Building Context-Aware Applications

Anind K. Dey Senior Researcher, Intel Research Berkeley Assistant Adjunct Professor, UC Berkeley anind@intel-research.net

Transition from Hans' Talk

Good example of context-aware systems

Fundamentals of building systems

Presentation Overview

Motivation and What is Context
Design Process - no support
Design Process - with support
Survey of Support
Research Challenges

Mark Weiser: Chief Technologist at PARC

Began Ubiquitous Computing Project in 1988

Paradigm Shift

The Big Picture

The Big Picture

Ubiquitous computing

 dynamic environments and new technologies

- transparent/invisible/calm

The Big Picture

The most profound technologies are those that disappear."

The whole purpose for ubicomp, of course, is the applications."

One Slice of Ubiquitous Computing

Automated Capture and Access

Natural Interfaces

Context-Aware Computing

- Active Badges
- PARCTabs

Motivating Example

Context is fundamental:

 Effective use of context is key for a an effective ubicomp environment

Most common application?

Motivating Example

Effective use of context is key for a an effective ubicomp environment

Reminder to buy milk
When to deliver: not time/location specific

How to deliver: appropriate modality

What is Context?

You, as end user or designer, decide: Application dependent and situation specific

Application dependent and situation specific

Typically: identity, location, time

- Rest is implied
- Not much else used: e.g. activity, mood

8/13/2002

AKD - Dagstuhl Summer School

Why is Context Interesting and Important?

Interesting

Important

- Explicit information already available to applications
- Context is information, usually implicit, that applications do not have access to
- Makes applications "smarter", increases communication bandwidth

What Do Applications Do With Context?

- What is a context-aware application?
 - App that uses context to perform some behavior/service for its user(s)
- 3 types of behaviors:
 - Display context
 - Automatically execute/adapt services
 - Tag captured information for easier retrieval
- Schilit94, Pascoe98

Displaying Context

 Directly display sensed context
 e.g. In/Out Board (Salber98), Location Maps (Want92), Status Displays (e.g. weather, activity)

8/13/2002

Execute/Adapt Services

Select and perform a relevant service from multiple services

Change how a service behaves or is executed

e.g. Print to nearest printer, Information Displays

Tag Information

Use context to aid in context-based retrieval

May be easier to remember context than specific information

e.g. Forget-me-not (Lamming94), Mobile Computing Fieldwork (Pascoe96), Conference Assistant (Dey99)

Canonical Applications

Location Maps

Information Displays

Mobile Tour Guides

- Display location
- Present related information, create trip report when over
- Retrieve selected information after tour

What isn't Context or What isn't a Context-Aware App?

Explicit vs. implicit information
Implicit tends to be more interesting

Presentation Overview

Motivation and What is Context
Design Process - no support
Design Process - with support
Survey of Support
Research Challenges

Design Process - No Support

- Geared towards re-use and multiple applications
- 1. Specification
- 2. Acquisition and Representation
- 3. Delivery/Distribution
- 4. Reception and Storage
- 5. Action (the application)

Design Process - Specification

Context to use
Context behaviors to perform

Key step in the design process: problem specification

Design Process - Acquisition

- Install relevant sensors
 Create or learn to use API
 Support ability to query or be notified of change in sensor data
 Store context
- Interpret/abstract context

Design Process - Delivery/Distribution

Hans gave good overview

- Issues of location/time
- App/network-level delivery/routing models
- Where to sense

Transport mechanism

- Context typically captured remotely from application at different time
- Context captured in sensor-rich environment/device serving multiple applications
- Need to deliver/distribute context to multiple, remote apps AKD - Dagstuhl Summer School

Design Process - Reception

- Application locates relevant sensors
- Requests context via queries, polls, notifications
- Additional interpretation/abstraction

Design Process - Action

- Combine received context with previous context for further analysis
 Perform an action(s) based on
 - the analysis results

Using the Design Process: Simple Mobile Tour Guide

Application:

- Display list of all unseen demos
- Highlight relevant demos
- Show map centered on user's location
- Display information about closest demo
- Directions to demos

- Single-user application

Simple Tour Guide

Cyberguide

AKD - Dagstuhl Summer School

- Context:
 - List of demos visited
 - User location
 - User orientation
- Behaviors:
 - 4 actions from previous slide

Acquisition

- Sensors:
 - Orientation: electronic compass
 - Location: Active Badge
 - List of demos: Active Badge and software
- API: build for orientation and list, but learn Active Badge
- Store data in local file
- Interpretation of location to determine if at a demo

Delivery

- Only remote sensor is Active Badge
- Write transport mechanism to support form of RPC to acquire data

Reception

- Application knows what sensors to use, but what if sensor-rich environment
- Requests notification of changes in location and orientation
- Additional interpretation to get list of demos

- When application gets update about orientation, update map
- When application gets update about location
 - Update map
 - Update lists of unseen demos
 - Highlight relevant demos

Group Exercise #1

Choose a context-aware application, clearly indicating context and behaviors being used Develop/sketch/write a description of how to build it, assuming that there is no available support Make sure to address each of the 5 steps in the design process

Group Exercise #1: Review

What was hard?

What was easy?

What kinds of applications/domains?

Presentation Overview

- Introductions
- Motivation and What is Context
- Design Process no support
- Design Process with support
- Survey of Support
- Research Challenges

Design Process - with support

What support is necessary?

Accidental vs. Essential Tasks

- Brooks 87 "No Silver Bullet: Essence and Accidents of Software Engineering"
- Accidental tasks
 - Problems induced by design tools
 - Common across applications
- Essential tasks
 - Inherent problems

- Specific to application being built 8/13/2002 BARD - Dagstuhl Summer School

Design Process Revisited

- 1. Specification
- 2. Acquisition
- 3. Delivery
- 4. Reception
- 5. Action

Specification
 Acquisition

3. Action

Framework Requirements

Context specification - support for specifying needed context Discovery - locating components that can acquire and act on context Separation of concerns - separate the acquisition of context from the use of context

Framework Requirements

- Storage context history important
 Interpretation abstract to higher level
- Transparent communications simplify application development
 Constant availability - context needs to be acquired 24/7

2 ways to view the world

- From the field of artificial intelligence:
 - Component-based: components correspond to real-world entities and logical pieces of computation
 - Situation-based: treat the world like a collection of information and ask for information you're interested in

Building Blocks: Widgets

- Context widgets
 - Analogy to GUI widget
 - Separation, callbacks, attributes, encapsulation, abstraction
 - E.g. GUI button
 - Why: Responsible for acquiring and abstracting data from particular sensor, separation of concerns, storage

Building Blocks: Widgets

Building Blocks: Interpreters

- Context interpreters convert or interpret context to higher level information
- Context not available at appropriate level

Building Blocks: Aggregators

- Context aggregators collect context relevant to particular entities
- Further separation, simplifies design

8/13/2002

Building Blocks: Services

Context services - perform behaviors that act on the environment

Building Blocks: Discoverer

Discoverer - registry for context components

Component-Based Design

Applications

Situations: Design Process Revisited

- 1. Specification
- 2. Acquisition
- 3. Delivery
- 4. Reception
- 5. Action

Specification
 Acquisition

3. Action

Situation Abstraction

Revisit context definition Allow programmer to define a situation (real-world callbacks) Architecture's responsibility to deliver it (if possible) Makes specification in design process simpler

Situation-based Design

Group Exercise #2

Re-develop the same application

This time, make use of the support we've discussed

Should be much easier

Group Exercise #2 Review

What was hard?

What was easy?

What would you do differently/what additional support is required?

Presentation Overview

Motivation and What is Context
Design Process - no support
Design Process - with support
Survey of Support
Research Challenges

Survey of Support

Bootstrap building of applications the interesting part!

Comparison points for those building their own support

Survey of Support - Existing

Out of date

- Schilit (Columbia, 1995)
- Stick-e notes (Kent, 1996)
- CyberDesk (Georgia Tech, 1997)
- Spirit/Anatomy (ATT UK, 1997-99)
- CALAIS (Cambridge, 1998)
- Context Toolkit (Georgia Tech, 1998)
- TEA (Teco/Nokia, 1999)

Survey of Support - Proposed

- Situated Computing Service (HP, 1997)
 Contextual Information Service (Kent, 1998)
- Ektara (MIT, 2000)

Survey of Support - Other

Presentation Overview

Motivation and What is Context
Design Process - no support
Design Process - with support
Survey of Support
Research Challenges

Other Challenges

- Killer applications
- Taxonomy
- "Real"-world Knowledge
- Privacy
- Quality of Service
- Evaluation
- Transparency/Control

Balance of intelligence Dealing with ambiguity Environment model (location, people, (devices?)) Complex Interpretation

Killer Applications?

Need something to focus and drive the research

- Need something to put in the hands of real people
- Nigel's big button

 Communications, support for everyday activities (finding things)

Taxonomy

What context is important? Always and in different situations?
How do you represent context?
Do we need standards to allow groups to share components?

Real-World Knowledge

- Knowledge about how the world works
 Useful for advanced reasoning
 Multiple efforts:
 - ThoughtTreasure (www.signiform.com)
 - OpenMind (commonsense.media.mit.edu)
 - MindPixel (www.mindpixel.com)

Privacy

Capturing/collecting lots of information about people, places and devices

People uncomfortable when don't know what is being collected and how it's used

Social vs. technological solutions

Quality of Service: Metadata

Coverage Resolution Accuracy, confidence Reliability Frequency Timeliness

Intelligence

- Who is smart? User or system or both
 Who makes the decisions on what actions to take?
- Weiser: "If a computer merely knows what room it is in, it can adapt its behavior ... without even a hint of AI"
- Tradeoff between user cognitive load and effort to make system "smart"

Ambiguity

- Deborah Estrin et al: partially observable dynamic system; sensors are limited
- Generally and *incorrectly* assume sensed data or inferences is accurate: ignore the confidence value
- Different ways to deal
 - Improve inferencing
 - Bring the user into the loop

Environmental Model

Relationship between locations: hierarchical, containment, distance

Relationship between people: friends, family, colleagues, hierarchical

Relationship between devices?

Complex Interpretation

- Lots of interesting work here
- Most context-awareness deals with simple forms of context
- Fusion
- Sophisticated applications require higher level forms of context
- Numerical machine learning, HMMs, etc.

Summary

What is context, context-awareness?
Why is it interesting/valuable?
Support for building applications: useful abstractions
What are the interesting challenges?

- Bill Schilit, Norman Adams, and Roy Want. Context-aware computing applications. IEEE Workshop on Mobile Computing, Dec. 1994
 - Taxonomy of context-aware behaviors
 - http://www.fxpal.xerox.com/people/schilit/wmc-94schilit.pdf
- Jason Pascoe. Adding generic contextual capabilities to wearable computers. 2nd IEEE International Symposium on Wearable Computers, October 1998, pp. 92-99.
 - Taxonomy of context-aware behaviors

- Proposed support: Contextual Information Service 8/13/2002 http://www.cs.uke.acouk./pubs/s1098/676/content.zip 75

- Daniel Salber, Anind K. Dey and Gregory D. Abowd. The Context Toolkit: Aiding the development of context-enabled applications. 1999 Conference on Human Factors in Computing Systems (CHI'99), Pittsburgh, PA, May 15-20, 1999. pp. 434-441.
 - In/Out Board
 - http://www.cc.gatech.edu/fce/contexttoolkit/pubs/chi9
 9.pdf
- Roy Want et al. The Active Badge location system. ACM Transactions on Information Systems, vol. 10, pp. 91-102, Jan. 1992.
 - ftp://ftp.orl.co.uk/pub/docs/ORL/tr.92.1.ps.Z

- M. Lamming and M. Flynn, "Forget-me-not" Intimate Computing in Support of Human Memory. Friend21 '94 International Symposium on Next Generation Human Interface.
 - http://www.xrce.xerox.com/publis/camtrs/pdf/1994/epc-1994-103.pdf
- Jason Pascoe, Nick Ryan and David Morse, Mobile computing in a fieldwork environment.
 - MCFE
 - http://www.cs.ukc.ac.uk/research/infosys/mobicomp/Fiel dwork/Reports/fw97.html

- Anind K. Dey et al. The Conference Assistant: Combining Context-Awareness with Wearable Computing, 3rd International Symposium on Wearable Computers (ISWC '99), October 1999. pp. 21-28.
 - Conference Assistant
 - http://www.cc.gatech.edu/fce/ctk/pubs/ISWC99.pdf
- F. P. Brooks, "No Silver Bullet--Essence and Accidents of Software Engineering," IEEE Computer 20 No. 4, pp. 10-19, April 1987.
 - http://www.cis.gsu.edu/~mmoore/CIS3300/handouts/Br ooksNoSilverBullet.html

- Bill N. Schilit. A Context-Aware System Architecture for Mobile Distributed Computing. PhD Thesis, Columbia University, May 1995.
 - First architecture support for context-awareness
 - http://www.fxpal.xerox.com/people/schilit/schilitthesis.pdf
- P.J. Brown, J. D. Bovey, and X. Chen, *Context-Aware Applications: From the Laboratory to the Marketplace*. IEEE Personal Communications October, 1997.
 - Architecture support for non-programmers
 - Situation support
 - Stick-e notes
 - http://www.cs.ukc.ac.uk/people/staff/pjb/papers/personal_comms.html
 - Software:

http://www.cs.ukc.ac.uk/research/infosys/mobicomp/Fieldwork/Software/index.h ^{8/13/2002} tml

- Anind K. Dey, Gregory D. Abowd and Andy Wood. CyberDesk: A Framework for Providing Self-Integrating Context-Aware Services. Knowledge-Based Systems, Vol. 11(1), September 1998, pp. 3-13.
 - Architecture support for desktop-based context
 - http://www.cc.gatech.edu/fce/cyberdesk/pubs/IUI98/IUI98.html
 - http://www.cc.gatech.edu/fce/cyberdesk/
- Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, Paul Webster. The Anatomy of a Context-Aware Application. Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking (Mobicom '99), August 1999.
 - SPIRIT
 - ftp://ftp.uk.research.att.com/pub/docs/att/tr.1999.7.ps.gz

- G.J. Nelson. Context-Aware and Location Systems. PhD Thesis, University of Cambridge, January 1998.
 - CALAIS
 - http://www.acm.org/sigmobile/MC2R/theses/nelson.ps.gz
- Anind K. Dey, Daniel Salber and Gregory D. Abowd. A Context-based Infrastructure for Smart Environments. 1st International Workshop on Managing Interactions in Smart Environments (MANSE '99), December, 1999. pp. 114-128.
 - Context Toolkit
 - Component and situation-based support
 - http://www.cc.gatech.edu/fce/contexttoolkit/pubs/MANSE99.pdf
 - Software: http://www.cc.gatech.edu/fce/contexttoolkit

- Albrecht Schmidt, Kofi Asante Aidoo, Antti Takaluoma, Urpo Tuomela, Kristof Van Laerhoven, Walter Van de Velde. Advanced Interaction in Context. 1st International Symposium on Handheld and Ubiquitous Computing (HUC99), 1999.
 - Situation support for non-programmers
 - TEA
 - http://www.teco.unikarlsruhe.de/~albrecht/publication/huc99/advanced_int eraction_context.pdf

Annotated Bibliography -Proposed Support

- R. Hull, P. Neaves and J. Bedrod-Roberts. *Towards Situated Computing*. 1st IEEE International Symposium on Wearable Computers, October 1997.
 - Proposed architecture
 - Situated Computing Service
 - http://www.hpl.hp.com/techreports/97/HPL-97-66.pdf
- Richard W. DeVaul, Alex Pentland. The Ektara Architecture: The Right Framework for Context-Aware Wearable and Ubiquitous Computing Applications. MIT Media Lab Tech Report, 2000.
 - Proposed architecture for wearable computing
 - http://www.media.mit.edu/~rich/DPiswc00.pdf

Annotated Bibliography -Other Support

- P. R. Cohen, A. J. Cheyer, M. Wang, and S. C. Baeg. An open agent architecture. AAAI Spring Symposium, pp. 1-8, March 1994.
 - Blackboard-based agent architecture
 - http://www.ai.sri.com/pubs/papers/Cohe9403-1:Open/document.ps.gz
 - Software: http://www.ai.sri.com/~oaa/
- Nelson Minar, Matthew Gray, Oliver Roup, Raffi Krikorian, and Pattie Maes. Hive: Distributed agents for networking things. 1st International Symposium on Agent Systems and Applications & 3rd International Symposium on Mobile Agents, 1999.
 - Mobile agent-based architecture -
 - http://hive.sourceforge.net/hive-asama.html
 - Software: http://hive.sourceforge.net/ AKD Dagstuhl Summer School

8/13/2002

Annotated Bibliography -Other Support

- N.J. Newman and A.F. Clark. Sulawesi: A Wearable Application Integration Framework. 3rd IEEE International Symposium on Wearable Computers, 1999.
 - Architecture for wearable computing
 - http://wearables.essex.ac.uk/reports/iswc99.ps
 - Software: http://wearables.essex.ac.uk/sulawesi/
- B.L. Brumitt, S. Shafer, J. Krumm, B. Meyers. *EasyLiving and the role of Geometry in Ubiquitous Computing*.
 DARPA/NIST/NSF Workshop on Research Issues in Smart Computing Environments, July 1999.
 - Architecture for smart environments
 - http://www.research.microsoft.com/barry/research/ELandGeo metry2.pdf