and server) within
a given application.

A specific limitation of the described facility location algorithms is their
high worst-case runtime. Attempts to speed up facility location algo-
rithms, however, should not compromise the (average-case) optimality of
the obtained solution, as this would diminish the practical benefit of the
approach.

5.2.3 Query Scoping

Our query scoping approach provides a framework for determining the
utility of sensors for answering user queries. While limited to the do-
main of sensor selection, the expresiveness of this framework is relatively
high. Developers may issue arbitrary data models annotated with custom-
implemented functions defining the relevance of the relations contained
in the model.

Further, the efficiency of the approach has not been compared with
specialized implementations. This is because highly customized search
strategies are not considered useful in the context of the object localiza-
tion application.

Finally, we mentioned above that the semantic gap can be viewed as
relatively high compared to the previous two contributions. This is based
on the fact that the semantics of a given set of weight functions (assigned
to relations of the data model) become only apparent when considered
together with the breadth-first search algorithm used for query scoping.
Re-formulating the semantics of these functions (and of the relevance pa-
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rameters assigned to edges of the search graph) to denote probabilistic
relevance estimates (corresponding to the reciprocal of the currently used
cost-based estimates), could overcome this drawback.

Moreover, because the taken approach is application specific, it might
occur that a given selection problem can be captured more effectively by
a different specification technique (other than by annotated data models),
for example, by directly defining a utility function that returns the rele-
vance of a sensor with respect to a given sensing task.

5.3 Outlook

There are a number of ways in which each of our contributions could
be improved. In the following three sections, we discuss potential areas
of future work. Further, in Section 5.3.4 we provide an overview of the
core functionality addressed by this thesis, in order to provide guidelines
for the design of a future, more comprehensive, network configuration
service.

5.3.1 Generic Role Assignment

Generic role assignment could be extended in various ways. The first is
to allow nodes to take on multiple roles instead of just one. Implement-
ing this extension would require changing the system’s semantics (cur-
rently assigning the first role of the specification whose assignment con-
ditions match) to instead assign all roles whose conditions match. These
changes would be particularly beneficial for applications, in which nodes
perform different tasks concurrently. Note that such changed semantics
could easily be added to the existing system: The node protocol would
assign all matching roles; the centralized solver would simply omit some
constraints.

A similar extension consists in maintaining the current role assignment
semantics, but allow programmers to issue multiple role specifications
which are all evaluated by the system at the same time. Given a set of
specifications, the system would assign exactly one role from each of
them, where each specification allows programmers to control a paral-
lel set of node tasks. For example, nodes could adapt the behaviour of
their routing components according to described clustering specification,
while, at the same time, the mentioned coverage specification determines
when to power up, or respectively shut down, the node’s sensing function-
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ality. Note that this extension can easily be implemented by re-executing
the existing local rule evaluation engine a couple of times for each speci-
fied group of roles.

A third extension involves providing a more powerful local runtime en-
vironment on the nodes. We have mentioned how additional operations
over local node properties (such a set intersection, substraction, or even
custom-implemented library functions) enable a range of more advanced
role specifications.

Finally, one could provide heuristics that attempt to realize certain
global properties in the computed configurations. Most importantly, one
could optimize the use of certain roles (as already supported by the cen-
tralized solver). Moreover, developers could be offered a feature, which
(if enabled for a certain subset of roles) attempts to obtain configurations
in which the specified subsets of roles form a connected backbone.

5.3.2 Distributed Facility Location

The presented work on facility location could be continued on several
paths. The algorithms we described could be made faster, possibly em-
ploying a technique inspired by [MW05], in which stars are connected
“fractionally” in small parallel steps and the obtained fractional solution
is rounded later.

Moreover, in wireless multi-hop networks two “harder” versions of the
facility location problem have particular applicability, for which, to our
knowledge, no distributed algorithms exist at all.

The first is capacitated facility location, which allows developers to im-
pose a limit c on the clients which can be connected to one server node.
This (harder) problem definition may require a significantly revised algo-
rithm if a low approximation factor is desired. However, a slight revision
of the existing algorithms, in which nodes consider only the subset of stars
containing less than c clients, could already provide a useful approach.

The second is robust facility location, which requires every client to be
redundantly connected by k facilities. Here, again, our algorithms could
already provide useful heuristics if client nodes are allowed to connect to
more than one server (be part of k stars simultaneously) during algorithm
execution.

Finally, there are other promising applications of distributed facility lo-
cation, which can be implemented by different parameterizations of the
provided facility location algorithms. For example, one could construct
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whole data aggregation trees, by re-executing the described algorithms
several times. In particular, one could parameterize consecutive execu-
tions of the algorithms to select aggregators of different levels (that is, to
connect stars consisting of stars computed in the previous round) in each
execution, and thus construct an efficient communication tree.

5.3.3 Query Scoping

The provided query scoping approach is application specific. One could
provide an application-independent query scoping system by having
nodes perform statistics on their output over time. Once these statistics
are communicated to the network basestation, the basestation may direct
a query for a certain event of interest to sensors which, based on previous
statistics, are likely to observe such events.

5.3.4 A Comprehensive Configuration Framework

Apart from extensions to each individual service, an interesting path of
future work is to provide a comprehensive comfiguration service that ad-
dresses functionality from all three contributions within a common frame-
work. In this section, we are therefore interested in highlighting common
concepts which re-appear in all our contributions, and can thus be ex-
pected to be part of any future service that is concerned with network
configuration. In particular, we assume that a more advanced configura-
tion service can approach all these concepts in a unified manner.

An aspect common to all our contributions on role-based configuration
is that they implicitly provide functionality for grouping nodes. For ex-
ample, generic role assignment forms groups in two distinct ways: On
the one hand, nodes taking on the same role can be considered part of the
same group. On the other hand, roles which require that a given set of
nodes must be present in the local network neighborhood (for example an
aggregator node which depends on a set of data sources) implicitly form
a group consisting of the data sources and the chosen aggregator node.
Facility location similarly associates nodes into clusters consisting of a
server and a set of clients. Query scoping groups nodes based on their
likelihood to sense certain information.

Based on these observations, and the fact that similar functionality is
involved in many related services [WSBC04, WM04, MP06, SFCB04,
HKS+04] and programming frameworks [GGG05, NW04, BPRL05], we
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expect such composition and grouping of nodes to be part of any pro-
gramming framework for wireless sensor networks. Therefore, in order
to provide guidelines for the design of a future configuration system, it
seems worthwhile to zoom in further on the different aspects involved in
functionality for grouping nodes. Specifically, we found three such as-
pects.

Composition. The first aspect involves combining services or data (such
as streams of some data type) from different nodes into more high-level
services. For example, a cluster leader in a network performing fire de-
tection could use its associated nodes to provide high-level reports on the
current status of a large portion of the observation area. A different exam-
ple is smart farming where two sources of humidity and temperature sen-
sors from the same area (possibly not collocated on the same node) must
be combined to evaluate the likeliness of infection with certain fungi [Ins].
Apart from composing streams of data, similarly, other services provided
by network nodes (such as localization or time synchronization) could
be composed into a more high level service. In summary, composition
focuses on connecting services or data from different nodes into a more
high-level bundle.

Exclusion. The second aspect involves granting nodes exclusive access to
certain sensing or processing resources, or ensuring that certain tasks are
processed by a limited number of nodes (from a network neighborhood)
only. Coverage problems are based on exclusion, as they prevent more
than one node from sensing the same area. In clustering approaches, typ-
ically a single cluster leader makes exclusive use of the data provided by
associated slave nodes. The main purpose of exclusion aspects in wireless
sensor networks is energy efficiency. It attempts to avoid redundant data
gathering or computation within certain areas of the network, when the
task can be performed sufficiently well by a single node or a small subset
of nodes. Applications that require a group of nodes to reach consensus
on a certain value often elect one group leader to choose the value for
them, which is also a special case of exclusion functionality.

Selection. The third aspect involves selecting the most useful subset of
nodes based on the required task. Selection functionality can be straight-
forward: The task may involve collecting data from a certain area (in
which case sensors from this area are selected while the rest of the net-
work remains inactive) or only from a given subject such as a certain
building or bridge (in which only sensors located near the subject are rel-
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evant for the sensing task). Alternatively, more involved methods for se-
lecting nodes can be provided, for example, the sensor ranking performed
by our query scoping approach. Note that selection can be performed off-
line at the network base station, as done by our query scoping system, as
well as online inside of the network, where the nodes themselves compute
whether they should be selected (as could be implemented by generic role
assignment).

Note the orthogonality of the three aspects above. Composition wires
the different sensors together into compound entities. Exclusion avoids
that certain data or tasks are processed redundantly by multiple entities.
Selection chooses the most useful entities for a given sensing task.

The expressiveness of generic role assignment can be explained by the
fact that it integrates all three aspects. It implements composition by al-
lowing to specify conditions requiring that nodes with certain properties
(or roles) should be present in the network neighborhood. It also ad-
dresses exclusion as it allows to require that no other nodes with certain
properties should be present. Finally, the role abstraction can be used as a
means for online selection of nodes by enabling developers to include se-
lection conditions in terms of local node node properties, such as a node’s
location, its current sensor readings, or its battery status, into role assign-
ment conditions.

Facility location achieves specific intertwined composition and exclu-
sion functionality involved in the clustering problem. While it composes
groups of nodes into stars, at the same time it ensures that the star’s clients
are exclusively connected by the facility rooting the star (that is, that stars
do not overlap and therefore information from clients is not processed re-
dundantly). Finally, query scoping expands on the orthogonal selection
problem, an aspect that is not present in the facility location system.

A future configuration service would need to integrate composition, ex-
clusion and selection into a common programming framework. While
generic role assignment has performed such integration, a future sys-
tem might benefit from providing programmers with more explicit control
over the above aspects and the interaction between them.

A promising candidate to address composition are graphs which state
the desired composed structure (such as task graphs in ATaG [BPRL05]).
Constraining these graphs to have the form of trees would allow for more
efficient implementation of the configuration runtime and still capture
most functionality of the composition aspect. Note that facility location
addresses composition for graphs which have the form of stars.
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Extensions regarding exclusion would allow developers to define ad-
ditional entities (such as services, node groups or geographic areas) and
constraints on the access to them by other entities. Note that – just like
the accessed entities – the accessing entities do not need to be nodes.

Additional support for selection might include allowing developers to
plug in functions that compute a ranking of nodes, either online based
on certain local properties, such as the number of clients connected to a
clusterhead or the nodes’ battery level, or offline based on statistics on
local properties which have been propagated to the network base station.
Automated mechanisms for efficient online selection according to a given
ranking function, and for the propagation of statistics to the network base
station in order to perform offline selection based on the same function
later on, may be another interesting direction to pursue in a future system.

5.4 Concluding Remarks

In this thesis, we approached role-based configuration problems from
three distinct points of view which were founded on different applica-
tion domains. Due to the wide range of applications which require role-
based configuration, we believe that we touched upon core challenges
which will manifest themselves in every network configuration problem.
By facing these challenges in a variety of ways, we provide a more com-
prehensive understanding of potential solutions – by which we hope to
facilitate the design of future systems concerned with the configuration of
wireless sensor networks.
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