On Privacy Evidence for UbiComp Environments
Broadening the Notion of Control to Improve User Acceptance

Rafael Accorsi and Matthias Bernauer
University of Freiburg, Germany

UbiPriv'07, Innsbruck

UbiComp and user acceptance
- UbiComp status quo: huge potential, tiny user acceptance
 - Projects stagnate or are called off.

Two reasons:
- Bad usability:
 - Frustration.
- Lacking privacy:
 - Fear of surveillance.
 - Loss of control over personal data.

Æ Lack of control leads to user scepticism, rejection…

Control: What privacy-enhancing technologies can offer?

<table>
<thead>
<tr>
<th>Paradigm</th>
<th>Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access control</td>
<td>Information hiding (k-)anonymity</td>
</tr>
<tr>
<td></td>
<td>Pseudonymy, partial identities, (federated) identity management, zero-knowledge identity proofs.</td>
</tr>
<tr>
<td>Usage control</td>
<td>Unilateral privacy statement Privacy certification/seals, declarative privacy policies</td>
</tr>
<tr>
<td></td>
<td>Bilateral negotiation on terms of usage Provisional and obligational (sticky) policies</td>
</tr>
</tbody>
</table>

• "Control" = a priori regulation of privacy preferences.
• Regulation is necessary for acceptance but not sufficient.

Control encompasses supervision
- Thesis: Control = regulation + supervision.
- Complete control mechanisms => better user acceptance.

• Supervision: does UbiComp act in compliance with privacy policies?
 - No prevention of privacy violations, but their detection.
 - Sanctions are due in case of violations.

• Approach: privacy evidence.
 - Reports generated by automated system audits.

Privacy evidence architecture

Automated audit: "Model-checking" rationale
- Privacy properties expressed by rules $P_{expr} = \{\pi_1, \ldots, \pi_k\}$.
- No formal system model but:
 - Complete and finite state-space (BBox).
 - Selection of "relevant" events (log view).
- Audit based on falsification.
 - Each (negated) rule is checked against the log view.
 - If violation, audit gives counter-example.
Expression of privacy properties

- Privacy properties based on data collection and access.
 - Conditions: **provision** and **obligations**.

- Examples of rules:
 - **Deny** rule:
 \[r_1 = \text{(deny, RFID-Reader.*, *, *)} \]
 Prohibit the collection of any RFID information.

 - **Allow** rule:
 \[r_2 = \text{(allow, *, Transaction.Value, read, if (Transaction.Date > 01-01-2007 \&\& purpose == statistic) \&\& (notify A within 7 days))} \]
 Allow any subject to read the value of transactions with the provisions that...

- Discretionary access control policies expressing safety properties.

Falsification of privacy properties

- Transformation function \(\gamma' \):
 - Takes a policy and returns the family of violations \(\gamma' \).

- Falsification strategy:
 - **Deny** rule:
 \[r_1 = \text{(deny, RFID-Reader.*, *, *)} \]
 Falsification of the conditions.

- **Allow** rule:
 - Change rule’s polarity
 \[v_1 = \text{(allow, RFID-Reader.*, *, *)} \]
 - Negate rule’s conditions
 \[v_2 = \text{(allow, *, Transaction.Value, read, if (Transaction.Date <= 01-01-2007 \&\& purpose != statistic) \&\& (notify A after 7 days))} \]

- Other falsification strategies are allowed.

Compliance audits

- Can violation \(v \) be pinpointed in \(L \) ? \(v \not\in L \).
 - Pattern matching of entries and violations head ("anchor").
 - Provisions: evaluate access/collection request.
 - Obligations: check existence and evaluate temporal modality.

- Example: check violation \(v_1 = \text{(allow, RFID-Reader.*, *, *)} \)

- Privacy evidence: log view and audit.
 - Semaphore notation indicates audit result.
 - Different navigation levels.

Conclusion and outlook

- **Contribution**: realisation of supervision.
 - Privacy evidence based on audit trails and secure logging.

- Current assumptions:
 1. Every event is collected in the BBox.
 2. Users are "identified" during the interaction.
 3. The collection and processing capabilities are static.

- Ongoing work focuses on relaxing these assumptions.

- **Related research fields**:
 - Provable enforcement.
 - Compliance.
 - Usability.

- **Privacy forensics**: "evidence as an evidence".
 - http://www.telematik.uni-freiburg.de/PrivacyForensics