(will be inserted by the editor)

Personal and Ubiquitous Computing manuscript No.

Rafael Accorsi - Matthias Bernauer

On Privacy Evidence for UbiComp Environments

Broadening the Notion of Control to Improve User Acceptance

July 10, 2007

Abstract Today, scepticism prevails on the part of Ubi-
Comp users with regard to their privacy. In investigating
the reasons behind such a negative mindset, studies often
point to the lack of transparency in the collection and us-
age of personal data: users indeed fear the hidden surveil-
lance through UbiComp technologies. Our thesis is that
such scepticism is a consequence of incomplete control
mechanisms offered to users in UbiComp environments.
Users should not only be aware of or capable of requlating
the collection and usage of personal attributes, but also
of supervising the system, i.e. be able to obtain credible
evidence that the environment does in fact behave as ex-
pected. While there is extensive research into regulation,
to our knowledge, approaches to tackle supervision are
missing. To bridge this gap, we introduce the concept of
privacy evidence and present the main building blocks
towards its realisation.

1 Introduction

The increasing potential to interconnect the computa-
tional power of devices with different capabilities given
by UbiComp technologies opens up unique chances for
novel services and application scenarios, e.g. in the op-
timisation of logistic processes and, more recently, the
provision of individualised customer services.

However, many of these projects were not furthered.
In investigating the hurdles to the widespread adoption
of UbiComp environments, we are not left with technical
issues, as could be initially expected, but rather with so-
ciological issues, namely a lacking acceptance. Driven by
pessimistic predictions, such as the “death of privacy” [5]
and “privacy as a luxury good” [3], users have a negative

Rafael Accorsi
Dept. of Telematics, University of Freiburg.
E-mail: accorsi@iig.uni-freiburg.de

Matthias Bernauer
Inst. for Computer Science, University of Freiburg.
E-mail: bernauer@informatik.uni-freiburg.de

attitude when interacting with UbiComp environments.
A number of studies substantiate this, showing that users
fear UbiComp technologies, such as RFID tags, sensor
networks and techniques to correlate multimodal data,
as they can be misused for surveillance, thereby leading
to the loss of control over their personal data [6,10].

To tackle this problem, research into approaches to
mediate the collection of personal attributes and their us-
age is increasingly gaining in momentum and relevance.
Their goal is to allow users (also called “data subjects”)
to selectively disclose attributes to data consumers, pos-
sibly enabling them to formulate policies under which
collected attributes can or cannot be accessed or em-
ployed. Their rationale is thus to convey a sense of con-
trol to users, where “control” stands for the regulation
of attribute disclosure or, more generally, user exposure.

While approaches to regulate user exposure are in-
dispensable, our thesis is that the sense of control they
convey must be broadened. Users today obtain no indica-
tion as to whether the systems with which they interact
actually behave according to the policies agreed upon, or
how the system behaves at all. Put another way, users
are left — at best — with a number of privacy promises or
expectations, but obtain no credible evidence that their
policies have been adhered to. This clearly fails to re-
produce the established understanding of control people
have in mind, in which control comprises not only the
regulation of a set of activities, but also the supervision
that this set of activities indeed takes place as expected.
To our knowledge, approaches on supervision are lacking.

We bridge this gap by investigating the main build-
ing blocks necessary to realise supervision in UbiComp
environments. In doing so, a conceptional change is due:
current techniques aim at an a priori, preventive protec-
tion of privacy. In contrast, in investigating supervision,
we found ourselves in an a posteriori setting, where we
cannot protect privacy properties, but detect their vio-
lation. Both approaches are complementary.

To realise supervision, we employ the concept of pri-
vacy evidence [10] and elaborate on its realisation. The
rationale is to make the behaviour of the UbiComp envi-

R. Accorsi and M. Bernauer

ronment with respect to the compliance to privacy poli-
cies evident to users. Intuitively, privacy evidence are
records consisting of all the information collected from
and related to a particular user — a so-called log view —
and the result of an automated audit of this log view
based on the users’ policies. Together, these pieces of
information build the basis for supervision and thereby
pave the way for a holistic realisation of control.

We firmly believe that investigation towards such a
realisation of control is indispensable for privacy in Ubi-
Comp. Due to the improved transparency inherent to pri-
vacy evidence, supervision has the chance to increase the
confidence placed in UbiComp environments and, even-
tually, even foster the willingness to disclose personal at-
tributes, which is an essential factor for the acceptance of
UbiComp technologies in general and the deployment of
services and systems in particular. In the long run, both
users and system providers could equally profit from such
an extended notion of control.

The remainder of this paper is structured as follows.
We present an overview of our approach in §2. In §3,
we introduce a language for the expression of privacy
policies and in §4, log views based on a secure logging
service are presented. In §5, we describe our approach to
auditing log views based on the stated privacy policies.
We briefly report on related work in §6 and discuss our
approach in §7.

2 Overview of our Approach

The realisation of privacy evidence anticipates the steps
depicted in the schematic workflow in Fig. 1. In detail: a
user A formulates a policy P4 and communicates it to the
UbiComp environment (1). When interacting with the
environment, a number of events are recorded as entries
in log files (2). In fact, as we describe below, we assume
that every event is recorded, so that log files offer a com-
plete digital representation of the activity in a system.
At some point in time, possibly after leaving the environ-
ment, the user employs a trusted device to retrieve the
log view containing all the log entries related to A (3).
Based on this, A visualises the collected data and starts a
third-party audit process (4) to check whether the poli-
cies Py previously agreed upon have been adhered to,
thereby issuing the corresponding privacy evidence (5).

To realise privacy evidence, the following technical
building blocks are essential: a policy language for the
expression of privacy properties; log views to allow the
visualisation of recorded activity; a secure logging to
ensure the authenticity of recorded data, in particular
to improve the credibility of privacy evidence; and an
automated audit process for checking the adherence to
policies. In the forthcoming sections, we report on these
building blocks, thereby putting emphasis on the techni-
cal framework necessary to carry out automated audits,
a central issue in producing privacy evidence.

A—>—F3
/Log File (2) Log View (3)] \
Client

o ;\ /r[i ——

N 7 I
B — g N /' Privacy
k] Evidence (5)
UbiComp E

Fig. 1 The workflow for privacy evidence.

Note that the secure storage of log data and the gen-
eration of log views are performed on a UbiComp en-
vironment that might be untrustworthy. Although we
disregard it here, our work also includes a suitable trust
model based on trusted computing platforms. The idea
is that the daemons responsible for secure logging and
log view generation are encapsulated in a trusted sand-
box [7], which controls the execution of these processes.
Before retrieving the log view, a user (i.e. the process
running on his behalf) carries out a remote attestation
to ensure that the sandbox, as well as the encapsulated
daemons are in place. (This cannot ensure that all the
events are communicated to the log daemon; only that
the daemon runs safely.) An extended version of this pa-
per elaborates on these technicalities.

Assumptions. We assume that: (a) every event happen-
ing in the system, as well as every access to collected
data is recorded as an event in a log file; (b) in interact-
ing with the system, users are identified while the events
they are involved in are recorded. That is, the entries in
the log file are always related to a user; and (c) while the
system is dynamic in that it adapts itself to the prefer-
ences of users, it is static regarding the data collection
possibilities. Technically, this means that the ontology
describing the system does not change over time and,
hence, the policies of users do not become obsolete. Al-
though these assumptions do not hold in general, they
hold for some scenarios. We consider the challenges lying
beyond these assumptions in §7.

3 On the Expression of Privacy Properties

There are a number of policy languages available today.
Prominent examples include, among others, P3P, EPAL
and XACML. Although these languages offer more or
less the same constructs, they are tailored for specific
application scenarios. For example, P3P is employed in
the web [12], EPAL within organisations [2] and XACML
in grid computing and service-oriented architectures [8].

Instead of sticking to existing policy languages, we
rather abstract away from their implementation details
and focus on the fundamental notions they are built
upon. In doing so, what we propose is an intermediate

On Privacy Evidence for UbiComp Environments

1. <Policy> = (<Rule>) | (<Rule>), <Policy>
2. <Rule> = <Col_Ctrl> [, <Cond>] |
<Acc_Ctrl> [, <Cond>]
3. <Cond> = if (no_prov | <Prov>)
and (no_oblig | <0blig>)
4. <Col_Ctrl> = <Perm>, <Subj>, <0bj>, <Event>
5. <Acc_Ctrl> = <Perm>, <Subj>, <0bj>, <Right>
6. <Prov> = <Atom_Prov> |

<Atom_Prov> && <Prov>
role <0Op> <Role> |
purpose <0p> <Purpose> |
<0bj> <0p> <Value>

8. <0blig> 1= <Atom_0Oblig> |
<Atom_0Oblig> && <Oblig>
delete <0bj> <Temp_Mod> |
notify <Data_Subj> <Temp_Mod>
allow | deny

read | write | exec <Cmd>
within <Nat> days |

after <Nat> days

S| < | > | <= | == 1=

7. <Atom_Prov>

9. <Atom_0Oblig>

10. <Perm>
11. <Right>
12. <Temp_Mod>

13. <0p>

Fig. 2 Policy language for privacy properties.

policy language placed between the algebraic semantic
foundation of languages and their realisations.

Two notions build the basis of our language: access
to pieces of information and their collection. (We regard
this distinction as essential, as UbiComp environments
enable implicit interactions with users [11], which must
also be controlled.) Atomic access and collection rules
may not be expressive enough in a number of situations
though. For example, a user may categorically prohibit
the collection of RFID information, but allow it if he is
notified about this collection.

This kind of condition is referred to as usage control.
Usage control extends traditional access control tech-
niques by allowing users to formulate provisions and obli-
gations [9]. Provisions express the conditions that must
be fulfilled in order to grant or deny access or collec-
tion. Obligations express events that must occur once
access or collection is granted or denied. (Obligations are
equipped with sanctions denoting compensations in case
of non-adherence. Sanctions are often enforced by means
other than an execution monitor and therefore omitted
here.) Based on this, Def. 1 sets out the core language P.

Definition 1 The policy language P is defined by the
BNF in Fig 2. Senteces of P represent policies P and
the rules of P are denoted by r. Let e be a nonterminal,
¥ (r, e) is the terminal associated to e in . O

In Fig. 2, items enclosed in square brackets denote
optional constructs. A policy is a finite sequence of rules
P=rq,...,m, (Prod. 1). Without loss of generality, we
assume below that P is a set of rules. Rules are classified
according to their structure as:

— atomic rules have neither provisions nor obligations.
conditional rules encompass provisions or obligations.
— provisional rules have only provisions.

— obligational rules comprise only obligations.

— full rules encompass both provisions and obligations.

Each rule is further distinguished according to the no-
tion it takes into account, i.e. access or collection. Unless
stated otherwise, the term “rule” applies to both notions.

In formulating atomic collection rules (Prod. 4), the
user stipulates whether a certain subject is able to col-
lect an attribute and/or through which events this can
occur. In formulating atomic access rules (Prod. 5), the
user stipulates the rights (Prod. 11) of subjects over par-
ticular attributes. In our realisation, the wildcard * can
be used in both productions to represent a whole class
of items, e.g. subjects or attributes. Provisions (Prod. 7)
regard the role a subject engages in, as well as the pur-
pose of the access or collection and the value of collected
data fields (objects) serving as guards to an access or
a collection; obligations (Prod. 8) encompass the dele-
tion of an attribute according to some temporal modality
(Prod. 12) and the notification of individuals.

Ezample 1 User A stipulates that: (1) RFID collection
is prohibited; and (2) the transactions of A involving a
sum lesser than $100 can be read by the accounting de-
partment for statistic purposes, whereas the access must
be notified within a week. The policy P4 is r1, 12 where
r1 and r9 stand respectively for:

(deny, RFID-Reader, *, *) and
(allow, *, Trans.Value, read,
if (Trans.Value < $100 &&
role == Account &&
purpose == Statistic)
and (notify A within 7 days)). O

Formally, policies characterise a finite set of discre-
tionary authorisation rules denoting safety properties.

4 Secure Logging and Log Views

Log data is a central source of information in considering
privacy evidence in particular and approaches to check-
ing compliance to rules in general. In contrast to “static”
files, such as text documents or spreadsheets, log files al-
low one to reconstruct the dynamics of a system, i.e. the
course of events that led to some particular state.

To be credible, log data must exhibit integrity, i.e.
log data is accurate (entries have not been modified),
complete (entries have not been deleted) and compact
(entries have not been illegally added to the log file),
and be confidential in that log entries cannot be stored
in clear-text, for such log data can be easily duplicated.
Moreover, techniques to ensure these properties need to
account for tamper evidence, i.e. attempts to illicitly ma-
nipulate log data are detectable to a verifier, and forward
integrity, i.e. if an attacker succeeds in breaking in at
time ¢, log data stored before ¢ cannot be compromised.

Based on [1], we summarise the realisation of a secure
logging service that fulfils these requirements. Assuming

R. Accorsi and M. Bernauer

{Dj-1}r;—1
T
3
M

Ej:’Wj ‘ {Dj}x, ‘

Ej_1 =’ W;—1 Y1 ‘

Nlew ——

Fig. 3 Appending an entry to the log file.

that each application carries out its own logging, we con-
sider an additional log file BBox that can be seen as a
black box of the system. It receives events from, e.g.,
transactional and operational log files of databases, de-
cisions of reference monitors and other sensing devices.
The communication between these devices and the col-
lectors are secured using asymmetric cryptography. At
receiving a log message, each log event D; is (symmetri-
cally) encrypted with an evolving cryptographic key K;
obtained from a secret master key A; and an index field
W;. (W is used to describe the user to whom the en-
try refers.) A hash chain Y associates the previous entry
E;_1 and E;. This procedure is depicted in Fig. 3, where
the numbers correspond to:

1. Aj = Hash(A;j_1) denotes the authentication key of
the jth log entry. The confidentiality of A is essential
as it is used to encrypt log entries. Thus, we assume
that the computation of the new value irretrievably
overwrites the previous value, and that Ag is stored
in a safe manner, possibly off-line.

2. K; = Hash(W;, A;) is the cryptographic key with

which the jth log entry is encrypted. This key is

based on the index Wj, so that only corresponding
user gains access to an entry.

{D;}k, is the encrypted log entry D;.

Y; = Hash(Y;_1,{D;}k,, W;) is the jth value of the

hash chain. Each link of the hash chain is based on

the corresponding encrypted value of the log data.

This ensures that the chain can be verified without

the knowledge of the actual log entry D;.

> oo

The resultant log entry E; = W;,{D;}k,,Y; consists
of the index Wj, the encrypted log entry {D;}r, and
the hash chain value Y;. Considering the generation of
privacy evidence, we define the form of a logged event D.

Definition 2 A log event D is defined by the BNF in
Fig. 4. Sets of log entries are denoted by S. O

An entry thus consists of a timestamped identifica-
tion recording the action of a subject (Prod. 1). We con-
sider three types of actions (Prod. 2), namely collection,
access and usage, each of which is equipped with the nec-
essary details. Note that entries may be related to others,

1. <Entry> := (<Id>, <Time>, <Subj>, <Type>)
2. <Type> = Col, <Event>, <Value>, <Ctrl> |
Acc, <Right>, <Ctrl> |
Usa, <Ref_To>, <Action>
3. <Ctrl> := <Ref_To>, <Role>, <Purpose>,

<0bj>, <Perm>

Fig. 4 Form of logged events.

e.g. in recording an obligation, the entry refers to a pre-
vious entry that triggered the obligation. Such relation-
ships are denoted here by the field <Ref_To>. The fol-
lowing constructs are used later in generating evidence.

Definition 3 Let D be a log event and e a nonterminal
expression. (D, e) defines the value in D associated with
the terminal expression. Let ¢ be an index such that ¢ =
m(D,Ref_To). p(D) = D' such that m(D’';Id) =4. O

The projection 7 returns the value of a field in an
entry D, while p(D) the entry to which D refers to.

Log Views. A central concept to enable supervision is
to give users timestamped information regarding which
attributes have been collected, who has had access to
them and how these attributes have been used. In our
approach, these pieces of information are compiled into
log views L [10], a concept bearing similarity with its
homonymous counterpart in databases. Log views L =
(S, M) consist of an individualised audit trail S com-
prising factual data (performed transactions, collected
attributes) and monitored data (access and usage infor-
mation) about a user, and meta data M about the gen-
erating UbiComp environment and the view’s integrity.
To retrieve a log view L, user A employs a trusted
device (e.g. a personal computer or a terminal dedicated
to this purpose) to authenticate himself to the UbiComp
environment, which then starts a query over (possibly
distributed) BBoxes. To this end, the index W of each
entry is checked against the authenticated user. If they
match and the entry passes an integrity check based on
the hash chain, the content D of the entry is decrypted
and appended to the corresponding S. When all the en-
tries are queried, the log view is signed and sent to A.

5 Compliance Audits and Privacy Evidence

Log views would suffice, at least in theory, to realise the
holistic sense of control we argue for in this paper: users
could browse through the entries and check whether their
privacy policies have been adhered to or not. But this is
easier said than done: log views include even in small
experiments thousands of entries and their interrelation-
ships are unclear and hard to reconstruct, regardless of
how much effort we put into improving their readability.

To tackle this problem, we develop an approach for
automated compliance audits to check the adherence to

On Privacy Evidence for UbiComp Environments

policies. Given a policy P and a log view L = (S, M), we
first define a transformation v that takes P and returns
the set of rules V' = {vy,...,v,}, such that each v; € V
denotes the violation of a rule in P. Each violation v; is
then checked against the audit trail S.

To define v, we first define in Def. 4 the polarity of a
rule and in Def. 5 negation of provisions and obligations.

Definition 4 Let P be a production of P. » € P has
a positive polarity (4r) if ¢¥(r,Perm) = allow; r has a
negative polarity (—r) if ¥ (r,Perm) = deny. The func-
tion pol returns the polarity of r» and invpol reverts the
polarity of r, i.e. invpol(r) = —r if pol(r) = + and
invpol(r) = +r if pol(r) = —. O

Definition 5 Let p denote a sentence of <Atom_Prov>
and ¢ a sentence of the temporal modality <Temp_Mod>
of P. We define p* and t* as follows:

— if p = role <0p> <Role>, p- = role <0p’> <Role>

— if p = purpose <0p> <Purpose>, p= = purpose
<0p’> <Purpose>

— if p = <0bj><0p><Value>, p- = <0bj><0p’><Value>

— if t = within <Nat> days, t' = after <Nat> days

— if t = after <Nat> days, t- = within <Nat> days

Here, <0p’> stands for the logical negation of the corre-
sponding binary operator <0p>. Let o be a production of
<Atom_0blig>, ot is obtained by replacing the temporal
modality ¢ of 0 by t+. O

Definition 6 Let P be a sentence of P. The transfor-
mation v(r) is defined as:

1. Let r be an atomic rule, v(r) = v = invpol(r).

2. Let r be a provisional rule with n provisions p1, ... pn.
v(r) =wv1,...,0p, Upt1 such that each v; for 1 <i <
n stands for the rule r» with the ¢th provision p; re-
placed by p; and v,,+1 = invpol(r).

3. Let r be an obligational rule consisting of m obli-
gations 01,...,0m. V(1) = v1,...,Um, Unt1 v; with
1 < ¢ < m stands for the rule r with the ith obliga-
tion o; replaced by o} and vy,+1 = invpol(r).

4. Let r be a full rule with n provisions p1,...,p, and
m obligations 01, ...,0m. V(1) = V1,...,Un, Upt1 ...
Un+ms Un+m+1, where each ¢ such that 1 < i < n is
obtained as in step 2, each j such that n+1 < j < n+
m is obtained as in step 3 and v, 4m1 = invpol(r).

We define v over a set of rules P = {ry,...,r,}, such
that v(P) =V where V = {v(r1),...,v(ry)}. O

According to Def. 6, the violation of an atomic rule
r is obtained by reverting the polarity of r. Violations of
conditional rules are obtained by negating their condi-
tions, where we also consider the case where conditions
are fulfilled and the actual access or collection is not ad-
hered to. Let us consider the rules in Example 1. The
v(ry) is denoted by

(allow, RFID-Reader, *, %)

and one of the violations v of v(ry) is denoted by

(allow, *, Trans.Value, read,

if (Trans.Value < $100 &&
role != Account &&
purpose == Statistic)

and (notify A within 7 days)).

Note that the resultant violations are always rules in P.

With v at hand, we now search S for violations in
a manner similar to model-checking, except that we do
not have a formal model of the system, but the resultant
execution traces, a subset of which is S. To this end, we
define the pinpoint relation > between the audit trails of
a view and the set of violations V: SV iff v; € V can
be pinpointed, i.e. detected, in S. If there is a v; € V
such that SV, then there is an execution of the system
that violates r; and, in consequence, the policy P.

Definition 7 Let L = (S, M) be a log view, P a policy
and V =vy(P). SpV iff 3D € S and Jv; € V such that:

1. Let v; be generated by an atomic rule. For all non-
terminals e of v;, ¥(v;,e) = w(D,e).

2. Let v; be generated by a provisional rule.

(a) Role or purpose provision: for all nonterminals e
of v;, ¥(v;,e) = (D, e) and

(b) Guarded provision: 9 (v;,0bj) = 7(p(D), 0bj) and
¥ (v;, Value) op(p(D), Value) = True, where op
stands for the operator ¢ (v;,0p?).

3. Let v; be generated by an obligational rule. For all
nonterminals e of v; with the exception of Action,
Y(vi,e) =w(D,e), and if 3D’ € S : p(D’) = D, such
that ¢ (v;, Action) = w(D’, Action), then
(a) if ¥ (v;, TempMod) = within then 7(D’, Time) <

(D, Time) + ¢ (v;, Nat)
(b) if ¢ (v;, Temp_Mod) = after then m(D’,Time) >

(D, Time) + v (v;,Nat). O

In Def. 7, we distinguish between the kinds of rules.
For atomic rules, as well as provisional rules involving
roles and purpose, we pattern match the violation with
the entries. For guarded provisions, we evaluate whether
the guard matches with the accessed values. For obliga-
tions, we first need to verify whether the action (delete
and notification) has taken place in the first place. If
so, we check whether the temporal modality has been
violated. The item * is, as a matter of simplicity, not
included in our definition. If a violation contains a *, the
pattern matching always evaluates to true.

Privacy Evidence. The result of the compliance audit,
together with the corresponding log view, build the pri-
vacy evidence, where we employ a semaphore notation
to make the result of audit evident to the pertinent
user. Here, red denotes the violation of some rule, while
green denotes the compliance with a policy. An amber
semaphore indicates that some obligational rule could
not be pinpointed and therefore stands for a warning.

R. Accorsi and M. Bernauer

Formally, this is special case of Def. 7 omitted above for
simplicity. It refers to the situation where an action is
due, yet its deadline has not expired. Put other way, the
audit happens at some time point ¢ between the trigger-
ing collection or access and the expiration deadline.
Besides obtaining privacy evidence, the user can fur-
ther interact with it by clicking over the semaphore to ob-
tain details on which rules have been violated or warned
— if any —, as well as the specific entries that led to this
result. We currently carry out experiments to examine
the overhead involved in generating privacy evidence.

6 Related Work

Compliance audits is a young research topic and we are
not aware of research into privacy evidence in the sense
we propose here. Nevertheless, our approach is tightly
related to EPAL, the enterprise privacy authorization
language introduced by the IBM [2]. There are, however,
several differences. First, the primary focus of EPAL is
the enforcement of policies. In contrast, our focus is the a
posteriori inspection of compliance with privacy policies.
Second, EPAL is enterprise-centric, i.e. the notion of user
or data subject is not emphasised. Privacy evidence focus
on the users and on broadening their sense of control.
Third, in EPAL it is not clear who is in charge of auditing
the system. In our approach, a third-party process acting
on the behalf of the user assumes the auditor role.

A posteriori policy compliance is studied in [4], where
a formal proof system and its mechanisation are pre-
sented. While the formal background is sound, the prac-
tical contribution of the approach and the operational
mode (who performs the audit and how) are unclear.

7 Discussion and Perspectives

We argue for a holistic notion of control for UbiComp
comprising the regulation of collection of and access to
attributes and the supervision of compliance to policies.
To this end, we introduce privacy evidence as a means
of provable enforcement and present some of its main
building blocks. In doing so, we aim to improve the ac-
ceptance of UbiComp and foster the willingness of users
to use the services these environments can provide.

We believe privacy evidence is an initial step in a
promising direction and many relevant issues remain to
be investigated. Our realisation of privacy evidence cur-
rently works under a strong set of assumptions, which
while holding in the scenarios we consider, cannot be
anticipated in general. One open question concerns the
guarantee that relevant events are sent to the log file
BBox used to generate privacy evidence. A possibility is
to extend the trusted computing base to encompass the
devices, so that they ensure that every event communi-
cated to the local log file is also send to the BBox.

Moreover, the assumption that users are recognisable
when an event is recorded may be at odds with their
desire to remain anonymous. This need not to be the
case though, as an identification may also be related to
a user’s pseudonym. (Note that this possibility depends
on the requirements set by the scenario.)

Another open question concerns situations where log
entries cannot be assigned to a particular user. To ad-
dress this issue, we plan to equip the generation of log
views with data mining and machine learning methods:
given a log view L of a user, these methods anticipate
whether, and, if so, to what extent an event D is related
to the set of log entries S. Our present investigation con-
siders cluster building techniques for this purpose.

Finally, if the ontology describing the system changes,
the policies become (partially) obsolete and events cap-
tured by the new devices will not be taken into account
in the compliance audit. In fact, this generates a seman-
tic problem that can be resolved using default configura-
tions, such as default-deny. In this case, unknown events
would be seen as violations or warnings.

Thus, in relaxing our assumptions, we consider a set-
ting that resembles a forensic investigation. Our medium-
term goal is indeed to argue for the establishment of pri-
vacy forensics, a discipline dedicated to the technical and
legal research into methods for compliance audits and
privacy evidence mining, protection and presentation.

References

1. R. Accorsi. On the relationship of privacy and secure
remote logging in dynamic systems. In S. Fischer-Hiibner
et al., IFIP/SEC, vol. 201 of IFIP, pp. 329-339, 2006.

2. P. Ashley, C. Powers, and M. Schunter. From privacy
promises to privacy management: A new approach for en-
forcing privacy throughout an enterprise. In ACM NSP,
pp. 43-50, 2002.

3. R. Boéhme and S. Koble. On the viability of privacy-
enhancing in a self-regulated business-to-consumer mar-
ket: Will privacy remain a luxury good? In WEIS, 2007.

4. J. Cederquist, R. Corin, M. Dekker, S. Etalle, J. den Har-
tog, and G. Lenzini. Audit-based compliance control.
Int. J. of Information Security, 6(2-3):133-151, 2007.

5. M. Froomkin. The death of privacy? Stanford Law Re-
view, 52(5):1461-1543, May 2000.

6. O. Glinther and S. Spiekermann. RFID and the percep-
tion of control: The consumer’s view. CACM, 48(9):73~
76, 2005.

7. A. Hohl. Traceable Processing of Personal Data in Re-
mote Services Using TCG. PhD thesis, Freiburg, 2006.

8. OASIS. Extensible access control markup language.
http://www.oasis-open.org/committees/xacml/.

9. A. Pretschner, M. Hilty, and D. Basin. Distributed usage
control. CACM, 49(9):39-44, 2006.

10. S. Sackmann, J. Stritker, and R. Accorsi. Personaliza-
tion in privacy-aware highly dynamic systems. CACM,
49(9):32-38, 2006.

11. A. Schmidt. Implicit human computer interaction
through context. Personal and Ubiquitous Computing,
4(2-3):191-199, 2000.

12. W3C. P3P, http://www.w3.org/P3P/.

