
WIP: BurstMAC — A MAC Protocol with Low
Idle Overhead and High Throughput

Matthias Ringwald, Kay Römer
Institute for Pervasive Computing, ETH Zurich, Zurich, Switzerland

Email: {mringwal,roemer}@inf.ethz.ch

Abstract— Many sensor network applications feature bursty
traffic patterns: after long periods of idle time with almost no
network traffic, large amounts of data have to be transmitted
reliably and in a timely manner. One example is volcano
monitoring [8], where precious high-volume data is generated
by rare volcanic eruptions.

Unfortunately, existing MAC protocols do not sufficiently
support such applications with bursty traffic patterns. Protocols
design for low data rates such as WiseMAC or SCP-MAP have
very low overhead in idle situations, but have high overhead and
low throughput under high load due to collisions. In contrast,
scheduled protocols such as LMAC can handle high loads without
collision, but have low throughput and significant overhead in idle
mode [4].

We devise a new MAC protocol, BurstMAC, that closes this
gap by combining low idle overhead with high throughput under
load. It achieves radio duty cycles of < 1% in an idle network
and uses up to 71% of the available bandwidth during traffic
bursts without any collisions. 1

I. PROTOCOL OVERVIEW

BurstMAC combines a number of techniques to combine
high throughput under load with low idle overhead. Most no-
tably, scheduling and the use of multiple radio channels enable
high throughput, while cooperative transmissions and tech-
niques to eliminate preambles guarantee low idle overhead.
In this section, we present the key ideas behind BurstMAC
and outline the basic protocol structure

A. Collision-free Communication

To avoid collisions, BurstMAC operates in synchronous
rounds. The sink node is used as time reference for synchro-
nization. Each node synchronizes to the average time of all
nodes which are closer to the time reference than itself. Each
round consists of 32 frames. Every frame contains a control
section and a data section as depicted in Fig. 1. To maximize
throughput and to allow for collision-free communication
during the data section, BurstMAC uses 32 interference-free
data channels and one control channel. The control section is
used for time synchronization, to broadcast other information
to all network neighbors, and to assign color ids to nodes. As
a result of the latter, each node is assigned a color id c ∈ 1..32
that is unique within two hops. The color id c is used for two
purposes. Firstly, the control section of frame c is reserved for
the node with color id c, which allows a node to send control

1The work presented in this work-in-progress paper was partially supported
by the Swiss National Science Foundation under grant number 5005-67322
(NCCR-MICS)

FRAME 1 FRAME 2 FRAME 31 FRAME 32

1 round = 32 frames

...

CONTROL DATA

50 ms 950 ms

Master

Slave 1 x

sync

x

1 schedule ack ack

x xSlave 2

2 ...

data 1

data 2

Fig. 1. BurstMAC round consisting of 32 frames which each contain a
CONTROL and a DATA section.

messages without collision on the control channel in frame c.
Secondly, the node receives data on radio channel c during
the data section, coordinating multiple senders to receive data
without collisions.

B. Coordination-free Transmission Scheduling

As a node cannot send and receive at the same time, some
form of coordination is required among the nodes to achieve
agreement on when to send and when to receive. To realize this
coordination without introducing additional control messages,
BurstMAC uses the following approach. During each frame,
a node is either in transmit or receive mode, that is, it can
either only transmit or only receive data during the whole
frame. The choice of mode is controlled by a pseudo-random
number sequence which is seeded with the unique 16-bit node
id. Knowing the node ids of its neighbors, a node can not only
compute its own current mode, but also the current modes of
its neighbors. If node A wants to send to neighbor B, then A
has to wait for a frame when it is in send mode and B is in
receive mode. A uses B’s channel for the actual transmission.
This approach avoids any extra traffic for coordination among
nodes.

C. Cooperative and Single-Bit Transmission

These two physical layer techniques allow for efficient
scheduling in the data section of BurstMAC. If multiple
senders send a jamming signal at the same time, a receiver
can use the Received Signal Strength Indicator (RSSI) to detect
that at least one node is sending. This cooperative transmission
is used to quickly detect if at least one sender wants to send
a packet.

To query which nodes want to send, single-bit transmission
is employed. For this, a coordinating node broadcasts a short
synchronization packet to provide a bit-accurate time refer-
ence. If node c wants to send a packet, it sends a jamming
signal in bit slot c which is detected by the coordinating node.
Both techniques are described in more detail in [6].

D. Packet Bursts

To increases throughput and reduce communication over-
head, a sender can request the transmission of multiple packets
in a row, eliminating lengthy preambles for all but the first
packet. Still, each packet has an individual checksum to detect
bit errors. The receiver replies a bit vector with a one bit for
each packet that has been received correctly.

E. Cross-layer Optimizations

Typical routing protocols such as MintRoute [9] need to
perform neighbor discovery and link quality estimation, which
requires each node to broadcast beacon packets at regular
intervals. However, due to the existence of the control packets
in BurstMAC, we can integrate neighbor discovery and link
estimation into BurstMAC without additional overhead.

II. PROTOCOL DETAILS

A. 2-Hop Coloring

Each node has to be assigned a color id c which is unique
within two hops. As discussed in Sect. I, c is used as a channel
id for payload data transmissions and to schedule broadcasting
of control messages on the control channel.

For coloring, all nodes keep track of the frames used by their
neighbors for sending control messages similar to LMAC [7].
As a node with color id c transmits a control message in frame
c, each node is aware of the colors assigned to its neighbors
and periodically broadcasts a bit vector of these occupied color
ids in its control message (field occupied). A newly joining
and yet uncolored node with id i receives the list of used
color ids in the control messages of all of its neighbors. The
union of these sets equals the set of color ids used in its 2-hop
neighborhood. The new node then randomly picks a color id c
from the remaining free colors and transmits its control packet
in frame c in the next round. A special flag in the control
message requests other nodes to echo the node id contained
in the control packet of frame c. If another node with node
id j simultaneously picks the same color c, both node ids i
and j will be reported for frame c by different neighbors. In
this case, both newly colored nodes pick another free color at
random.

B. Transmission Scheduling

BurstMAC efficiently schedules data transfer on demand
using cooperative and single-bit transmission. Fig. 2 shows the
data section in more detail, time increases from left to right.
One node is in receive mode and two nodes in send mode want
to transmit a packet to the receiver. In segment A, both senders
employ cooperative transmission and concurrently transmit
their send request to the receiver. If there is at least one sender,
the receiver exerts the single-bit transmission technique by
sending a minimal sync packet in segment B. The sync packet
allows a sender to accurately synchronize and send a single
jamming “bit” in the slot which corresponds to its color id
c in segment C. Based on the list of senders, the receiver
than computes and broadcasts the transmission schedule in
segment D. In each data segment Ex, a sender transmits a data

FRAME 1 FRAME 2 FRAME 31 FRAME 32

1 round = 32 frames

...

CONTROL DATA

50 ms 950 ms

Receiver

Sender (c = 1) x

sync

x

schedule ack

x xSender (c = 3)

...

data 1

ack

data 2

A B D E
1

E
2

C

21 3

Fig. 2. DATA section with two senders transmitting a packet to the receiver.
Cooperative transmission is used in segment A and single bit transmission in
segments B and C to identify the senders.

packet which is immediately acknowledged by the receiver.
The header of the data message also contains several flags. One
of them, the more flag, can be set by the sender to indicate that
it needs another slot to send a further packet. If available, the
receiver will reply an unused slot k in the acknowledgement,
such that the sender can send the next packet in slot Ek.

C. Network Startup
All nodes concurrently send a short jamming signal, called

Blip, for 100 us at the very beginning of the control section on
an extra Blip channel. By this, a new node joining the network
has to scan the control channel at 100% duty-cycle only for
a single frame instead of a whole round. On detection of the
Blip, the node already has approximate timing information on
the start of the control section and will receive at least one
control message in the next 32 frames.

III. IMPLEMENTATION

We implemented BurstMAC on BTnode Rev. 3 nodes [1].
They basically consist of an ATMEL ATMEGA128 8-bit mi-
crocontroller, 256 KB of external SRAM, a ChipCon CC1000
radio module and a Zeevo ZV-4002 Bluetooth module. The
Bluetooth module was not used in this work. BTnut, an
extension of Nut/OS [3], is used as the operating system.

The CC1000 on the BTnode is configured for the 868 MHz
ISM-band, where the actual baseband frequency within this
band is configurable by software. We used 34 channels of
which one is reserved for control broadcasts, one is used for
the wake-up mechanism and the other 32 are used for data
communication. The analog RSSI output of the CC1000 is
used for clear-channel assessment, cooperative and single-bit
transmission. We further make use of the CC1000’s ability for
precise MAC layer timestamping in the order of 10 us [5].

For the implementation, we used a bit rate of 19200 bps
and a frame length of 1 s, which is split into 50 ms for the
control section and 950 ms for the data section. By this, the
data section provides 24 data slots for single bit transmission
or up to 51 packets in burst mode. A packet contains a type
field and up to 32 bytes of payload. In this configuration, a
node can send or receive a single packet and up to 52 burst
packets of each 33 bytes in a single frame. Such a transfer of
1716 bytes results in a maximal usable bandwidth of 71.5%
of the total bandwidth of 2400 bytes/s.

IV. PRELIMINARY EVALUATION

We study the performance of the BurstMAC implementation
on BTnodes. In particular, we investigate the accuracy of time
synchronization, the idle overhead, as well as overhead and
time to completion of traffic bursts.

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8 9 10

Ti
m

e
Sy

nc
hr

on
iz

at
io

n
Er

ro
r [

us
]

Distance to Time Reference [hops]

Fig. 3. Accuracy of time synchronization on a chain topology.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

D
ut

y
C

yc
le

 [%
]

Number of Neighbors

Fig. 4. Radio duty cycle in idle mode as a function of neighborhood size.

A. Time Synchronization

We investigate the accuracy of time synchronization as a
function of the network diameter. For this, we arrange 10
nodes in a chain topology with the time reference at the
end, forcing each node to use only its direct parent as a
reference for synchronization. However, all nodes are within
communication range of the time reference, such that each
node can directly measure its synchronization error with
respect to the time reference. We ran this setup for one hour,
where each node measures its synchronization error once per
round. After collecting the measurements from the network,
we computed averages and standard deviations for all nodes
in the chain as depicted in Fig. 3. The results show that the
average synchronization error increases by about 25 µs per
hop. Note, however, that the accuracy of our clock is only
30.5 µs. As the required synchronization accuracy is in the
order of few milliseconds (we only need to synchronize to
rounds, not at the byte or bit level), we can easily support
networks with a diameter in the order of several tens of hops.

B. Idle Case

We investigate the idle overhead of our protocol in terms
of the radio duty cycle. As the radio duty cycle is a function
of the number of neighbors of a node (a node has to receive
the control message from each of its neighbors), we study
the radio duty cycle of a node with a varying number of
neighbors. For each neighborhood size, we ran the network for
5 minutes, measuring the time the radio was on and compute
the average duty cycle as depicted in Fig. 4. We find that the
duty cycle increases by about 0.02 % per added neighbor. For
zero neighbors, the duty cycle of the low-power listening used
during the network startup is measured.

C. Burst Case
To investigate BurstMAC’s performance in the burst case,

we setup a network of 30 nodes in our lab. The diameter of
the resulting network is 4 hops and each node has at most 4
neighbors.

We simulate a traffic burst in the volcano monitoring appli-
cation [8], where an eruption triggers all nodes simultaneously
to transmit a burst of 10 KB (i.e., 320 BurstMAC packets).
We measure the following two metrics. Firstly, the time it
takes until all data has been successfully delivered to the sink.
Secondly, the average overhead per transmitted packet. For
the latter, we measure the average radio-on time per packet
and put this value into relation to the minimal radio-on time
it takes to transmit a packet (i.e., packet length divided by
radio bitrate). BurstMAC delivered the total of 9280 packets
in average time of 448 seconds which means that 20.7 packets
could be received by the sink per second. This is only half the
maximal packet reception rate of 51 packets per second using
the packet burst. Further investigation has to evaluate, if this
throughput can be improved.

To estimate the protocol overhead, we calculated the total
radio-on time based on the collected metrics. In addition, we
calculated the optimal radio-on time based on a packet length
of 35 bytes (1 byte type, 32 bytes payload and 2 byte CRC)
to be 14.5 ms. As the transmission of a packet involves both
the sender and the receiver, we define the optimal radio on-
time as 29 ms. BurstMAC required an average radio time of
46 ms which is 58% more than the optimal radio time and
this already includes the control messages and the overhead
caused by sending preambles.

V. OUTLOOK

We are currently working on a thorough evaluation using
30 BTnodes distributed in our lab which involves comparison
to other protocol such as LMAC and SCP-MAC. Support for
very dense networks is a further topic as 32 channels might not
be sufficient for the 2-hop-coloring of very dense networks.

REFERENCES

[1] BTnodes. A distributed environment for prototyping ad hoc networks.
www.btnode.ethz.ch.

[2] Nicolas Burri, Pascal von Rickenbach, and Roger Wattenhofer. Dozer:
ultra-low power data gathering in sensor networks. In IPSN 2007, pages
450–459, April 2007.

[3] ethernut. Embedded ethernet. www.ethernut.de/.
[4] Koen Langendoen. Medium access control in wireless sensor networks.

In H. Wu and Y.Pan, editors, Medium access control in wireless networks,
volume II: practive and standards. Nova Science Publishers, 2007.

[5] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The
flooding time synchronization protocol. In SenSys, 2004.

[6] Matthias Ringwald and Kay Römer. Bitmac: A deterministic, collision-
free, and robust mac protocol for sensor networks. In EWSN, 2005.

[7] L. van Hoesel and P. Havinga. A Lightweight Medium Access Protocol
(LMAC) for Wireless Sensor Networks: Reducing Preamble Transmis-
sions and Transceiver State Switches. In INSS 2004, Tokyo, Japan, June
2004.

[8] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and
Matt Welsh. Fidelity and yield in a volcano monitoring sensor network.
In OSDI, 2006.

[9] Alec Woo, Terence Tong, and David Culler. Taming the underlying
challenges of reliable multihop routing in sensor networks. In SenSys,
2003.

	Protocol Overview
	Collision-free Communication
	Coordination-free Transmission Scheduling
	Cooperative and Single-Bit Transmission
	Packet Bursts
	Cross-layer Optimizations€

	Protocol Details
	2-Hop Coloring
	Transmission Scheduling
	Network Startup

	Implementation
	Preliminary Evaluation
	Time Synchronization
	Idle Case
	Burst Case

	Outlook
	References

