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Abstract
Non-intrusive load monitoring (NILM) is a popular ap-

proach to estimate appliance-level electricity consumption
from aggregate consumption data of households. Assessing
the suitability of NILM algorithms to be used in real sce-
narios is however still cumbersome, mainly because there
exists no standardized evaluation procedure for NILM algo-
rithms and the availability of comprehensive electricity con-
sumption data sets on which to run such a procedure is still
limited. This paper contributes to the solution of this prob-
lem by: (1) outlining the key dimensions of the design space
of NILM algorithms; (2) presenting a novel, comprehensive
data set to evaluate the performance of NILM algorithms; (3)
describing the design and implementation of a framework
that significantly eases the evaluation of NILM algorithms
using different data sets and parameter configurations; (4)
demonstrating the use of the presented framework and data
set through an extensive performance evaluation of four se-
lected NILM algorithms. Both the presented data set and the
evaluation framework are made publicly available.
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H.4 [Information Systems Applications]: Miscella-

neous
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1 Introduction
Providing feedback on electricity consumption is a pow-

erful way to induce a more energy-efficient behavior in
households [10, 12]. In particular, feedback has shown to be
effective when it is detailed and provided in a timely manner,
it is tailored to individual households and it contains infor-
mation on the consumption of individual appliances [2, 10,
12]. Utilities, which are increasingly forced (and motivated)
by policy makers to help their customers save electricity, are
thus highly interested in providing appliance-specific con-
sumption feedback as a service to their customers (e.g., in
the form of automated saving recommendations). The data
needed to provide such feedback could be obtained through
sensors that monitor the consumption of individual appli-
ances in the household. Deploying such a sensing infras-
tructure is however costly and cumbersome.

To avoid the need of monitoring individual appliances,
non-intrusive load monitoring (NILM) algorithms have been
proposed in the literature [32, 33]. These algorithms an-
alyze the aggregate electricity consumption of the house-
hold, i.e. the total electricity consumption of the house-
hold measured using a single electricity meter. Through this
analysis, the algorithms can identify which individual appli-
ances are running and how much electricity they consume.
NILM approaches might differ on several aspects, includ-
ing the granularity at which they assume consumption data
to be available or whether they apply supervised or unsu-
pervised methods to learn typical consumption patterns of
household appliances. NILM algorithms are often evaluated
on single, possibly non publicly available data sets and the
parameter of the algorithm are tuned to operate on those data
sets [32, 33]. Different underlying assumptions, tailored pa-
rameter settings, and lack of comprehensive data sets thus
make the evaluation of NILM algorithms to be often non-
exhaustive but still cumbersome and time consuming. This
also hampers the possibility to compare the performance of
existing approaches and derive general insights about which
algorithms are best suited to be used in which scenario.

In this paper, we address the problem described above and
make the following contributions. First, we outline the key



dimensions of the design space of these algorithms. Second,
we describe a novel, comprehensive data set – the ECO data
set (Electricity Consumption and Occupancy) – that can be
used to assess the performance of NILM algorithms. While
we had relied on this data set to evaluate an approach to de-
tect household occupancy in previous work [21], we present
here the data set in detail and make it publicly available.1
With respect to other data sets, the ECO data set provides
a unique combination of quality and quantity of electricity
consumption data. In particular, it contains aggregate elec-
tricity consumption data – including real and reactive power
for each of the three phases – and plug-level measurements
of selected household appliances. The data has been col-
lected at 1 Hz granularity and over a period of 8 months.
Furthermore, the data set also contains occupancy informa-
tion of the monitored households. Third, we describe the
design and implementation of a comprehensive evaluation
framework for NILM algorithms. The framework, called
NILM-Eval, is similar in scope to the recently presented
NILMTK framework [6] and aims at allowing researchers
to run comprehensive performance evaluations of NILM al-
gorithms. NILMTK has rich metadata support [17], prepro-
cessing capabilities, and supports different statistics func-
tions and performance metrics. With respect to NILMTK,
NILM-Eval facilitates the design and execution of large ex-
periments that consider several different parameter settings
of various NILM algorithms. Furthermore, while NILMTK
is written in Python, NILM-Eval is based on Matlab. Like
for the ECO data set, we make the NILM-Eval framework
publicly available.2 The last contribution of this paper con-
sists in the evaluation of the performance of selected NILM
algorithms. The algorithms are chosen so as to represent dif-
ferent sectors of the design space of NILM algorithms. We
evaluate their performance using our NILM-Eval framework
and rely on the ECO data set. The obtained results allow
to gain insights about the performance of the selected algo-
rithms, to outline their trade-offs, and to discover potential
for further improvements of the considered algorithms.

2 Design Space
The first known NILM approach has been proposed by

Hart [14] in 1992. Hart’s algorithm identifies step changes
in the aggregate electricity consumption and matches them
with a signature database to learn which appliance has been
switched on or off. Building upon Hart’s seminal work,
several different algorithms that rely on different principles
(e.g., combinatorial or probabilistic), utilize different learn-
ing methods, or rely on different data granularities have been
proposed in the literature [32, 33]. Three key design pa-
rameters must however be considered when deciding which
NILM algorithm to use in a real scenario: data granularity,
learning methods and information detail.

The first dimension, data granularity, represents the data
granularity for which the algorithms were designed and opti-
mized for – although most of the algorithms can potentially
also run on data of a different granularity. The granularity
typically ranges from 1/60 Hz (i.e., data aggregated to one

1http://vs.inf.ethz.ch/res/show.html?what=eco-data.
2https://github.com/beckel/nilm-eval

value per minute) [27] to multiple kilohertz (e.g., [8, 13]).
NILM algorithms may utilize different learning methods.

There exist unsupervised and supervised NILM algorithms
as well as approaches that utilize generic appliance models
and can thus be classified as semi-supervised. Unsupervised
approaches typically rely on low-frequency (i.e., 1 Hz) ag-
gregate consumption data [3, 19, 22]. Baranski and Voss,
for instance, detect switching events in the aggregate con-
sumption data and use them as input to a genetic algorithm,
which automatically creates event chains for different ap-
pliances [3]. Other authors utilize hidden Markov models
(HMMs) to model the states of each appliance [19, 22].

Supervised approaches can be classified by the granular-
ity of consumption data they are developed for. Gupta et
al. [13], for instance, developed the algorithm ElectriSense,
which detects consumer electronics devices and fluorescent
lighting by their electromagnetic interference generated dur-
ing operation. To this end, the authors rely on consump-
tion data measured at 10 kHz. Similarly, Berges et al. rely
on measurements conducted at 20 Hz to detect edges in the
aggregate electricity consumption of a household using fea-
tures computed on both real and reactive power [8]. Farinac-
cio et al. developed a pattern recognition approach that ap-
plies rules to identify the consumption pattern of a refrigera-
tor and a heater [11]. Both Weiss et al. [31] and Marchiori et
al. [25] make use of real and reactive power measurements:
The former approach is closely related to Hart’s algorithm as
it detects switching events of appliances in the consumption
pattern. The latter creates 2-dimensional histograms using
the real and reactive power measurements and subsequently
applies a clustering procedure to identify clusters that belong
to individual appliances. Spiegel et al. [29] pursue a classifi-
cation approach using features (i.e., the first order difference
of the consumption data) extracted from 1 Hz real power
measurements. Finally, Parson et al. [27] developed an ap-
proach based on hidden Markov models that only requires
data at a granularity of 1/60 Hz. In contrast to the other ap-
proaches, Parson’s algorithm is considered semi-supervised,
which means it utilizes generic appliance models, avoiding
the need to intrusively install sensors or use other training
methods when installing the system in practice.

Finally, algorithms differ in information detail, which
is the type of data they assume to be available. For in-
stance, some of the aforementioned algorithms require real
power consumption data only (e.g., [3], [11], [19], [22],
[27], [29]). Other algorithms rely on both real and reactive
power (e.g., [8], [14], [25], [31]) or make use of the fact that
the consumption is split into individual phases (e.g., [31]).
Other approaches utilize information provided by other sen-
sors as additional input to the algorithm [16, 20], which
can improve the estimation performance compared to ana-
lyzing the aggregate electricity consumption only. An ex-
ample for such a sensor is an event detector developed by
Rowe et al. [28], which detects state changes of appliances
by sensing the electromagnetic field (EMF) in the surround-
ing based on magnetic and electric field fluctuations. Using
such cheap sensing approaches is then used by algorithms
like ViridiScope [20] or Jung and Savvides’ disaggregation
algorithm [16]. While ViridiScope also relies on other types

http://vs.inf.ethz.ch/res/show.html?what=eco-data
https://github.com/beckel/nilm-eval


of sensors (e.g., light sensors), Jung et al. assume that each
appliance in the household is equipped with a binary sensor
that reports whether or not an appliance is running.

3 Algorithms
Table 1 summarizes the main characteristics of the four

NILM algorithms we implemented and evaluated for this
study. The selected algorithms span the design space dis-
cussed in the previous section. They include supervised, un-
supervised, and semi-supervised approaches as well as algo-
rithms that require different levels of detail with respect to
the measurements (i.e., real power only vs. real and reactive
power). We however include only algorithms that have been
developed to operate on aggregate consumption data mea-
sured at a frequency of at most 1 Hz. The reason for this
restriction is that data at this granularity can be provided by
most off-the-shelf electricity meters. Its collection thus does
not require the costly and cumbersome installation of addi-
tional hardware. The four algorithms are briefly described
in the following subsections. More details about their imple-
mentation are provided in [9].

3.1 Algorithm Description
Parson’s Algorithm: The algorithm of Parson et al. [27]

relies on hidden Markov models (HMMs) and the Viterbi al-
gorithm [30] to disaggregate the electricity consumption of a
household. For each appliance, it determines the most likely
sequence of states (i.e., operating states of an appliance), de-
pending on the observed aggregate electricity consumption,
state transition probabilities, and the estimated consumption
of an appliance in each state. Using this state sequence,
the algorithm estimates the consumption of the appliance,
subtracts it from the aggregated consumption, and then it-
eratively estimates the consumption of other appliances in
the household. To determine the transition probabilities and
power demand of each appliance, Parson et al. developed
a semi-supervised training process. Instead of using sub-
metered consumption data of an appliance, the algorithm uti-
lizes a generic appliance model, which contains information
on the characteristics of a certain appliance type. In case of a
fridge, for instance, the algorithm incorporates information
such as the average consumption of other fridges as a pri-
ori knowledge. On the basis of the generic appliance model,
Parson’s algorithm infers the parameters of a specific appli-
ance model that describes the behavior of the appliance in
the specific household.

The authors evaluated the performance of their approach
on the REDD data set. They estimated the consumption of
four appliances (i.e., refrigerator, microwave, clothes dryer,
air conditioning) achieving a mean normalized error of 21%–
77% and a root mean squared error between 77 W and 477
W using aggregated data at a granularity of 1/60 Hz.

Baranski’s Algorithm: Baranski’s algorithm [3] identi-
fies recurring electricity consumption patterns in the aggre-
gate electricity consumption and attributes those patterns to
individual appliances. To this end, it extracts events (i.e.,
changes in electricity consumption over a given threshold)
from the aggregate consumption and clusters those events,
assuming that events in the same cluster belong to the same
appliance. Next, a genetic algorithm creates a state machine

and the most likely state sequence for each of the appliances.
Baranski’s algorithm is unsupervised and thus can operate

without knowing which appliances exist in the target house-
hold. The algorithm has been evaluated on both simulated
data and on real-world data collected with an optical sen-
sor in one household over a time period of about five to ten
days [3]. By inspecting the resulting clusters, the authors
claim to confidently identify chief consumer load devices
like refrigerators, heaters, or stoves. However, although the
algorithm is unsupervised, it requires to manually assign the
resulting clusters or finite state machines to appliances in or-
der to generate meaningful feedback for the occupants.

Weiss’ Algorithm: Weiss’ algorithm [31] extracts
switching events from the household’s aggregate electricity
consumption and assigns each event to the appliance with the
best match in a signature database. The algorithm is based on
the approach developed by Hart [14], which clusters events
by their real and reactive power in a training phase and as-
signs each event to the appliance with the best matching clus-
ter during operation. The number of clusters is determined
dynamically. In contrast to Hart, Weiss’ algorithm relies on
three-dimensional consumption data (i.e., real power, reac-
tive power, and distortion power) and smoothes the power
signal before extracting events. Weiss et al. also propose a
novel method to unobtrusively generate signatures with the
help of a smartphone application used to indicate a switching
event of an appliance. Up to now, the algorithm has not been
evaluated on real world consumption data. Due to the lack of
a large scale signature database, we treat Weiss’ algorithm as
a supervised approach that is trained using plug-level data.

Kolter’s Algorithm: Like Parson’s algorithm, the algo-
rithm developed by Kolter and Jaakkola [22] also models
appliances as HMMs in order to disaggregate a household’s
electricity consumption. However, the algorithm is unsuper-
vised as it only requires a household’s aggregate electricity
consumption data. To create an HMM for each appliance, the
algorithm estimates the number of appliances and their con-
sumption patterns from the aggregate consumption data. To
this end, it extracts snippets of consumption data that likely
correspond to an appliance’s ON cycle, which is defined as
the period between the appliance’s start-up and shutdown.
Next, it models each of the snippets as HMM and identi-
fies those snippets that most likely belong to the same appli-
ance. This results in a factorial HMM (i.e., a composition of
several independent HMMs), which the authors then use to
estimate the consumption of each individual appliance. To
this end, they developed AFAMAP, an approximate infer-
ence technique for factorial HMMs [22]. The authors evalu-
ated their approach on the REDD data set, analyzing 1 Hz ag-
gregate consumption data using plug-level measurements of
7 appliances for validation. Overall, the algorithm achieved
87% precision and 60% recall.

4 Evaluation Methodology
Performing a performance evaluation of a NILM algo-

rithm is difficult, because there is no standard evaluation pro-
cedure to apply [33]. Even more challenging is performing a
fair comparison between the performance of different algo-
rithms. This is because composition and usage of appliances



Table 1. Overview of the four NILM algorithms evaluated in this study. Granularity refers to the granularity of the data
which the authors used to evaluate their algorithm in their original work.

Authors Learning Granularity Data set Characteristic

Parson et al. [27] Semi-supervised 1 min
(real power) REDD [23] Train factorial HMMs using prior knowledge of ap-

pliance types.

Baranski & Voss [3] Unsupervised 1 sec
(real power)

Simulated and real-world data
(not publicly available)

Cluster switching events and apply genetic algo-
rithm to assign events to appliances.

Weiss et al. [31] Supervised 1 sec (real and
reactive power) Artificial lab setting Extract switching events and find best match in sig-

nature database.

Kolter & Jaakkola [22] Unsupervised 1 sec
(real power) REDD [23] Generate HMMs from “snippets” identified in the

aggregated consumption data.

differs significantly from time to time and from household to
household. The performance of an algorithm thus highly de-
pends on aspects such as the number of appliances running
at the same time, the “noise” in the aggregated consumption
data caused by unreported appliances, the performance met-
rics selected by the authors, and the input parameters they
choose to tune their algorithm to the underlying data.

To gain a comprehensive view on the performance of a
NILM algorithm it is thus necessary to run the algorithm
in different scenarios (e.g., using data from different house-
holds and from multiple time periods) and to experiment
with different input parameters of the algorithm. To this
end, we developed a Matlab-based open source framework
called NILM-Eval, which enables the evaluation of NILM
algorithms on multiple data sets, households, data granulari-
ties, time periods, and specific algorithm parameters. By en-
capsulating those parameters in configurations, NILM-Eval
allows the user with little effort to repeat experiments per-
formed by others, to evaluate an algorithm on a new data set,
and to fine-tune configurations to improve the performance
of an algorithm in a new setting.

Figure 1 shows an overview of the framework, which we
made available to the public. As input, a user provides (or
selects) the implementation of an algorithm and specifies
one or more default configurations. The default configura-
tions provide means for the developer of the algorithm or
for the user who evaluates the algorithm to adapt it to the
corresponding household or data set. A user then creates
experiments by selecting one or more default configurations
and by optionally overwriting their parameters. NILM-Eval
then evaluates all combinations of parameters specified by
the user and thus supports evaluation a broad range of pa-
rameter combinations. For each of the combinations, NILM-
Eval creates a setup file, which then serves as input for the
evaluation system. Since each run is performed on a sep-
arate Matlab instance, NILM-Eval scales over many exper-
iments (e.g., by running it on a computing cluster). Ulti-
mately, NILM-Eval provides as results for each experiment
(1) the value of each of the performance metrics supported
by the algorithm, (2) the estimated consumption of each ap-
pliance or, alternatively, labeled events, and (3) a series of
plots illustrating the results.

To measure the performance of a NILM algorithm,
NILM-Eval supports several metrics. In case an algorithm
returns the inferred electricity consumption of individual
appliances, the framework computes for each appliance n

the root mean square error, RMSE =

√
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(y(n)t − ŷ(n)t )2,

A
lg

o
ri

th
m

s

Data_set = 'swiss'

Granularity = 1

Household = 02

Parameter_1 = 5

Parameter_2 = 10

Parameter_N = 20D
ef

a
u

lt
 C

o
n

fi
g
u

ra
ti

o
n

s
E

x
p

er
im

en
ts

User

Parson Baranski Weiss Kolter ...

..
.

..
.

Data_set = 'redd'

Granularity = 1

Household = 02

Parameter_1 = 5

Parameter_2 = 30

Parameter_N = 50

..
.

..
.

...

Setup files

Household: [2,4]

Parameter_3: [20,40,50] 

Setup files

Household: [2,4]

Granularity: [1,60]

Parameter_1: [5,10]

...

User

R
es

u
lt

s

Plots

Labeled events or

estimated consumption 

- F1 score 

- Recall

- Precision

- Root mean square error

...

Matlab

Figure 1. Evaluation framework NILM-Eval.

where y(n)t denotes the actual electricity consumption of n
at time t, ŷ(n)t corresponds to n’s inferred electricity con-
sumption at time t, and T corresponds to the total num-
ber of time steps. NILM-Eval also determines the devi-
ation of the inferred electricity consumption from the ac-
tual electricity consumption over a period of time, Dev =∣∣∣ T

∑
t=1

y(n)t −
T
∑

t=1
ŷ(n)t

∣∣∣/ T
∑

t=1
y(n)t . Additionally, NILM-Eval deter-

mines the number of true positives (TP), false positives (FP),
and false negatives (FN) for each appliance. To this end,
we define an appliance-specific threshold θ. If ŷt ,yt > θ we
consider ŷt a true positive, if ŷt > θ and yt < θ, a false pos-
itive, and if ŷt < θ and yt > θ, a false negative. NILM-Eval
then computes the F1 score as F1 = 2 ∗ PRC∗RCL

PRC+RCL . PRC and
RCL denote the precision and recall, which are defined as
PRC = TP

TP+FP RCL = TP
TP+FN .

In case the algorithm estimates switching events instead



of the inferred electricity consumption at each time in-
stant (e.g., Weiss’ algorithm), NILM-Eval computes only
F1 score, precision, and recall. In this case, for an appliance
n, TP corresponds to the number of events correctly assigned
to n and FP to those assigned to n even though the event was
not caused by n. FN denotes the number of events missed by
the algorithm.

5 The ECO Data Set
The analysis presented in this paper (see section 6 below)

is based on sensor data we collected from 6 households in
Switzerland over a period of 8 months (June 2012 to January
2013). We refer to this data set as ECO data set and make it
available to the research community.

In the past few years, several data sets collected for the
purpose of evaluating NILM algorithms have been pub-
lished. Each of those data sets exhibits different character-
istics with respect to the number of households, data gran-
ularity, duration of the deployment, side information (e.g.,
coverage of appliances with smart plugs), and level of detail
of the smart meter data (e.g., if it contains both real and re-
active power). The REDD [23] data set, for instance, was
published by Kolter and Johnson in 2011. Since then, other
data sets have been published such as the Smart* data set [4],
GREEND [26], BLUED [1], AMPds [24], UK-Dale [18],
iAWE [5], and the Pecan Street [15] data set.

The ECO data set extends existing data sets on four as-
pects. First, it contains data collected over 8 months. Only
the AMPds and the UK-Dale data sets cover a comparably
long time span. Second, the aggregate electricity consump-
tion data provided with the ECO data set is very detailed as
it contains measurements of real and reactive power for each
of the three phases in a household. Of the other data sets,
only the Smart*, the AMPds, the iAWE, and the BLUED
data sets provide both real and reactive power. Third, we
collected plug-level data at 1 Hz frequency, which is oth-
erwise only provided by the Smart*, iAWE, and GREEND
data sets. Last but not least, the ECO data set is to the best of
our knowledge the only data set that also includes occupancy
information of the households.

In [21], we already describe the characteristics of the
households (e.g., number of occupants, type of household),
the measurement infrastructure, and we provide details about
the occupancy information of the households. In this paper,
we focus on all aspects related to the plug-level measure-
ments, which are required to evaluate the NILM algorithms.
Also, we make the data set available to the public in the con-
text of this paper. The households are named household 1
to household 6. The first five households represent house-
holds 1–5 in [21], household 6 did not provide occupancy
information and was thus omitted in [21].

For each of the six households we collected aggregate
electricity consumption data at 1 Hz using off-the-shelf smart
meters. In total we collected more than 100 million mea-
surements during the period of the deployment. Each of the
measurements contains – for each of the three phases in the
household – information on voltage, current, and phase shift
between voltage and current. The data can thus be used by
NILM algorithms that require real and reactive power. To

obtain ground truth data for our analysis we deployed 6–10
smart plugs into each of the six households. We collected
measurements from each of the plugs connected to the fol-
lowing appliances:

• Household 1: (1) Fridge, (2) dryer, (3) coffee machine,
(4) kettle, (5) washing machine, (6) PC, (7) freezer.

• Household 2: (1) Tablet, (2) dishwasher, (3) stove,
(4) fridge, (5) TV, (6) stereo, (7) freezer, (8) kettle,
(9) lamp, (10) laptops.

• Household 3: (1) Tablet, (2) freezer, (3) coffee machine,
(4) PC, (5) fridge, (6) kettle, (7) entertainment.

• Household 4: (1) Fridge, (2) kitchen appliances3,
(3) lamp, (4) stereo & laptop, (5) freezer, (6) tablet, (7) en-
tertainment, (8) microwave.

• Household 5: (1) Tablet, (2) coffee machine, (3) kettle,
(4) microwave, (5) fridge, (6) entertainment, (7) PC, router
& printer, (8) fountain.

• Household 6: (1) Lamp, (2) laptop & printer, (3) routers,
(4) coffee machine, (5) entertainment, (6) fridge, (7) ket-
tle.

For details on the plug-level data (e.g., the number of days
measured per plug), we refer to the documentation of the
ECO data set4. In household 3, a concrete ceiling in the
basement disturbed the radio connection between our gate-
way and the plugs. For this reason, the coverage of mea-
surements is low for most of the appliances. We thus omit
household 3 in the rest of our study and focus on the remain-
ing five households instead.

Figure 2 shows the monthly electricity consumption of
each appliance covered by the smart plugs. As we equipped
only 6–10 appliances per household with a plug, each of the
charts shows a significant portion named other that is mea-
sured by the smart meter but not attributed to any of the ap-
pliances. In household 2, roughly 80% of the electricity con-
sumption is covered by the smart plugs. Households 3 and 5
exhibit a particularly high proportion of non-attributed con-
sumption with more than 80%. Household 3 runs a boiler
that heats water during the night. The non-attributed con-
sumption for household 5 is high because the household uses
a time-triggered pool pump, which is not covered by a plug
and consumes 500 W during daytime.

In total, we collected more than 650 million measure-
ments from 45 smart plugs deployed into the six households.
As described in [21], the frequency of the plug measure-
ments varies because we had to read them sequentially from
a central gateway. To be consistent with the aggregate con-
sumption data, we sampled the plug measurements for each
appliance at 1 Hz. If a small number of values is missing
between two measurements (i.e., less than 100), we replaced
those missing values with the last existing measurement. If
more than 100 consecutive measurements are missing, we
assume that the plug has been removed and invalidated the
missing values by setting them to -1.

3Kitchen appliances consist of a coffee machine, a bread baking ma-
chine, and a toaster.

4http://vs.inf.ethz.ch/res/show.html?what=eco-data

http://vs.inf.ethz.ch/res/show.html?what=eco-data


Fridge: 15.1
Freezer: 13.3

Kettle: 4.3
Coffee

Washing

Dryer: 16.5

PC: 12.8

Other:
121

machine: 3.88

machine: 17.3

(a) Household 1

Fridge: 17.9

Freezer: 20.3

Dishwasher:

11.7

Kettle:  3.99

Stove: 9.64

Lamp: 12 Laptops: 5.37

TV: 26.9

Stereo:

12.3

Tablet:

0.907

Other: 32.6

(b) Household 2

Fridge:

Freezer:

Entertainment:Kettle:

Coffee

PC: 2.78

Tablet: 1.24

Other:

machine: 0.248

233

1.79

4.56

12.9

3.63

(c) Household 3

Fridge: 20.1Freezer: 130

Microwave: 11.7
Entertainment: 24

Kitchen appl.: 7
Lamp: 8.17

Stereo & laptop: 9.75 Tablet:
Other:
387

0.989

(d) Household 4

Fridge: 33.3

Microwave: 6.46
Entertainment: 20

Kettle: 0.536

PC, router &

Tablet: 3.39

Other:

machine: 4.21

473

Coffee 

printer: 24.1

Fountain: 8.65

(e) Household 5

Fridge: 7.9

Entertainment: 18.1

Kettle: 2.51
Coffee machine: 3.32

Lamp: 0.417
Laptop & 

Routers: 8.6

Other:
104

printer: 5.07

(f) Household 6

Figure 2. Electricity consumption covered by the smart plugs for each of the six households. Each of the values repre-
sents kWh per month consumed by the appliance.

We also collected occupancy information: Each of the
residents manually entered presence and absence into a tablet
computer during selected periods of the study, and we ad-
ditionally mounted a passive infrared sensor per household
next to the entrance door. Since we do not utilize the
occupancy information in this work, we refer to [21] for
occupancy-related information in the data set.

6 NILM Results
In this section we present the results of the performance

evaluation of the four NILM algorithms described in sec-
tion 3. We run the performance on the ECO data set and
using our NILM-Eval framework. The results show for in-
stance that (semi-)supervised algorithms perform better than
unsupervised ones. This is mainly because the latter fail to
identify consumption patterns of individual appliances in the
aggregate consumption data. We further show that a data
granularity of 1 Hz is required to reliably detect switch-
ing events of appliances. Weiss’ algorithm, for instance,
achieves F1 scores up to 0.92 when detecting events of cool-
ing appliances or appliances with high changes in their con-
sumption patterns. The F1 scores obtained by Parson’s algo-
rithm, which relies on data at 1/60 Hz frequency, are much
lower and range from 0.51 to 0.80.

A fair comparison of the performance of the algorithms is
however still cumbersome to obtain due to the differences on
input data and training methods they rely upon as well as due
to different types of output they provide. Weiss’ algorithm,
for instance, returns event labels, and Parson’s and Kolter’s
algorithms return an estimate of each appliance’s electricity
consumption. For this reason, we present the results of the
four algorithms individually and present a summary of the
evaluation at the end of this section. For implementation de-
tails and parameter specifications other than the ones listed
in this section, we refer to [9] and to the NILM-Eval project.

6.1 Parson’s Algorithm
Like Parson et al. [27], we downsampled the data to a

granularity of 1/60 Hz. We first evaluate Parson’s algorithm
by inferring the electricity consumption of the fridge for each
of the five households, because the fridge is the only appli-
ance that was measured by a plug in every household. Next,
we evaluate the microwaves in households 4 and 5 represent-
ing appliances with switching events that change the power
consumption by at least 500 W.

Fridge: We model a fridge as an appliance with two states
(i.e., ON and OFF states). To define the generic model re-
quired by Parson’s algorithm, we performed different initial
experiments evaluating the effect of the required parame-
ters. Ultimately, we assume the emission probabilities for
each state to be Gaussian distributed and describe the ON
state with µon = 60W,σ2

on = 40W2 and the OFF state with
µo f f = 2W,σo f f = 5W2. We further define the transition
probabilities as φon,o f f = 0.2 (i.e., the probability that the
state changes from ON to OFF) and φo f f ,on = 0.05. To adapt
the generic model to specific appliance models, we use 10
training days and a training window length of 3,600 sec-
onds. The experiments are then performed five times (us-
ing different training periods) over 90 days of consumption
data. Finally, to increase robustness of the Viterbi algorithm
to “noise” caused by unmodeled appliances, we set the like-
lihood threshold introduced by Parson et al. to 0.0001.

Table 2 shows the disaggregation results we obtained by
inferring the electricity consumption of the fridge from the
aggregate electricity consumption of five of the households
using the configuration described above. Training type none
means that the generic model is used as input to the Viterbi
algorithm. Plug training uses ground truth data to build a
specific appliance model from the general model, whereas
aggregate training aims at building the specific appliance
model from the aggregate electricity consumption. Each
value denotes the average of the five runs we performed. In
terms of F1 score, Parson’s algorithm performs best (0.80)



Table 2. Performance of Parson’s algorithm on the ECO
data set.

Metric Training H.1 H.2 H.4 H.5 H.6

F1 score
none 0.65 0.64 0.51 0.52 0.77
plug 0.42 0.60 0.47 0.47 0.80
aggregate 0.42 0.46 0.40 - 0.71

RMS
none 33 W 37 W 48 W 62 W 23 W
plug 29 W 41 W 62 W 75 W 17 W
aggregate 34 W 45 W 64 W - 20 W

Dev
none 0.61 0.50 0.23 0.30 0.99
plug 0.31 0.46 0.75 0.27 0.62
aggregate 0.48 0.49 0.52 - 0.77

for household 6. However, this includes training on the sub-
metered data. In real world settings (i.e., training with ag-
gregate consumption data), the algorithm performs slightly
worse with F1 = 0.77. Household 6 also exhibits the lowest
RMS (17 W) compared to the other households (which range
from 29 W to 62 W). However, the fridge of household 6 is
the most energy-efficient among all fridges in the data set,
which explains that there is still a relatively large deviation
of the estimation compared to the ground truth (62%).

Overall, the estimation performs better for household 6
compared to the other households. We believe this is due
to the fact that households 1 to 5 have freezers, which in
general have a consumption pattern that is difficult to dis-
tinguish from a fridge’s consumption pattern at a 1-minute
granularity. Training on aggregated data performs slightly
worse than training on plug-level data. A possible explana-
tion is that the generic model defined above is already close
to the optimal model, because we performed initial experi-
ments to carefully define the generic model.

Microwave: To evaluate the disaggregation of the micro-
wave’s electricity consumption, we rely on the default con-
figuration provided by Parson et al.’s implementation (i.e.,
two states, µon = 1,700W, σ2

on = 1,000W2, µo f f = 4W,
σ2

o f f = 100W2, φon,o f f = 0.3, φo f f ,on = 0.01, and a likeli-
hood threshold of 0.00001. In addition – in order to improve
the performance of the estimation – we pre-processed the
aggregate consumption data by replacing edges that contain
more than two time steps by “sharp” edges that span exactly
two time steps. With this configuration we performed five
runs using aggregate training. On average, Parson’s algo-
rithm achieves F1 scores of 0.14 and 0.031 for households 4
and 5, respectively. These low F1 scores are caused by very
low precision values, which are 0.10 and 0.017 for house-
holds 4 and 5, respectively. Parson’s algorithm overesti-
mates the consumption of the microwave as it often infers
the microwave is running when it is not. By analyzing only
the consumption on the phase on which the microwave is
running, the F1 scores improve to 0.18 and 0.055 for house-
holds 4 and 5, respectively.

We re-performed the experiments for both fridge and
microwave, testing a variety of appliance models in order
to separate the effect of training the appliance models from
the actual inference. The best F1 scores achieved by the al-
gorithm when disaggregating the consumption of the fridge
range from 0.54 (household 4) to 0.84 (household 6). In
case of the microwaves in households 4 and 5, the algorithm
achieved maximum values of 0.29 and 0.14, respectively.

Table 3. Event clusters in household 2 provided by
Baranski’s algorithm.

Cluster ∆P Size App. 1 % App. 2 %
C1 -11 W 8,963 Laptops 28% Fridge 3%
C2 11 W 8,724 Laptops 31% Fridge 3%
C3 -58 W 3,009 Freezer 41% Fridge 28%
C4 73 W 1,960 Freezer 51% Fridge 5%
C5 93 W 1,003 Fridge 69% Freezer 2%
C6 -1,837 W 260 Stove 21% Kettle 15%
C7 1,857 W 253 Stove 21% Kettle 14%
C8 1,249 W 225 Stove 26% Laptops 2%
C9 -176 W 210 TV 5% Freezer 4%
C10 -1,235 W 199 Stove 35% Laptops 3%
C11 2,425 W 187 Stove 17% Laptops 3%
C12 -2,365 W 155 Stove 26% Dishwasher 6%
C13 -509 W 122 Freezer 14% Fridge 9%
C14 -783 W 102 Fridge 18% Freezer 18%
C15 596 W 97 Freezer 10% Fridge 5%
C16 850 W 88 Freezer 16% Fridge 11%
C17 375 W 83 Freezer 12% Fridge 4%
C18 1,064 W 60 Fridge 13% Stove 5%
C19 -1,023 W 56 Fridge 9% Laptops 5%
C20 -3,391 W 39 Stove 5% Fridge 3%

Overall, we see the following challenges: First, consump-
tion patterns of appliances differ considerably, which makes
it difficult to define a general model that represents all ap-
pliances of a certain appliance type. Second, disaggregating
each appliance in isolation leads to errors due to overlapping
consumption patterns. Thus it would be interesting to apply
Kolter and Jaakkola’s AFAMAP algorithm [22] to infer the
consumption of multiple appliances simultaneously. Finally,
due to aggregation of the consumption data to 1/60 Hz, lots
of details in the consumption patterns are lost. It is thus a
part of our future work to evaluate Parson’s algorithm using
1 Hz consumption data.
6.2 Baranski’s Algorithm

We applied the unsupervised algorithm of Baranski and
Voss on 30 days of aggregated 1 Hz consumption data from
household 2. We set the number of resulting clusters to 20
and specified that each appliance consists of two states with
a maximum length of the ON state set to 3,600 seconds. As
a result of our initial experiments, we decided not to assign
weights to the length of a switching event as well as to the
boost in electricity consumption that can occur when an ap-
pliance is switched on.

Table 3 shows the clusters that result from the experi-
ment. Each cluster denotes a set of switching events that
have a similar increase (or decrease) in electricity consump-
tion. Column Size shows the number of events in a cluster.
By comparing the timestamps of the events with the plug-
level consumption data, we assigned each event to an appli-
ance if possible. Column % in the table shows the propor-
tion of events assigned to the appliance named in the previ-
ous column divided by the overall number of events in the
cluster. Columns App 1. and App 2. illustrate which ap-
pliances have the highest and the second highest number of
assigned events in a cluster, respectively. The laptop, freezer,
fridge, and stove are appliances that are often represented in
the clusters. Clusters C1 and C2 almost exclusively contain
start and stop events of the laptop. The events of the stove
range across multiple clusters (i.e., clusters C6, C7, C8, C10,
C11, and C12), because the change in electricity consumption



Table 4. Finite state machines provided as a result by
Baranski’s algorithm.

FSM ∆P(C1) ∆P(C2) Sequences Duration App.

1 1,857 W -1,837 W 276 115 s Stove or
Kettle

2 1,249 W -1,235 W 312 14 s Stove
3 11 W -11 W 12,066 14 s Laptops
4 2,425 W -2,365 W 260 10 s Stove
5 1,064 W -1,023 W 56 63 s ?
6 850 W -783 W 144 12 s Freezer
8 596 W -509 W 138 17 s Freezer
10 1,249 W -1,023 W 30 78 s Stove
11 73 W -58 W 3,032 627 s Freezer

of the stove events varies. Note that clusters C6 and C7 are
also populated to a large extent by switching events of the
kettle, which makes forming a state machine for the stove
and for the kettle difficult. The events of the fridge and the
freezer are also spread over multiple clusters.

Based on the clustering results, Baranski’s algorithm gen-
erated the finite state machines (FSMs) shown in table 4.
The second and third columns denote the power steps of the
centroids of the two clusters that form the FSM. The next
two columns list the number of sequences represented by the
FSM as well as their average duration. Column App. denotes
the appliance that is most likely represented by the FSM.
Note that this labeling has been performed manually. The
first FSM consists of events from clusters 1 and 2 and there-
fore represents the stove or the kettle. The third FSM repre-
sents the laptop, which is the only appliance that is clearly
separable from the other appliances. FSMs 2, 4, and 10 also
represent the stove, whereas FSMs 6, 8, and 11 represent
the freezer. In case of the freezer, the first two FSMs ex-
hibit high consumption and last only shortly, which is why
we assume they are caused by the initial spike in the con-
sumption pattern at the beginning of a cooling cycle. The
fridge is not represented in the list of FSMs. The reason is
that, although the ON event of the fridge is well represented
in cluster C5, the corresponding OFF events are spread over
multiple clusters. Baranski’s algorithm computed a quality
score for each FSM and thus discarded the FSM(s) that rep-
resent(s) the fridge due to a low quality score.

In practice, Baranski’s algorithm requires the user to man-
ually label the resulting FSMs without the assignments of
events to appliances as provided in table 3. Even so, the al-
gorithm generates multiple FSMs for some of the appliances
due to the fact that some of the clusters contain events from
multiple appliances. Therefore, there is a large ambiguity in
the assignment of appliances to the FSMs. Possible improve-
ments include (a) to allow creating an FSM using events
from different clusters to reduce the number of FSMs, and
(b) to improve the clustering procedure. Possible improve-
ments of the clustering include using real and reactive power
to make events of different appliances more distinguishable,
or to apply post-processing that divides or combines clusters
(e.g., on the basis of the number of events in each cluster).

6.3 Weiss’ Algorithm
We use the 1 Hz consumption data of household 2 includ-

ing real and reactive power split into individual phases to
evaluate Weiss’ algorithm. We investigate appliances of the

Table 5. Signatures of cooling appliances (top), appli-
ances with high consumption (center), and other appli-
ances (bottom) in household 2.

Appliance Event ∆ Real ∆ Reactive Phase
Fridge OFF -69.2 W -5.9 VA 1
Fridge ON 79.9 W 4.4 VA 1
Freezer OFF -51.6 W 16.5 VA 1
Freezer ON 63.8 W -20.0 VA 1
Dishwasher OFF -2,058 W 3.8 VA 1
Dishwasher ON 2,060 W -18.3 VA 1
Kettle OFF -1,881 W 2.4 VA 1
Kettle ON 1,853 W -4.3 VA 1
Kettle ON 1,884 W 3.8 VA 1
Stove OFF -903 W -519 VA 1&2
Stove ON 626 W 315 VA 1&2
Lamp OFF -185 W -111 VA 1
Lamp OFF -185 W -216 VA 1
Lamp ON 222 W 91.4 VA 1
Lamp ON 127 W 87.2 VA 1
Laptops OFF -20.2 W -3.4 VA 1
Laptops ON 23.2 W 10.3 VA 1
TV OFF -166 W -35.7 VA 2
TV ON 159 W 30.1 VA 2
TV ON 161 W 32.6 VA 2
Stereo OFF -17.3 W -11.8 VA 2
Stereo ON 55.6 W 48.8 VA 2

Table 6. Performance results achieved by Weiss’ algo-
rithm on consumption data from household 2.

F1 score Precision Recall TP FP FN
Fridge 0.92 0.93 0.91 4,855 385 477
Freezer 0.92 0.98 0.86 5,948 137 947
Dishwasher 0.56 0.95 0.39 115 6 178
Kettle 0.75 0.95 0.62 122 6 74
Stove 0.24 1.0 0.14 28 0 209
Lamp 0.30 0.37 0.25 23 39 68
Laptops 0.11 0.10 0.12 63 593 498
TV 0.37 0.89 0.24 90 11 291
Stereo 0.10 0.23 0.06 144 471 2,148

three categories (1) cooling appliances, (2) appliances with
high consumption (i.e., dishwasher, kettle, stove), and (3)
remaining appliances (i.e., lamp, laptop, TV, stereo system).
The analysis is based on 90 days of consumption data plus 15
days of data used for training. In the training process, we ex-
tract timestamps of switching events (i.e., changes in power
consumption above 5 W) from the plug data and extract the
signature from the smart meter data at these timestamps.

Table 5 shows the signatures of household 2’s appliances
extracted from the aggregate consumption data. For each ap-
pliance, the table shows the change in real power (∆ Real)
and reactive power (∆ Reactive) at ON or OFF switching
events. Column Phase illustrates on which phase the ap-
pliance is running. For cooling cycles, a switching event
denotes the beginning or the end of the cooling cycle. For
appliances with switching events of more than 500 W real
power, only those events are considered during training and
recognition phase. For the other appliances, each event with
more than 5 W is considered a switching event. The table
shows that the events of the fridge and of the freezer have
differences in both real power (16 W to 18 W difference on
average) and reactive power (22 VA to 24 VA), which is a
good property in order to be distinguished by Weiss’ algo-
rithm. The stove runs both on phase 1 and on phase 2, the
TV and stereo system run on phase 2, and the other appli-
ances run on phase 1.

Table 6 illustrates the results achieved by Weiss’s algo-



rithm for each of the appliances. Identifying the switching
events of the fridge and the freezer is possible with F1 scores
of 0.92 each. In case of the freezer, the algorithm misses
only 196 out of 5,992 switching events, which is a preci-
sion of 0.98. Events from appliances with high consump-
tion, namely dishwasher, kettle, and stove, are recognized
with almost no false positives, leading to a precision of 0.95,
0.95, and 1.0, respectively. However, the algorithm misses a
large number of events for these appliances. This is why the
F1 scores are 0.56, 0.75, and 0.25, respectively. The remain-
ing appliances exhibit relatively low F1 scores. In case of the
lamp, this is due to the fact that household 2 has a dimmable
lamp, which means that the power steps caused by switching
events vary. The laptop and the stereo system are difficult
to reliably identify, because their power consumption is very
low and can be easily confused with switching events or vari-
ations caused by other appliances.

Overall, Weiss’ algorithm performs well for cooling ap-
pliances and for appliances with high power consumption.
In the latter case, the precision is very high, but the algo-
rithm misses many events and thus exhibits low recall val-
ues. The algorithm includes a scaling parameter r to control
the maximum distance of a switching event to the (possibly)
corresponding signature. Increasing r leads to a higher re-
call value, because the algorithm identifies more switching
events of a particular appliance. However, this step also re-
sults in a higher number of false positives. To reduce the
number of false positives, we recommend including addi-
tional features such as time of day or the relationship be-
tween certain appliances (e.g., the dryer often runs after the
washing machine).
6.4 Kolter’s Algorithm

As described in section 3, Kolter’s algorithm automati-
cally identifies and clusters snippets (i.e., consumption pat-
terns of appliances) before it disaggregates the consumption
data. Using the data from household 2, we analyzed 7 days of
1 Hz real power consumption data searching for three types
of snippets (i.e., snippets with one, two, and three ON states).

The algorithm detected 399 snippets with one ON state,
221 snippets with two ON states, and 136 snippets with three
ON states. Most of the snippets with one ON state have a
mean power consumption between 0 W and 200 W. Whereas
we can attribute many of those to the freezer, the number
of snippets we can attribute to the fridge (i.e., snippets with
mean power consumption between 60 W and 85 W) is rela-
tively low. The reason is that the frequency of the freezer’s
cooling cycles is almost twice as high as the frequency of the
fridge’s cooling cycles. Thus almost all cooling cycles of the
fridge interfere with the cooling cycles of the freezer. There
are also 44 snippets above 200 W (i.e., snippets with a mean
power consumption of 1,200 W, 1,800 W, and 2,400 W).
Most of these snippets represent the stove. Thus the stove
and the freezer are the only appliances with a single ON state
for which we can reliably identify snippets in the consump-
tion data using Kolter’s algorithm.

For the snippets with two or three ON states, we applied
k-means clustering to obtain cluster centroids that potentially
represent the consumption pattern of individual appliances.
Table 7 shows the 5 resulting cluster centroids for the snip-

Table 7. Centroids of clusters of the snippets with two ON
states. P1 and P2 denote the mean power consumption of
the two ON states of the snippets.

Cluster P1 P2 Snippets
C1 1263 W 21 W 2
C2 320 W 733 W 3
C3 65 W 42 W 23
C4 7 W 52 W 12
C5 1278 W 1278 W 2

pets with two ON states. We compared all cluster centroids
with the consumption patterns measured by the smart plugs,
but we could not find a match between any of the cluster
centroids and the consumption pattern of an appliance. The
same holds for the snippets with three ON events. Since the
application of the spectral clustering method did not result
in HMMs that represent individual appliances, we decided
to omit Kolter and Jaakkola’s second step. Instead, we pro-
pose to extract snippets using the plug-level data in order to
evaluate Kolter and Jaakkola’s AFAMAP algorithm.
6.5 Summary of the Results

The results show that supervision is required to achieve
reasonable performance. Weiss’ algorithm and Parson’s al-
gorithm perform better than the unsupervised approaches in-
vestigated in our this study, which do not reliably identify
appliances in the aggregate consumption data. One reason
for this is the lack of periods in which only a single ap-
pliance is running. In household 2, for instance, 98.4% of
the fridge’s cooling cycles are overlapped by a cooling cy-
cle of the freezer. As an additional constraint, each of the
unsupervised approaches requires manual labeling after rec-
ognizing the appliances. For these reasons, Parson’s semi-
supervised approach is promising as it assumes generic ap-
pliance models and fine-tunes them given the aggregate con-
sumption data. We further observe that Weiss’ algorithm per-
forms better than Parson’s algorithm. We believe this is due
to the fact that Weiss’s algorithm utilizes fine-grained con-
sumption data (i.e., measured at 1 Hz on multiple phases in-
cluding real and reactive power), whereas Parson’s algorithm
uses data sampled over a period of 1 minute. Using Weiss’
algorithm, we can reliably identify events from cooling ap-
pliances as well as from appliances with high electricity con-
sumption such as the stove or the dishwasher.

In addition to optimizing these four algorithms as pro-
posed in each of the subsections, we see potential in combin-
ing the algorithms. Using Parson et al.’s generic appliance
model to generate HMM’s followed by Kolter and Jaakkola’s
AFAMAP algorithm, for instance, combines the advantages
of both approaches. Leveraging the strength of Weiss et al.’s
algorithm in recognizing switching events could further pro-
vide valuable input to the HMM-based approaches by pro-
viding information on appliance state changes.

7 Limitations and Future Work
A limitation of each NILM evaluation – as with many

data-driven approaches – is that the results highly depend
on the data used and on the configuration of the algorithm
parameters. For this reason, we collected consumption data
over a particular long time frame and developed our eval-
uation system NILM-Eval to test a variety of combinations



of parameters for each of the algorithms. We still observe a
high variance in the results depending on the configuration
of the household. It is therefore a part of our future work
to extend the analysis to a larger number of households and
compare the stability of the results on different data sets.

We evaluated each of the algorithm using the same data
granularity and learning method than the authors did in their
original evaluation. However, the performance found in our
analysis is likely insufficient for real world applications. For
this reason, we will investigate the performance of the algo-
rithms under different requirements in our future work. For
instance, we plan on applying Parson’s algorithm on 1 Hz
consumption data, and aim at training Kolter’s algorithm on
plug-level data rather than identifying the number and type
of appliances in an unsupervised way.

Relaxing the requirements to the input data, we plan to
evaluate algorithms that utilize context information provided
by other sources [7, 16, 20]. ON/OFF state transitions of ap-
pliances, for instance, can be reported by smart appliances
themselves or by other sensors such as electromagnetic field
sensors [28]. Another example consists in the inclusion of
occupancy information, which can be sensed by a smart-
phone and is also provided as a part of the ECO data set.
8 Conclusions

In this paper we present both a comprehensive data set
and an evaluation framework to analyze the performance of
NILM algorithms and demonstrate the use of the framework
on four selected NILM approaches. Our results show that
thanks to the use of our framework the suitability of selected
approaches to be used in real scenarios as well as their limi-
tations can be assessed. Both the presented data set and the
evaluation framework are made publicly available.
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