Building Context-Aware Applications

Anind K. Dey
Senior Researcher, Intel Research Berkeley
Assistant Adjunct Professor, UC Berkeley
anind@intel-research.net
Transition from Hans’ Talk

- Value of sensors in ubiquitous computing

- Good example of context-aware systems

→ Fundamentals of building systems
Presentation Overview

- Motivation and What is Context
- Design Process - no support
- Design Process - with support
- Survey of Support
- Research Challenges
The Big Picture

- Mark Weiser: Chief Technologist at PARC
- Began Ubiquitous Computing Project in 1988
- Paradigm Shift
The Big Picture

- Ubiquitous computing
 - dynamic environments and new technologies
 - transparent/invisible/calm
The Big Picture

“The most profound technologies are those that disappear.”

“The whole purpose for ubicomp, of course, is the applications.”
One Slice of Ubiquitous Computing

- Automated Capture and Access

- Natural Interfaces

- Context-Aware Computing
 - Active Badges
 - PARCTabs
Motivating Example

- Context is fundamental:
 - Effective use of context is key for an effective ubicomp environment

- Most common application?
Motivating Example

- Effective use of context is key for an effective ubicomp environment

- Reminder to buy milk
- When to deliver: not time/location specific
- How to deliver: appropriate modality
What is Context?
What is Context?

You, as end user or designer, decide:
Application dependent and situation specific
What is Context?

Application dependent and situation specific

- Typically: identity, location, time
 - Rest is implied
 - Not much else used: e.g. activity, mood
Why is Context Interesting and Important?

- **Interesting**

- **Important**
 - Explicit information already available to applications
 - Context is information, usually implicit, that applications do not have access to
 - Makes applications “smarter”, increases communication bandwidth
What Do Applications Do With Context?

- What is a context-aware application?
 - App that uses context to perform some behavior/service for its user(s)

- 3 types of behaviors:
 - Display context
 - Automatically execute/adapt services
 - Tag captured information for easier retrieval

- Schilit94, Pascoe98
Displaying Context

- Directly display sensed context
- e.g. In/Out Board (Salber98), Location Maps (Want92), Status Displays (e.g. weather, activity)
Execute/Adapt Services

- Select and perform a relevant service from multiple services
- Change how a service behaves or is executed
- *e.g.* Print to nearest printer, Information Displays
Tag Information

- Use context to aid in context-based retrieval
- May be easier to remember context than specific information

- e.g. Forget-me-not (Lamming94), Mobile Computing Fieldwork (Pascoe96), Conference Assistant (Dey99)
Canonical Applications

- Location Maps
- Information Displays
- Mobile Tour Guides
 - Display location
 - Present related information, create trip report when over
 - Retrieve selected information after tour
What isn’t Context or What isn’t a Context-Aware App?

- Explicit vs. implicit information
- Implicit tends to be more interesting

...
Presentation Overview

- Motivation and What is Context
- Design Process - no support
- Design Process - with support
- Survey of Support
- Research Challenges
Design Process - No Support

- Geared towards re-use and multiple applications
 1. Specification
 2. Acquisition and Representation
 3. Delivery/Distribution
 4. Reception and Storage
 5. Action (the application)
Design Process - Specification

- Context to use
- Context behaviors to perform

- Key step in the design process: problem specification
Design Process - Acquisition

- Install relevant sensors
- Create or learn to use API
- Support ability to query or be notified of change in sensor data
- Store context
- Interpret/abstract context
Design Process – Delivery/Distribution

- Hans gave good overview
 - Issues of location/time
 - App/network-level delivery/routing models
 - Where to sense

- Transport mechanism

- Context typically captured remotely from application at different time

- Context captured in sensor-rich environment/device serving multiple applications

- Need to deliver/distribute context to multiple, remote apps
Design Process - Reception

- Application locates relevant sensors
- Requests context via queries, polls, notifications
- Additional interpretation/abstraction
Design Process - Action

- Combine received context with previous context for further analysis
- Perform an action(s) based on the analysis results
Using the Design Process: Simple Mobile Tour Guide

Application:
- Display list of all unseen demos
- Highlight relevant demos
- Show map centered on user’s location
- Display information about closest demo
- Directions to demos

- Single-user application
Simple Tour Guide

- Cyberguide
Simple Mobile Tour Guide

Specification

- **Context:**
 - List of demos visited
 - User location
 - User orientation

- **Behaviors:**
 - 4 actions from previous slide
Simple Mobile Tour Guide

- **Acquisition**
 - **Sensors:**
 - Orientation: electronic compass
 - Location: Active Badge
 - List of demos: Active Badge and software
 - **API:** build for orientation and list, but learn Active Badge
 - Store data in local file
 - Interpretation of location to determine if at a demo
Simple Mobile Tour Guide

Delivery

- Only remote sensor is Active Badge
- Write transport mechanism to support form of RPC to acquire data
Simple Mobile Tour Guide

Reception
- Application knows what sensors to use, but what if sensor-rich environment
- Requests notification of changes in location and orientation
- Additional interpretation to get list of demos
Simple Mobile Tour Guide

- **Action**
 - When application gets update about orientation, update map
 - When application gets update about location
 - Update map
 - Update lists of unseen demos
 - Highlight relevant demos
Group Exercise #1

- Choose a context-aware application, clearly indicating context and behaviors being used
- Develop/sketch/write a description of how to build it, assuming that there is no available support
- Make sure to address each of the 5 steps in the design process
Group Exercise #1: Review

- What was hard?
- What was easy?
- What kinds of applications/domains?
Presentation Overview

- Introductions
- Motivation and What is Context
- Design Process - no support
- Design Process - with support
- Survey of Support
- Research Challenges
Design Process - with support

- What support is necessary?
Accidental vs. Essential Tasks

- Brooks 87 “No Silver Bullet: Essence and Accidents of Software Engineering”

- Accidental tasks
 - Problems induced by design tools
 - Common across applications

- Essential tasks
 - Inherent problems
 - Specific to application being built
Design Process Revisited

1. Specification
2. Acquisition
3. Delivery
4. Reception
5. Action

1. Specification
2. Acquisition
3. Action
Framework Requirements

- **Context specification** - support for specifying needed context
- **Discovery** - locating components that can acquire and act on context
- **Separation of concerns** - separate the acquisition of context from the use of context
Framework Requirements

- **Storage** - context history important
- **Interpretation** - abstract to higher level
- **Transparent communications** - simplify application development
- **Constant availability** - context needs to be acquired 24/7
2 ways to view the world

- From the field of artificial intelligence:
 - Component-based: components correspond to real-world entities and logical pieces of computation
 - Situation-based: treat the world like a collection of information and ask for information you’re interested in
Building Blocks: Widgets

- **Context widgets**
 - Analogy to GUI widget
 - Separation, callbacks, attributes, encapsulation, abstraction
 - E.g. GUI button
 - Why: Responsible for acquiring and abstracting data from particular sensor, separation of concerns, storage
Building Blocks: Widgets

Application

Widget

Sensor

Widget

Sensor

Application

Context Architecture

In/Out Board

Location Widget

Face Recognition

Smart Card Reader

Location Widget
Building Blocks: Interpreters

- **Context interpreters** - convert or interpret context to higher level information
- **Context not available at appropriate level**

![Diagram](image_url)

- In/Out Board
- Location Widget
- Location Widget
- ID to Name Interpreter
- Face Recognition
- Smart Card Reader
Building Blocks: Aggregators

- Context aggregators - collect context relevant to particular entities
- Further separation, simplifies design

![Diagram showing Building Aggregator connected to In/Out Board, Location Widget, ID to Name Interpreter, Smart Card Reader, Face Recognition, and Location Widget.](image)
Building Blocks: Services

- Context services - perform behaviors that act on the environment
Building Blocks: Discoverer

Discoverer - registry for context components
Component-Based Design

- Context component abstraction

Diagram:

- Application
- Aggregator
- Interpreter
- Widget
- Discoverer
- Service
- Sensor
- Context Architecture
Applications

- In/Out Board and Context-Aware Mailing List (Salber98) – simple, reusable, evolving
Situations: Design Process Revisited

1. Specification
2. Acquisition
3. Delivery
4. Reception
5. Action
Situation Abstraction

- Revisit context definition
- Allow programmer to define a situation (real-world callbacks)
- Architecture’s responsibility to deliver it (if possible)
- Makes specification in design process simpler
Group Exercise #2

- Re-develop the same application

- This time, make use of the support we’ve discussed

- Should be much easier
Group Exercise #2 Review

- What was hard?
- What was easy?
- What would you do differently/what additional support is required?
Presentation Overview

- Motivation and What is Context
- Design Process - no support
- Design Process - with support
- Survey of Support
- Research Challenges
Survey of Support

- Bootstrap building of applications – the interesting part!

- Comparison points for those building their own support
Survey of Support - Existing

- Out of date
- Schilit (Columbia, 1995)
- Stick-e notes (Kent, 1996)
- CyberDesk (Georgia Tech, 1997)
- Spirit/Anatomy (ATT UK, 1997-99)
- CALAIS (Cambridge, 1998)
- Context Toolkit (Georgia Tech, 1998)
- TEA (Teco/Nokia, 1999)
Survey of Support - Proposed

- Situated Computing Service (HP, 1997)
- Contextual Information Service (Kent, 1998)
- Ektara (MIT, 2000)
Survey of Support - Other

- OAA (OGI, 1996)
- HIVE (MIT, 1998)
- Sulawesi (Essex, 1998)
- Interactive Workspaces (Stanford, 1998)
- EasyLiving (MSR, 1999)
Presentation Overview

- Motivation and What is Context
- Design Process - no support
- Design Process - with support
- Survey of Support
- Research Challenges
Other Challenges

- Killer applications
- Taxonomy
- "Real"-world Knowledge
- Privacy
- Quality of Service
- Evaluation
- Transparency/Control
- Balance of intelligence
- Dealing with ambiguity
- Environment model (location, people, (devices?))
- Complex Interpretation
Killer Applications?

- Need something to focus and drive the research
- Need something to put in the hands of real people
- Nigel’s big button

- Communications, support for everyday activities (finding things)
Taxonomy

- What context is important? Always and in different situations?
- How do you represent context?
- Do we need standards to allow groups to share components?
Real-World Knowledge

- Knowledge about how the world works
- Useful for advanced reasoning
- Multiple efforts:
 - ThoughtTreasure (www.signiform.com)
 - OpenMind (commonsense.media.mit.edu)
 - MindPixel (www.mindpixel.com)
Privacy

- Capturing/collection lots of information about people, places and devices
- People uncomfortable when don’t know what is being collected and how it’s used
- Social vs. technological solutions
Quality of Service: Metadata

- Coverage
- Resolution
- Accuracy, confidence
- Reliability
- Frequency
- Timeliness
Intelligence

- Who is smart? User or system or both
- Who makes the decisions on what actions to take?
- Weiser: “If a computer merely knows what room it is in, it can adapt its behavior ... without even a hint of AI”
- Tradeoff between user cognitive load and effort to make system “smart”
Ambiguity

- Deborah Estrin et al: partially observable dynamic system; sensors are limited
- Generally and *incorrectly* assume sensed data or inferences is accurate: ignore the confidence value
- Different ways to deal
 - Improve inferencing
 - Bring the user into the loop
Environmental Model

- Relationship between locations: hierarchical, containment, distance

- Relationship between people: friends, family, colleagues, hierarchical

- Relationship between devices?
Complex Interpretation

- Lots of interesting work here
- Most context-awareness deals with simple forms of context
- Fusion
- Sophisticated applications require higher level forms of context
- Numerical machine learning, HMMs, etc.
Summary

- What is context, context-awareness?
- Why is it interesting/valuable?
- Support for building applications: useful abstractions
- What are the interesting challenges?
Annotated Bibliography -
Presentation References

 - Taxonomy of context-aware behaviors

 - Taxonomy of context-aware behaviors
 - Proposed support: Contextual Information Service
 - http://www.cs.uk.ac.uk/pubs/1998/676/content.zip
Annotated Bibliography - Presentation References

 - In/Out Board

Annotated Bibliography - Presentation References

- Jason Pascoe, Nick Ryan and David Morse, Mobile computing in a fieldwork environment.
 - MCFE

- Conference Assistant

Annotated Bibliography - Existing Support

 - First architecture support for context-awareness

 - Architecture support for non-programmers
 - Situation support
 - Stick-e notes
 - http://www.cs.ukc.ac.uk/people/staff/pjb/papers/personal_comms.html
 - Software:
 - http://www.cs.ukc.ac.uk/research/infosys/mobicomp/Fieldwork/Software/index.html
- Architecture support for desktop-based context
- http://www.cc.gatech.edu/fce/cyberdesk/pubs/IUI98/IUI98.html
- http://www.cc.gatech.edu/fce/cyberdesk/

- SPIRIT
Annotated Bibliography – Existing Support

 - CALAIS
 - http://www.acm.org/sigmobile/MC2R/theses/nelson.ps.gz

 - Context Toolkit
 - Component and situation-based support
 - Software: http://www.cc.gatech.edu/fce/contexttoolkit
Annotated Bibliography - Existing Support

 - Situation support for non-programmers
 - TEA
Annotated Bibliography – Proposed Support

 - Proposed architecture
 - Situated Computing Service

 - Proposed architecture for wearable computing
Annotated Bibliography - Other Support

 - Blackboard-based agent architecture
 - Software: http://www.ai.sri.com/~oaa/

 - Mobile agent-based architecture
 - Software: http://hive.sourceforge.net/
Annotated Bibliography - Other Support

- Architecture for wearable computing
- http://wearables.essex.ac.uk/reports/iswc99.ps
- Software: http://wearables.essex.ac.uk/sulawesi/

- Architecture for smart environments