Sensing in Ubiquitous Computing

Hans-W. Gellersen

Overview

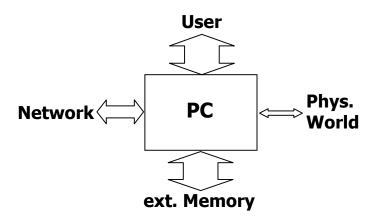
- 1. Motivation: why sensing is important for Ubicomp
- 2. Examples: how sensing features in ubicomp projects
- **3. Discussion:** main trends? what's new?
- **4. Perceptual Computing:** lifting sensor observations to 'useful information'
- 5. Distribution: issues in distributed sensing
- **6. Energy:** how it dominates design decisions

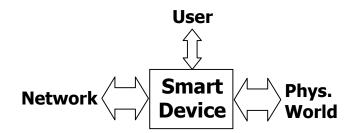
1 - Motivation

Human-Centred Motivation for Ubicomp

- Toward systems that adapt to people, as opposed to people adapting to systems:
 - Reactive to what people do
 - Proactive, anticipating what people want to do
 - Situated, sharing context with human user
- From explicit (computer-directed) to implicit (activity-driven) interaction between people and systems
- all this requires ability for <u>observation of human activity</u>

Device Trend

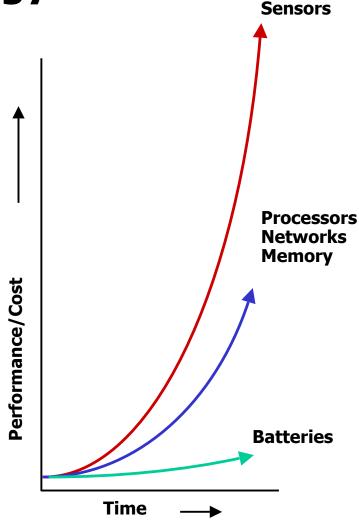

From PC to 'Smart devices'


- more applied than general-purpose ('information appliance')
- less CPU power, memory, UI
- more networking

"the real power of the concept does not come from any one of these devices; it emerges from the interaction"

more physical I/O

"if a computer merely knows what room it is in, it can adapt its behaviour ... without even a hint of AI"



Enabling Technology

Moore's Law again

- 'sensors in overdrive'
- dramatic drop in price
- miniaturization
- e.g. MEMS
- e.g. piezo-materials
- e.g. low-cost image sensors
- but sensors need energy...

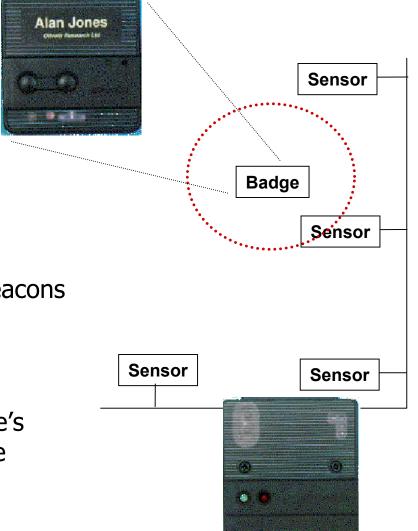
The decade of sensors

Sensors driving next wave of IT innovation

Processing	Access	Interaction
Personal computer	World Wide Web/ Internet	Smartifacts
		Sensors
	Laser	
Microprocessor		
80 1	990 20	00 20

2 - Examples

... of how sensing is used in ubicomp work


not a complete history

... just to get a feel for types of systems/uses

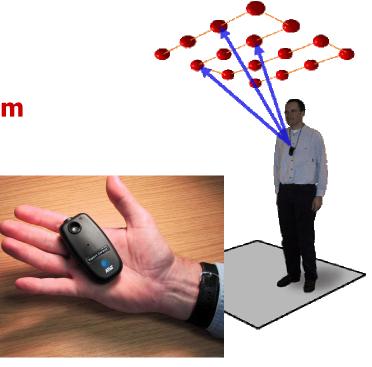
Location sensing

Active Badge System

- ORL, Cambridge/UK, 1989-92
- Locating people (and devices)
- Room-level accuracy
- Badges worn by people emit beacons
- Sensors with known location
- 'artificial sensing': augment phenomenon of interest (people's presence) to make it sense-able

Location sensing

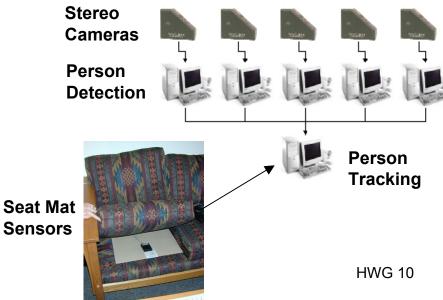
The Bat Ultrasonic Location System


 Highly accurate indoor positioning 95% of readings within 3cm

- Bat device emits short pulse of ultrasound
- Ceiling mounted sensor array
- Trilateration to compute position

Sentient Computing

- Use sensors to construct model of the environment
- Shared view of the world between system and user



Smart environments

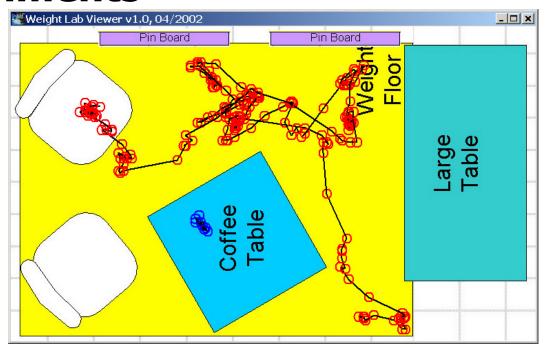
EasyLiving

- Microsoft Research
- 'Intelligent Living Room'
- Using computer vision for person tracking
 - predict user intention for task automation
 - support gesture UI
- Use seat mat sensors as additional information for person tracking

Smart Environments

The Aware Home

- Research initiative at GaTech
- 'A Living Lab for Ubicomp Research'
- Large-scale deployment of sensors for perception of everyday activities



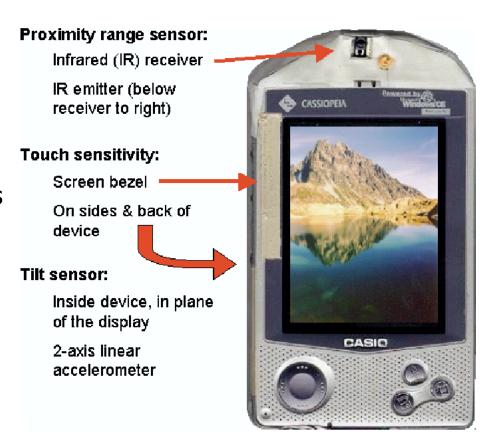
Smart Environments

"Weight Lab"

- An environment in which all surfaces are load-sensitive
- Floor, tables, chairs, shelves, trays ...
- Activity tracking with unobtrusive infrastructure

Smart Devices

My first smart device ...


- Orientation-aware Newton MessagePad
- Sensors as UI element

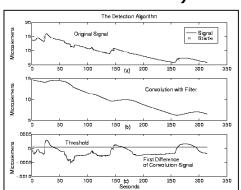
Smart Devices

Smart Palm PC

- Microsoft Research Hinckley et al
- Sensors to improve user interaction
- Detecting simple percepts
 - holding & duration
 - tilt, orientation
 - etc
- Detecting gestures
 - "dictaphone" gesture
 - scrolling

Smart Devices

TEA Mobile Phone


- Integration of diverse simple sensors (light, audio, accel., temp., touch)
- Sensor fusion for perception of device context (car, meeting, home, ...)
- Shared context among phone users
 - context call
 - context phonebook

Wearable Sensing

StartleCam

- MIT MediaLab
- Example for sensing the user
- Sensing generally important in wearables (intimate technology -> shared context)

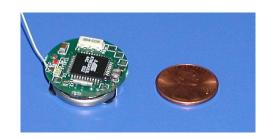
Wireless sensing

The Mediacup

- TecO Karlsruhe, 1999-2000
- Wireless sensor device embedded in ordinary coffee cup
- Movement, weight, temp. sensing
- On-board computation of user-level context: "filled up", "gone cold", etc.
- Augment passive artefact with continuous digital presence
- >95% reliable context prediction in everyday use

Wireless Sensing

Smart-Its


- PIC Microcontroller, RFM 868 MHz,
 Light, Audio, Accel., Temp. Sensors
- Designed for augmentation of passive objects
- Small scale (4x4x1 cm) and low-powered
- ~150 Devices in use
- various device versions
 - Bluetooth Smart-It, ETHZ
 - "DIY" Smart-It, Lancaster

Wireless Sensing

Berkeley Motes / Smart Dust

- Platform for wireless sensor networks
- Designed for large-scale networks
- Tiny OS
- Messaging Model
- Multihop routing
- Data filtering / aggregation

3 - Discussion

Summary of sensing uses in Ubicomp

- Device-based sensing (Portable, Wearable)
 - Sense the user, the location, the immediate environment
 - Enable proactive/reactive behaviours, novel UI techniques
- Environment-based sensing
 - Homogeneous sensing infrastructure to supply devices
 - Smart environment control, responsive rooms etc
- Wireless sensor devices and networks
 - Heterogeneous sensors, ad hoc organized
 - Large-scale observation of the physical world
 - Deep embedding in physical artefacts

What's new

Traditional sensing applications

- Highly engineered for specific applications
- Sensors to obtain particular inputs to a process
 - interest in very specific physical phenomena
- Tight coupling of sensing and effect

Sensing in Ubicomp

- Flexible platform to support many types of application
 - Including unanticipated applications
- Phenomena of interest are unstructured
 - Generic interest in observing human activity
- Strong interest in separation of concerns
 - Decoupling sensing and effect

This trend may well be reversed when actuators become as pervasively deployable as sensors now!

Overview

- 1. Motivation: why sensing is important for Ubicomp
- 2. Examples: how sensing features in ubicomp projects
- **3. Discussion:** main trends? what's new?
- **4. Perceptual Computing:** lifting sensor observations to 'useful information'
- **5. Distribution:** issues in distributed sensing
- **6. Energy:** how it dominates design decisions

4 - Perceptual computing

Closing the gap between sensors and applications

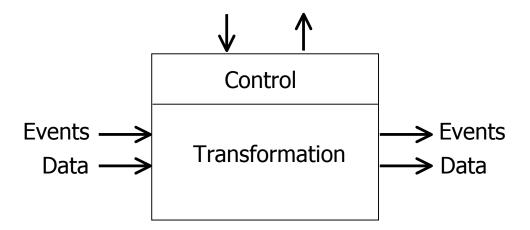
- sensors observe physical phenomena
- applications operate on 'higher-level' models of the world
- perceptual computing: to extract meaning from observations
- two drivers
 - AI tradition: modelling human capabilities
 - task-driven: interest in specific aspect of the world

Perceptual Computing

"The physical world is a partially observable dynamic system ..."

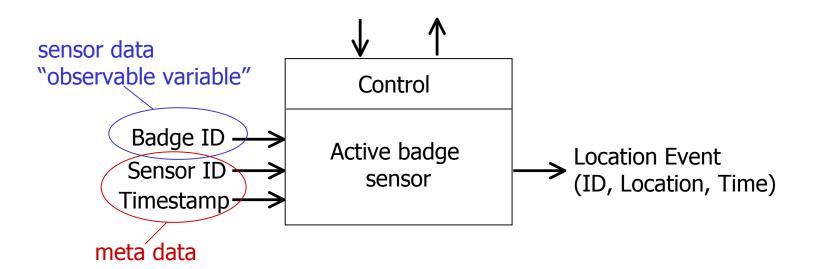
"... sensors are physical devices with inherent accuracy and precision limitations"

(Estrin et al, Berkeley)

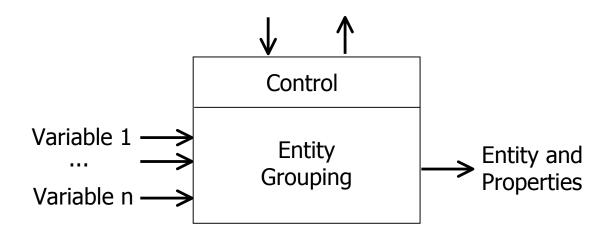

How a system sees the world

System's view of physical world

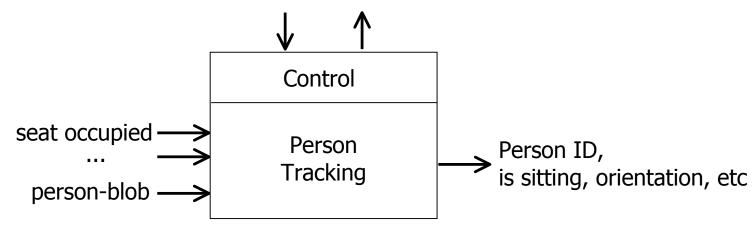
- at the lowest level:
 - world seen as collection of sensors
- sensors generate values for observable variables
 - can be symbolic or numeric
 - can be synchronous data streams or asynchronous events
- sensor data is associated with meta-data, e.g.
 - time
 - location
 - confidence
 - etc.


Basic perceptual component

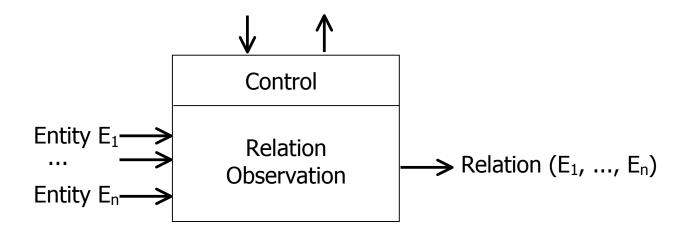
transforming observed events/data to "higher level" events/data


Example: Active Badge Sensor

transforming badge sightings to location events


Detecting entities

- grouping of observations
- entity corresponds to a physical object
- from system perspective: association of correlated observable variables


Detecting entities

- e.g. Easy Living
- associating mat sensor observation and camera observation with the same entity

Detecting relations

- determining relations between entities
- e.g. spatial proximity

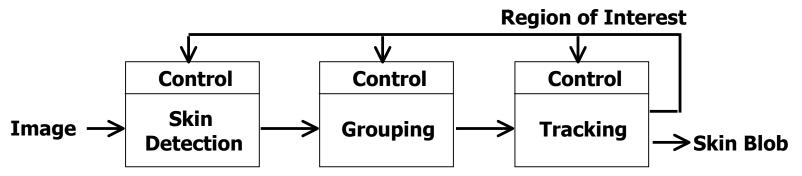
Sensors/Perception in Ubicomp

The popular choices

- Location sensing and computer vision
- Homogeneous infrastructure: (usually) single type of sensor
- Fairly well understood, e.g. location models
- Generic source of information
 - Location: usually an index to much more information
 - Vision: high information content in visual scenes

Some alternatives

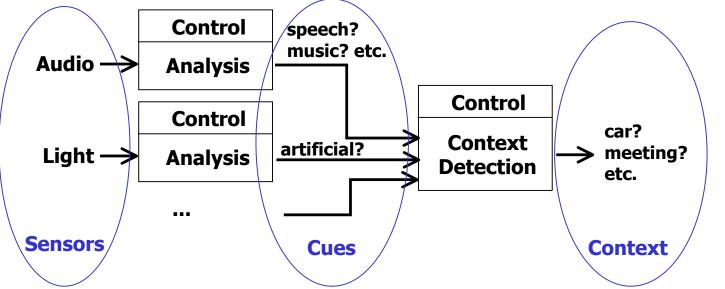
- Multi-sensor perception
 - Combination of specific sensors to obtain generic percepts
- Pervasive deployment of specific sensors
 - Dense networking to obtain more generic observations


Location vs. Vision Systems

Location system

- comparatively simple perceptual process
- geometry- or model-based transformations
- location powerful as <u>index</u> to further information

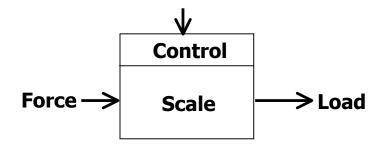
Computer vision


- complex perception architectures
- chains of transformations, e.g.

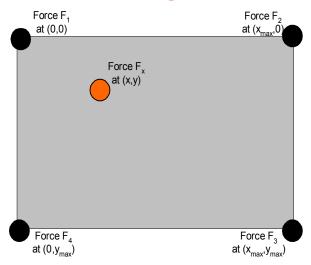
Multi-sensor perception

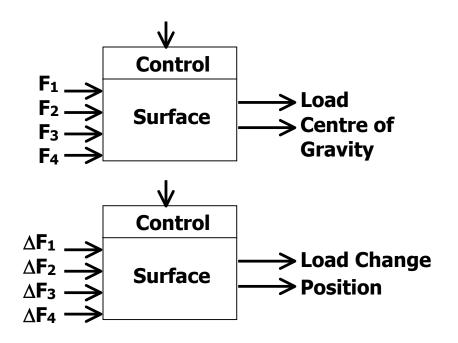
Sensor fusion

- typically two transformation steps
 - first 'cooking the sensors' (low-cost sensor analysis)
 - then combining extracted features
- well suited for embedded devices
- e.g. TEA architecture for perception of mobile phone context:



HWG 33


Load Sensing


Basic load sensor

e.g. your kitchen scale

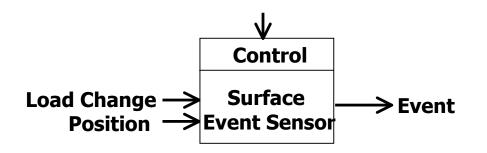
Load-sensing surface

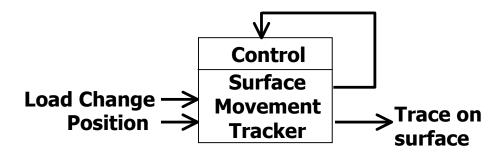
Load Sensing

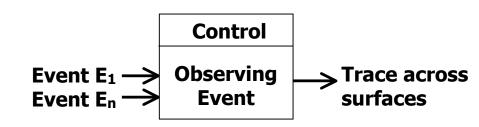
Basic event detection

- Object placement
- Object removal

Further event processing


- Detect movement
- Detect specific events
- Detect Object ID/Class


Tracking movement


Detecting traces on surfaces

Tracking objects

- Tracking across surfaces
- Correlation of events
- Grouping events associated with the same object

Overview

- 1. Motivation: why sensing is important for Ubicomp
- 2. Examples: how sensing features in ubicomp projects
- **3. Discussion:** main trends? what's new?
- **4. Perceptual Computing:** lifting sensor observations to 'useful information'
- **5. Distribution:** issues in distributed sensing
- **6. Energy:** how it dominates design decisions

5 - Distribution

Why distributed sensing

- Facilitate combination of distributed observations
- Factoring out sensing from devices into infrastructure
- Separation of sensing and application into distributed entities

Some implications

- Location and time need to be considered
- Data delivery from sensor to application
- Where to sense: device vs. infrastructure

Location and Time

Application Perspective

- Location and Time considered as context of particular interest
- Though rarely location/time as such, but location of people/objects and time of events/activities

Sensor System Perspective

- Physical phenomena are location- and time-dependent
- Every sensor observation is made a specific location and at a specific time
- Every observed variable is associated with location and time as meta-data
- There are real-time and "real-place" issues

Location and Time

Real-time issues

- Value of observation time-dependent
 - e.g. can become irrelevant after some time
- Latency can contribute to inaccuracy
 - e.g. location reading of moving objects
- Synchronization of distributed observations (sensor fusion)

"Real-place" issues

- Arising with mobile/flexible sensor nodes
- Value of observation location-dependent
 - e.g. less relevant the greater the distance between sensor node and observed entity
- Location also relevant for sensor fusion
- Localization hot issues for wireless sensor networks!

Sensor Data Delivery

Application-level Delivery Models

- Continuous: sensors communicate their data at prespecified rate
- Event-driven: report data only if event of interest occurs
- Request-reply: report only response to an application request

Network-level Routing Models

- Flooding: broadcasting observations to neighbours, who rebroadcast until application is reached
- Directed Diffusion: data-centric protocol
 - Data is named by attribute-value pairs
 - Applications submit queries, diffused through the network
 - Nodes satisfying the query start transmitting data

Where to Sense

Smart Device vs Smart Environment

- e.g. location sensing
 - GPS model': infrastructure sends it's coordinates, device computes it's position
 - 'Active Badge model': device/client sends beacon, infrastructure computes position
- Wearable computing vs ubiquitous computing debate
- Privacy issues: who's in control over location information
- Distributed systems issues
 - System-wide location management
 - Client reliance on infrastructure
 - Protocols to talk about location
 - etc

6 - Energy

Why energy is such an issue

- Wireless embedded devices rely on stored energy
 - some ideas around for harvesting energy
- Energy storage is advancing but at a slow rate
- Energy will continue to be the most limiting resource in design of wireless sensor devices

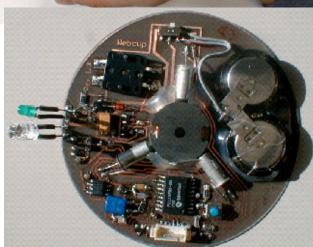
Energy cost

Where the energy goes

- Relative energy consumption in wireless sensor devices
 - Most expensive: wireless communication (sending, receiving, and also just listening)
 - less expensive (by a magnitude): sampling sensors
 - least expensive (again by a magnitude): computation

"3000 instructions could be executed for the same energy cost as sending a bit 100m by radio"

Implications


- Reduce communication in favour of computation
- Event-driven instead of continuous sensing and communication

Example: Mediacup Design

Design dominated by energy issues

- Sensor choice
 - Ball switches for motion detection instead of acceleromter
 - Enables interrupt-based rather than continuous sampling
- Communication:
 - Coded percepts instead of raw sensor data
 - Broadcast only every 2s
- Wireless charging
 - instead of batteries
- Processing
 - low-powered processor (PIC)
 - Maximize sleep time

Wrap-Up

Sensing in Ubicomp

- Important enabling role: proactive systems, context-awareness
- Some key differences to traditional sensing
- Perception, Distribution, Energy
- There would be a lot more to say
 - Human-computer interaction issues
 - Human in the loop vs task automation
 - Transparency and control
 - Design of perceptual user interfaces, e.g. how to deal with inherent ambiguity

– ...