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Abstract Sensor nodes are increasingly deployed in manyer a wireless medium, even a remote adversary can eaves-
environments. Most of these nodes feature onboard sendi@p and gain access to the data collected by the network.
chips to measure environmental data such as humidity, teftre need for privacy of data is evident in applications where
perature and light. In this paper, we show that seeminggnsor networks are deployed to collect personally identifi-
innocuous and non-sensitive data such as humidity measuaigle information, such as sensing the location of people in
ments can disclose private information such as human prbaildings for disaster preparedness. However, in some envi-
ence. We conduct several experiments using Telos motesments, an adversary can use seemingly innocuous data to
running TinyOS to justify our claims. research to investigaterive sensitive information other than the data monitored.
mechanisms to prevent the leakage of private informationin this paper, we discuss one such instance of this problem.
Specifically, we show how seemingly innocuous data such
as humidity measurements can be used to determine human
presence or absence in a room. We show this because hu-
midity data is not considered to be privacy-sensitive today.

S work v deploved t Hence, to reduce cost, the sensor networks monitoring hu-
ensor networks are generally deployed 1o measure s aity data will likely to be unprotected, and the data col-

characteristics about a particular environment of interest. 7 Sted throughout such system might be shared freely with-
data they gather can then be analyzed to extract importgfj} roard to privacy concerns. The present work, however,

information regarding the occurrence of events in that en verturns this conventional wisdom by demonstrating that
ronment. Some WeII—knO\_/\(n appllcatlons of sensor networ ﬁmidity data, is in fact, privacy-sensitive, since it yields
include surveillance of critical infrastructure, tracking of eng

. - rmation about human presence. We conduct several exper-
vironmental pollutants, measurement of traffic flows, aqa]ents using Moteiv Telos motes running TinyOS and the
climate sensing and control in office buildings and homesr sults from these experiments justify our claims

Sensor networks are tools for collecting information, an It may be argued that an adversary could collect such
an advers_ary can gain access to sensitive njformatlon e'tp@fsonal information directly through site surveillance. How-
by accessing stored sensor data or by querying or eavesd

) th work. Si work SOIQRY as prior work points out, the main privacy problem
pINg on the Network. since Sensor NEtworks communlceggsed by sensor networks is not that they facilitate the col-

) ) - lection of information that would otherwise be impossible,
This research was supported in part by CyLab at Carnegieoieih- .
der grant DAAD19-02-1-0389 from the Army Research Officed arPUt that sensor networks aggravate the privacy problem by
grant CCF-0424422 from the National Science Foundatiochaagrant making important information easily available through re-
from Bosch. The views and conclusions contained here asetbithe mote access [6]. Hence, an adversary can gather information
oy oY, 2 eCeSSarl e in  lowrisk, anonymovs manner without being physical
Bosch pCMU NSE or the U.S. Gévemmempor any ofrﬁfagenciels present to maintain surveillance. As the results from the ex-

: S periments in our paper indicate, given a room with a setup of

1 Introduction

Jun Han _ sensor nodes that measure humidity, a remote adversary can
E-mail: junhanece@gmail.com determine human presence or absence in that rooonlyy
Abhihek Shah _ using the humidity readings from the sensor nodes deployed
E-mail: abhishekjain.itbhu@gmail.com in that room.

Mark Luk We note that our system is not a substitute for a hu-
E-mail: mluk@ece.cmu.edu man activity/motion detector system. Rather, it serves as a
Adrian Perrig demonstration for inferring privacy-sensitive personal infor-

E-mail: adrian@ece.cmu.edu mation such as human presence by only using humidity mea-



surements. However, we envision that with further work, wee real-time analysis script written in MATLAB. When an
would be able to improve our current prototype to dedu@vent is triggered at the serial port, the script executes a call-
human activities such as speaking or drinking, and in sorback function to process and graph the raw data in real time.
cases even breathing patterns.

2.2 Data Calibration

2 System Description
In order to process the received data, it must first be cal-

Before we explain the details of our system, we first giveilrated to the standard units: Relative HumidifyH) for
brief overview to summarize the main ideas in our approadrimidity and degree Celsius for temperature. We use well-
In our system, we deploy a sensor node in proximity to a uggrown standard techniques to perform data calibration for
in a room. This sensor node performs humidity measurfeumidity and temperature [13]. For the sake of complete-
ments and reports the readings to a data collection servgss, we briefly discuss them here.
The humidity readings are then processed at the server, andWe use Equation 1 to calibrate the raw temperature read-
based on the dynamics of the humidity data, we are ableifgs obtained from the sensor node.
detect human presence and absence.

Our system consists of the following three phases: (a) dafa D1+D2-t 1)
acquisition, (b) data calibration, and (c) detection algorith

We now proceed to the detailed description of each of thg]gethe above equatiofl); andD, are temperature conversion

coefficients equivalent te-39.6 and 001 respectively, and

phases. is the raw temperature reading from the sensor. To calibrate
the raw humidity readings, we use Equation 2 given below.
2.1 Data Acquisition RH=(C—25)-(Ti+T>-5)+h )

For our experiments, we use the Sensirion SHT15 [13] hyr the above equatiof is the calibrated temperature in de-

midity sensor mounted on a Moteiv Telos mote[12,9] that {srees CelsiusT; and T, are the temperature compensation

placed within a distance of one meter from the subject. coefficients equivalent to.01 and 000008 respectivelys
The Moteiv Telos is a popular mote architecture in thig the raw humidity reading from the sensor, amds the

sensor network research community. It features the 8MHz tBimperature-uncompensated humidity value given by:
MSP430 micro-controller, a 16-bit RISC processor with 10

Kbytes of SRAM, a 48Kbytes flash ROM, and a 12-bit Angh = K; + K, - s+ K3 - & (3)
log/Digital Converter with multiple input channels. It also
carries a variety of sensors that include the Hamamatsu ligittere Ky, Ko, andKs3 are the humidity conversion coeffi-
sensors and Sensirion temperature and humidity sénsorsients equivalent te-4, 0.0405, and—2.8 x 106 respec-
Telos motes run TinyOS, a real time operating system thatiigely.
light weight and is specially designed for sensor nodes that
have limited resources.
Sensirion SHT 15 is a high precision humidity sens@.3 Detection Algorithm
that uses the CMOS process and outputs digital values us-
ing its internal 12-bit A/D converter. It has a typical reso©ur detection algorithm determines human presence or ab-
lution of 0.03% Relative Humidity (RH) , and its humidity sence based on the dynamics of the calibrated humidity data
and temperature accuracies ar2.0 (%RH), and+0.3 (at obtained from the previous phase. We now proceed to de-
25° Celsius). scribe the detection algorithm. Later, we use results from an
We use a small TinyOS application written in nesC (thexperiment to reason our methodology.
programming language for TinyOS) to obtain the sensor read-
ings and transmit them to the PC. The application sampl&gyorithm

humidity and temperature data every 500 milliseconds fro,aiwrst, we apply a high pass filter to the calibrated humidity

the SHT15. The readings are then transferred to the UARjL 5 optained in the second phase of Data Calibration, which
which is MSP430’s universal synchronous/asynchronous({fga

. . , ‘equivalent to the first order discrete derivative of the input
ceiver/transmitter (USART) set in an asynchronous moGg,, This will detect the changes in the original data. Next,

This allows us to transfer the data from the Telos mote to thg, set a threshold value over the filtered humidity data.
server via a USB connection. _ inally, we set a sliding window of sizefor the data sam-
The data transferred from the Telos mote is read at th.s from the high pass filtered data. At any point of time, we
serial port on the server. To process this data, we implemehyate the samples in the current sliding window to check
1 Moteiv Telos motes carry a Sensirion SHT11 humidity sensdI at leastm of these samples exceed the.threShOId value
which is slightly less accurate than SHT15. For our expemtsieve !f the check succeeds, then the system infers that a human
replaced the onboard SHT11 sensor with SHT15 to get bettaltse IS present. This decision holds true until some point of time,
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Fig. 1 ExperimentA. (a) shows the Humidity and Temperature readig. 2 These figures compare the decision on human presence (with re
ings in RH and degree Celsius units respectively. (b) shbesdsul- spect to actual human presence) made by the system thattisesta
tant data when the high pass filter is applied over the huynidédings. olding mechanism and one that uses a sliding window mecimaimis

(c) shows actual human presence. addition to the threshold, during the intertat 189 tot = 210 in ex-
perimentA

(b) High Pass Filtered Humidity (b) Detection with Threshold and Sliding Window
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when the above check fails. At this point, the system decides

that the human is absent. exceeds the threshol. Let us consider the time interval
Defintion 1 Event  is the case where the system is able fa = 189 tot; = 210 during experimenf. Figure 2(a) il-
successfully detect human presence for a given sample whistrates the decision on human presence made by such a
the human is present. We defibetection Rate as the ratio System during this time interval.

of the total number of samples when evepbEcurs to the Observe that the system determines human absence in
total number of samples when the subject is present. this time period, while the subject was actually present. Due
Defintion 2 Event B is the case where the system detecte the occurrence of such events throughout the course of the
human presence for a given sample when the human is &iperiment, the overall detection rate obtained by using such
sent. We definalse Positive Rate as the ratio of the total & methodology is considerably low. We have observed such
number of samples when eventdecurs to the total number occurrences when the subject is either temporarily idle or
of samples when the subject is absent. further away from the sensor node. Specifically, we found
Discussion that the detection rate for this system in experimaris

. . : 2.74%, when the thresholfl was set to 13. We defer until
Our methodology is guided by experimental results. To prp® ' . )
yisg y &xp P (%l_er the explanation of the choice of the threshold value.

vide a better understanding of the reasoning behind our . o .
tection algorithm, we consider an example experiment. We Ve solve the above problem by using the sliding window

conducted an experiment for a period of over eight hou echanism described earlier. Figure 2(b) illustrates the deci-

The subject in the experiment was a male. The total numipn ©n human presence made by this system during the time

of data samples obtained during the course of the expdRtervallts,t2] in experimeni. Observe that the decision di- -

ment were 30855. Of these, there were 5756 samples Wﬁ%ﬁtly correlates to actual human presence ash illustrated in

the subject was present and 25098 samples when the sujéd{re 2(C)-

was absent. From now on, we shall refer to this experiment

asA.
Figure 1(a) illustrates the calibrated humidity and ten8 Experimental Results

perature data obtained during experim@nt~rom inspec-

tion, the changes in humidity represented by jitters in FigVe conducted various experiments for different time-periods

ure /reffig:one(a) directly correlate to human presence illugn different subjects. For each experiment, we placed a sen-

trated in Figure 1(c). sor node beneath the desk of the subject. In order to deter-
In light of the above observation, we apply a high passine actual human presence, We preferr this simple method

filter to the calibrated humidity data. The resultant data snce it is the least intrusive way of obtaining actual presenc

illustrated in Figure 1(b). Next, we set a threshold value for a given subject.

over the filtered humidity data. Ideally, we would want to For each experiment, we analyzed the collected data by

achieve a high correlation between human presence andvhgying the system parameterd+n andm in order to ob-

filtered data. tain the best trade-off between the Detection Rate and the
One possible way to determine human presence isRalse Positive Rate. Specifically, we chose the system pa-

check at any point of time whether the filtered humidity dat@meters in the following manner: (&)< [1.0,1.3], (b)n e




Experiment| Detection Rate] False Positive Raté
A 95.59 2.67
B 92.25 28.33
C 91.80 29.70

Table 1 Final Results.This table summarizes the results from threé

different experiments.

1

Detection with Threshold and Sliding Window

0.8
0.6
0.4
0.2

0

1

I
1 15

2 25 3
x 10

Actual Human Presence
T T T

0.8
0.6
0.4
0.2

T

I]ll L
0.5

T

|]]I L
0.5

0

. .
1 15
Time(sec)

. .
2 25 3
x10°

ples, the subject was present during 13516 samples and ab-
sent during the remaining 6050 samples. When the system
parameters are set to2l 10, and 3 respectively, we obtain

a trade-off with 9180% and 2970% as the Detection Rate
and False Positive Rate respectively.

We note that the False Positive Rate is relatively high
in Experiment B. This is primarily a result of the subject
not being careful with recording actual human presence. We
observed that the subject was around his desk many times
while he actually recorded that he was away from his desk,
thus appearing as present to the system, while the “actual hu-
man presence” was set to absent. This can be easily verified
by changing the system parametéfsn andmto 1.2, 30,
and 4, respectively. The Detection Rate and the False Pos-
itive Rate reduce to 509% and 314%. Similarly, we note
that the False Positive Rate is relatively high in experiment
C. After analyzing the experimental data, we conclude that
this is due to the fact that the number of samples when the
subject was absent is relatively low — 6050 in total, therefore
the resultant ratio is somewhat misleading. This can be com-

pared to the number of samples the subjects were absent in
Fig. 3 Final Decision for ExperimentA. These figures compare the€xperiments A and B, which were 43,674 and 25,098 sam-
final decision on human presence and absence made by oumsygdes respectively. Hence, even a low number of incorrectly
with actual human presence for experimént asserted samples during the period when subject C was ab-
sent would lead to a high False Positive Rate.

(10,30}, and (c)m€ [1,5]. In general,we found that > 1.0 Remark 1We note that the sliding window mechanism can
was a good choice to remove the noise in the filtered henaple the system to use a lower threshold valie order
midity data. Similarly, whem andmwere chosen from the o capture more humidity changes, thus increasing the de-

above value sets, better results were obtained. We now pig-tion rate, while maintaining the number of false positive
ceed to the description of the experiments and the obtaingt reasonably low value.

results. Later, we discuss how the system parameters influ-
ence the Detection Rate and the False Positive Rate. System Parameters vs Detection Rate and False Positive

We restrict our discussion to a few experiments to CORate. We now discuss the influence of the system parame-

serve limited space. Table 1 summarizes the results freBjs on the Detection Rate and False Positive Rate for a given
three different experiments. Recall experiménfc.f. Sec- experiment.

tion 2.3) that was carried out on a male subject for a period

of over 8 hours. From a total of 30854 samples, the subjé&¢mark 2We note that decreasing andm and increasing

was present during 5756 samples while he was absent dutinggsults in higher values of the Detection rate and False

the remaining 25098 samples. By varying the system paraRpsitive Rate. Similarly, increasingandmand decreasing

eters, we found that the Detection Rate varies fronT8% n results in lower values of the Detection Rate and False

to 9958%, while the False Positive Rate varies fro1% Positive Rate.

to 9822%. We achieve a reasonable trade-off withb9%6 We now consider each system parameter individually and

Detection Rate and@/% False Positive Rate, when the SYSiscuss its influence on thg DetecEt)ion Rate and False Fgrlasitiv

tem parameter$, n, andm are set to 22, 30 and 3 respec- te

tively. Fig 3 compares the decision on human presence a '

absence made by the system relative to actual human prés-T. Given a< n,m> value pair, both Detection Rate and

ence for experimera. False Positive Rate tend to decrease when the threshold
Next, we conducted experimeBion a second male sub- T is increased. This is true because as the threshold in-

ject for a period of over 14 hours. From a total of 51337 creases, there will be a decrease in the number of sam-

samples, the subject was present during 7663 samples andles that exceed the threshold, thus resulting in lower

absent during the remaining 43674 samples. Again, we var- values of the Detection Rate and False Positive Rate.

ied the system parameters while evaluating the results. Wh2nn. Given a< T,m > value pair, both Detection Rate

T,n,andmare set to 22, 30, and 1 respectively, we achieve and False Positive Rate tend to increase when the slid-

a trade-off with 9225% Detection Rate and Z8% False ing window sizen is increased. This can be explained

Positive Rate. in the following manner. As the sliding window size in-
Finally, we conducted experime@ton a female subject  creases, the probability thatsamples within the sliding

for a period of over 5 hours. From a total of 19566 sam- window exceed the threshold increases. This results in
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Fig. 4 T vs Detection Rate and False Positive Rat&hese graphs Fig. 6 m vs Detection Rate and False Positive Ratd.hese graphs
show the variation of the Detection Rate and the False RedRate show the variation of the Detection Rate and the False RedRate
with respect to the thresholl. For simplicity of presentation, we re- with respect tan. For simplicity of presentation, we restrict the graphs
strict the graphs to specific values of the system parameters to specific values of the system parameters.
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the system parameters to derive an upper bound on the re-
sults. In an advanced system, these parameters could be de-
rived via a learning phase or on the basis of empirical data
collected by a large number of experiments. Also, while con-

| x - T=1.1,m=5 a ) ) | )
&0 —e—T=1.2,m=3 ducting our experiments in real-time, we were able to notice
_r _TEismAl sharp changes in the humidity measurements when the sub-

10 15 20 2 30 ject was engaged in activities such as talking or drinking a
(b) n vs False Positive Rate hot beverage. Furthermore, in some cases when the sensor
¥ Toiimes , node was within reasonable proximity to the subject, the hu-

—6—T=1.2,m=3

Fig. 5 n vs Detection Rate and False Positive Rat hese graphs
show the variation of the Detection Rate and the False RedRate
with respect to the sliding window size For simplicity of presenta-
tion, we restrict the graphs to specific values of the systararpeters.

higher values of the Detection Rate and False Positi

Rate.

3. m. Given a< T,n > value pair, both Detection Rate an
False Positive Rate tend to decrease whésincreased.
This is true because as increases, the probability th
m samples within a constant size sliding window exced
the threshold decreases, thus yielding lower values of t

Detection Rate and False Positive Rate.

30

at

midity measurements were able to reflect the breathing pat-
tern of the subject. We believe that with further work, it may
be possible to improve our current prototype to deduce such
human activities with reasonable accuracy.

4 Related Works

To the best of our knowledge, no prior work has been done
to demonstrate the use of humidity measurements to deter-
mine human presence. Previous research on privacy issues
'%sensor networks has either concentrated on data confiden-
tiality or transactional confidentiality. Data confidenitial

dmplies secrecy of the messages being communicated in the

network, while transactional confidentiality implies counte
measures against an adversary who conducts traffic analysis
q gather additional information.

he Data confidentiality in sensor networks has been exten-
sively studied in the past. The authors in [11,1,5] provide
a nice summary of available literature discussing this topic.

Figure 4, 5 and 6 illustrate the variation of the Detectiohhe well-known way to achieve data confidentiality is data
Rate and False Positive Rate with the system parametersdocryption. In order to perform encryption, the nodes in a

experimentA.

sensor network utilize a key distribution protocol [4,8,3,15]

Finally, we note that in our current prototype, we tune tHe establish keys.
system parameters manually to obtain a reasonable trade-offThe authors in [7,10] discuss the transactional confiden-
in the results. Ideally, we would want an optimal range fdiality associated with routing of messages within a sensor



network. These papers address the problem of an adversaryMoteiv Corp. Telos (Rev B) Datasheet, http://www.moteiv.com
determining source location by violating transactional confi- Dec 2004.

dentiality and discuss possible solutions to this problem (- C: Ozturk, Y. Zhang, and W. Trappe. Source-locationguyvin
energy-constrained sensor network routingPtoceedings of the

ing altered routing algorithms for sensor networks. In [14],  2nq ACM workshop on Security of Ad hoc and Sensor Networks
refinements are made on the solutions discussed in [7,10]. 2004.
The problem of sink location information confidentiality isl1. A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar.
addressed in [2]. The authors discuss two main examples SPINS: Security protocols for sensor networks. Pioceedings

. . - . of Conference on Mobile Computing and Networks (MobiGom)
where transactional confidentiality can be breached in a sen- 55001

sor network: message routing and message sending rate. €oun-Polastre, R. Szewczyk, and D. Culler. Telos: Enahlitrg-low

termeasures against an adversary who can perform traffic power wireless research. Bpecial track on Platform Tools and
analysis to gather such information are given. Design Methods for Network Embedded Sensors (SPOTS)hFourt
International Symposium on Information Processing in 8ens
Networks (IPSN’05)April 2005.

13. Sensirion. High precision humidity sensor SHT15 Datasheet,
5 Conclusion and Future Work http://www.sensirion.com

14. Y. Xi, L. Schwiebert, and W. Shi. Preserving source lmeapri-
vacy in monitoring-based wireless sensor networksPrioceed-

We show that seemingly innocuous and non-sensitive data ings of the 2nd International Workshop on Security in Systnd

such as humidity measurements can disclose private infor- Ngtworkszoos. P ¥s

mation such as human presence or absence. We conduct $8Vs. zhu, S. Setia, and S. Jajodia. LEAP: Efficient secuniégha-

eral experiments using Telos motes running TinyOS and the nisms for large-scale distributed sensor networksPrrceedings

results from these experiments justify our claims. of ACM Conference on Computer and Communications Security
As discussed earlier, we were able to notice clear corre- (€¢S) October 2003.

lation between the changes in humidity measurements with

the activities that the subject was engaged in, such as talk-

ing, drinking hot beverages, and breathing patterns in some

cases. With further research, we hope to improve our cur-

rent prototype to be able to determine these various activities

with reasonable accuracy.
We note that it is worthwhile to investigate potential ar-

eas where our system could have a positive impact. Given

that sensor nodes capable of humidity measurements are very

inexpensive and widely used, it may be feasible to use our

system for applications such as automation of climate con-

trol in buildings, and infant (or patient) monitoring.
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